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Abstract We present a new evaluation criterion for the induction of decision trees.
We exploit a parameter-free Bayesian approach and propose an analytic formula
for the evaluation of the posterior probability of a decision tree given the data. We
thus transform the training problem into an optimization problem in the space of
decision tree models, and search for the best tree, which is the maximum a pos-
teriori (MAP) one. The optimization is performed using top-down heuristics with
pre-pruning and post-pruning processes. Extensive experiments on 30 UCI datasets
and on the 5 WCCI 2006 performance prediction challenge datasets show that our
method obtains predictive performance similar to that of alternative state-of-the-art
methods, with far simpler trees.

1 Introduction

Building decision trees from training data is a problem which has begun to be treated
in 1963 by Morgan and Sonquist. The first method is a regression tree which pre-
dicts a numerical variable [13]. Following this seminal work, the decision trees and
regression trees problem of building has long been popular in machine learning.

Decision tree is a predictive model of a categorical variable and regression tree
is a predictive model of a numerical variable. We may refer to the overviews [12],
[5, 14, 6] for more details about the main decision-tree methods.
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Orange Labs, 2, avenue Pierre Marzin Lannion, France e-mail: marc.boulle@orange-ftgroup.com

Carine Hue
GFI Informatique, 11, rue Louis de Broglie Lannion, France e-mail: chue@gfi.fr

1



2 Nicolas Voisine and Marc Boullé and Carine Hue

A decision tree is a classifier expressed as a hierarchical partition of the learning
space. The partitions are represented by connected nodes. A node having children
is called internal node and is defined by a segmentation rule. Other nodes are called
leaves and represent a decision process by assigning the majority class to each in-
stance of the node. The two first referenced algorithms are CHAID [11] and ID3
[19]. However, the CART [5] and C4.5 [20] decision trees are the benchmark meth-
ods with the highest reported performance.

The induction of an optimal decision tree from a data set is NP-hard [15]. Thus,
learning the optimal decision tree requires exhaustive search and is limited to very
small data sets. As a result, heuristic methods are required to build decision trees.
These methods could be divided into two groups: global and top-down. The last
group has the academic preference and referenced decision trees use top-down
heuristics.

There are two kinds of top-down decision trees. First ones are based on a pre-
pruning procedure (cf. CHAID and ID3), partitioning at each level of the tree the
training (sub) set into subsets according to a selected segmentation variable. The
choice of the variable among all the variables is made according to a segmenta-
tion criterion which provides the best partition. The procedure starts at the root of
the tree and stops at the terminal nodes (leaves) when the criterion can no more be
improved. The choice of the variable, the number of segments and the definition
of the segmentation characterize the process of segmentation. The segmentation
for numerical variables is called discretization and the segmentation for categori-
cal variables is called grouping. There is not usually a global criterion to optimize
segmentation process; each node splitting is optimized regardless of the others. The
main decision trees (ID3, CHAID, CART, and C4.5) exploit a criterion based on
information theory or statistical decision theory for evaluating segmentation. For
example, C4.5 uses the gain ratio measure based on entropy, CART uses the Gini
Index based on information gain measure and CHAID uses the CHI-Squared statis-
tic with a threshold to take the best decision. However, pre-pruning suffers from the
horizon effect [5]. The issue of pre-pruning algorithms is to stop the development of
nodes until the decision tree is sufficiently accurate and to limit overfitness. Since
Breiman work, new algorithms based on a post-pruning (CART, C4.5) have been
studied. The construction of decision trees by post-pruning consists of two steps.
The first step is to build a tree by continuing the process of segmentation as deep as
possible, even if the tree overfits the data. The second step prunes the decision tree
by removing nodes which minimize a pruning criterion. Learning time is longer than
in the case of pre-pruning algorithms, but the performance of the tree is improved
(cf. C4.5). Some pruning criteria are based on the estimated error rate of classifi-
cation (C4.5). Other pruning criteria are based on a validation set (CART). Both
approaches need to define heuristic parameters. A third, less-used approach exploits
the principle of Minimum Description Length [18], [22].

Nowadays, decision trees are a mature class of models for which is just expected
slight improvement of performance. Nevertheless, the reduction of the size of the
trees and the automation of learning process are still important issues.
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The decision tree performance mainly depends of the structure of trees. Too small
trees obtain poor performance [5]. Too large trees overfit the training dataset and
their performances collapse on the test dataset. Improving decision trees requires
better segmentation criterion and pruning criterion. The post-pruning methods are
likely to select noisy variables which are not pruned in the pre-pruning step. This
might be frequent in the case of large numbers of variables. The main issue of build-
ing decision trees is to select the best variables, to segment them correctly and to
decide when to stop. The reference methods (C4.5, CART, ID3 and CHAID) use
several parameters to learn their optimal tree : parameters for the choice of vari-
ables, discretization of numerical variables, grouping of categorical variables, and
settings of the pruning criterion. None of these methods offers comprehensive and
consistent criterion, taking into account the structure of the tree, selection of vari-
ables, segmentation and the performance of the tree. Wallace and Patrick as a result
of the work of Rivest and Quinlan use a MDL approach to define a global pruning
criterion taking into account the tree structure and the distribution of the classes in
the leaves [22]. Their lookahead algorithm pre-prunes decision trees by selecting
sub-trees which minimize MDL criterion. This MDL criterion does not provide the
best pruning, Quinlan and Rivest who had given the idea have not integrated in final
C4.5 decision trees. MDL criteria have been exploited both as a selection criterion
of segmentation variable and post-pruning criterion. However, MDL approach is a
promising way with theoretical foundation to reduce the size of decision trees and to
improve learning automation. But referenced MDL approaches remain incomplete,
since they do not take into account all the trees parameters.

In this article, we propose a complete criterion by using a Bayesian approach
according to a parsimony principle close to the Minimum Description Length ap-
proach. The aim is to transform the learning problem in a simple optimization pro-
cess of one single parameter-free criterion. The MODL approach has already proved
its interest in the selection of variables, the supervised discretization of numeri-
cal variables [3], grouping of categorical variables [2] and supervised classification
model, with the Selective Naive Bayes [4]. Our goal is to develop a decision tree
using the MODL approach, to evaluate and compare its performance with bench-
mark decision trees : J48(C4.5 [20]) and SimpleCART(CART [5]) from the WEKA
software [9] which is an academic reference. The article is organized as follows.
Section 2 summarizes the MODL approach in the case of supervised discretization.
Section 3 describes the extension of this approach to decision trees. Section 4 de-
scribes optimization algorithms. Section 5 reports comparative evaluations of the
method. Finally, section 6 concludes the article.

2 The MODL Approach

For the convenience of the reader, this Section summarizes the MODL approach in
the case of supervised discretization of numerical variables [3].
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The objective of supervised discretization is to induce a list of intervals which
partitions the numerical domain of a continuous input variable, while keeping the
information relative to the output variable. A trade-off must be found between in-
formation quality (homogeneous intervals in regard to the output variable) and sta-
tistical quality (sufficient sample size in every interval to ensure generalization).

In the MODL approach, the discretization is turned into a model selection prob-
lem. First, a space of discretization models is defined. The parameters of a specific
discretization model are the number of intervals, the bounds of the intervals and
the frequencies of the output values in each interval. Then, a prior distribution is
proposed on this model space. This prior exploits the hierarchy of the parameters:
the number of intervals is first chosen, then the bounds of the intervals and finally
the frequencies of the output values. The prior is uniform at each stage of the hi-
erarchy. Finally, we assume that the multinomial distributions of the output values
in each interval are independent from each other. A Bayesian approach is applied
to select the best discretization model, which is found by maximizing the proba-
bility p(Model|Data) of the model given the data. Using the Bayes rule and since
the probability p(Data) is constant under varying the model, this is equivalent to
maximizing p(Model)p(Data|Model).

Let N be the number of instances, J the number of output values, I the num-
ber of input intervals. Ni denotes the number of instances in the interval i and Ni j
the number of instances of output value j in the interval i. In the context of su-
pervised classification, the number of instances N and the number of classes J are
supposed to be known. A discretization model M is then defined by the parameter
set
{

I,{Ni}1≤i≤I ,
{

Ni j
}

1≤i≤I,1≤ j≤J

}
.

Using the definition of the model space and its prior distribution, Bayes formula
can be used to calculate the exact prior probabilities of the models and the prob-
ability of the data given a model. Taking the negative log of the probabilities, this
provides the evaluation criterion given in Formula 1.

logN + log
(

N + I−1
I−1

)
+

I

∑
i=1

log
(

Ni + J−1
J−1

)
+

I

∑
i=1

log
Ni!

Ni1!Ni2! . . .NiJ!
(1)

The first term of the criterion stands for the choice of the number of intervals
and the second term for the choice of the bounds of the intervals. The third term
corresponds to the parameters of the multinomial distribution of the output values
in each interval and the last term represents the conditional likelihood of the data
given the model, using a multinomial term. Therefore “complex” models with large
numbers of intervals are penalized.

Once the evaluation criterion is established, the problem is to design a search
algorithm in order to find a discretization model that minimizes the criterion. In
[3], a standard greedy bottom-up heuristic is used to find a good discretization.
In order to further improve the quality of the solution, the MODL algorithm per-
forms post-optimizations based on hill-climbing search in the neighbourhood of a
discretization. The neighbors of a discretization are defined with combinations of
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interval splits and interval merges. Overall, the time complexity of the algorithm is
O(JN logN).

The MODL discretization method for supervised classification provides the most
probable discretization given the data. Extensive comparative experiments report
high performance [3]. The case of value grouping of categorical variables is treated
in [2] using a similar approach.

3 MODL Decision Trees

In this section, we apply the MODL approach to decision trees by defining explicitly
a family of models and by introducing a global evaluation criterion of trees resulting
from a Bayesian approach of model selection.

3.1 Definition

A decision tree is a classification model which aims at predicting a categorical out-
put variable from a set of numerical or categorical input variables. One advantage of
decision trees is that they provide understandable models, based on decision rules.
The issue is to induce a tree with high predictive performance while keeping its size
as small as possible. This turns into a difficult problem of finding a trade-off be-
tween the performance of the model and the complexity of the structure of the tree,
in order to ensure a good generalization of the model.

The MODL approach for decision trees consists in selecting the model with the
highest probability given the data from a family of decision trees. As for the case
of discretization (cf. Section 2), we apply a Bayesian approach to select the deci-
sion tree with the highest posterior probability p(Tree|Data), which is equivalent to
maximize:

p(Tree)p(Data|Tree)

where p(Tree) is the prior probability of the tree and
p(Data|Tree) is the likelihood of the data given the model.

Let us introduce the following notations:

• N : number of instances,
• J : number of output values,
• T : a model of decision tree,
• K : set of K input variables,
• KT : subset of KT input variables used by tree T ,
• ST : set of internal nodes of tree T ,
• LT : set of terminal nodes (leaves) of tree T ,
• Xs : segmentation variable of node s,
• Ns. : number of instances in node s,
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Fig. 1 Example of decision tree. The internal nodes (I. Node) represent the decision rules and the
leaves represent the distribution of the output values

I. Node 1

X1

I1

{N1i.}1≤i≤I1

I. Node 2

X2

I2

{N2i.}1≤i≤I2

I. Node 3

X3

I3

{N3i.}1≤i≤I3

Leaf 5

{N5. j}1≤ j≤J

Leaf 6

{N6. j}1≤ j≤J

Leaf 7

{N7. j}1≤ j≤J

Leaf 4

{N4. j}1≤ j≤J

• VXs : number of values of variable Xs in node s, in the categorical case,
• Is : number of child nodes of node s,
• Nsi. : number of instances in the ith child of node s,
• Nl. j : number of instances of output value j in leaf l.

A decision tree model is defined by its structure, the distribution of the instances
in this structure and the distribution of output values in the leaves (cf. Figure 1). The
structure of the decision tree model consists of the set of internal nodes ST (nodes
with at least two children), the set of leaves and the relations between these nodes.

The distribution of the instances in this structure is defined by the partition of
the segmentation variable in each internal node and by the distribution of the output
values in each leaf. A decision tree model T is thus defined by:

• the subset of variables KT used by model T , that is the number of selected vari-
ables KT and the choice of the KT variables among K,

• the number of child nodes Is,

– if Is = 1 then the node is a leaf,
– if Is > 1 then the node is an internal node,

• the distribution of the instances in each internal node s:

– the segmentation variable Xs,
– the number of parts (intervals or groups of values) Is,
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– the distribution of the instances on this parts (child nodes) {Nsi.}1≤i≤Is ,

• the distribution of the output values in each leaf l:
{

Nl. j
}

1≤ j≤J .

3.2 Evaluation Criterion

The evaluation criterion we propose here is the negative logarithm of the poste-
rior tree probability given the data. As the data probability is constant whatever the
model, the criterion is defined as

c(Tree) =− log p(Tree)p(Data|Tree)

We choose the prior model probability p(Tree) by exploiting the hierarchy of the
modelization parameters. This hierarchy enables to describe dependence relation-
ships between parameters. The prior choice comes from hierarchical extensions of
the Bayesian approach. In the case of a complex parameter set, the uncertainty of
high level parameters is expressed first, then, conditionally, the uncertainty on low
level parameters. Bayes law enables us to express p(Tree) according to a parsimony
principle close to the Minimum Description Length approach and according to prior
distributions for these parameters.

There are many ways to define such parameters hierarchy. The first would consist
in defining the structure then the segmentations, then the class distribution for the
leaves. In this article, we propose to exploit the implicit tree hierarchy by defining
the model at the root level independently of its children. Then, in a recursive way,
the nodes are described from the root children to the leaves. The prior probability of
a MODL decision tree is thus defined as :

p(Tree) = p(KT )×

∏
s∈ST

p(Is)p(Xs|KT )p(Nsi.|KT ,Xs,Ns., Is)

∏
l∈LT

p(Il)p(Nl. j|KT ,Nl.) (2)

The first line in equation 2 represents the prior probability of variable selection.
The second line is related to internal node probability and the last line represents
leaf node probability.

Prior probability of variable selection

For the variable selection parameters, we reuse the prior introduced by [4] in the
case of the selective naive Bayes classifier. We propose a hierarchic prior, by first
choosing the number of selected variables and second choosing the subset of se-
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lected variables. For the number KT of variables, we propose to use a uniform prior
between 0 and K variables, representing (K + 1) equiprobable alternatives. For the
choice of the KT variables, we assign the same probability to every subset of KT
variables. The number of combinations

( K
KT

)
seems the natural way to compute this

prior, but it has the disadvantage of being symmetric. Beyond K/2 variables, every
new variable makes the selection more probable. Thus, adding irrelevant variables is
favored, provided that this has an insignificant impact on the likelihood of the model.
As we prefer simpler models, we propose to use the number of combinations with
replacement

(K+KT−1
KT

)
.It thus gives :

P(KT ) =
1

K +1
1(K+KT−1

KT

)
Prior probability of an internal node

Knowing the selected variables and the parent nodes, the internal node can be de-
fined by status (either internal node or leaf), segmentation parameters (the segmen-
tation variable, the segmentation numbers and distribution of instances in segments.
We consider that, for each internal node, the choice of the segmentation variable
is independent and equal for all the selected explicative variables. To express the
probability of the size of the segmentation of a given internal node, the simplest
assumption of equiprobability leads to p(Is|KT ,Xs,Ns.) = 1

Ns
for a numerical vari-

able and p(Is|KT ,Xs,Ns.) = 1
Vs

for a categorical variable. However, we obtained with
such prior very cautious trees, as the higher the instances number, the lower the prior
probability. That is why we propose here a prior inspired from the Minimum De-
scription Length approach. Rissanen proposes an optimal coding of integers and
gives the associated probability in [21]. This universal prior is defined so that the
small integers are more probable than the large integers, and the rate of decay is
taken to be as small as possible. According to Rissanen, this prior is ”universal” be-
cause its resulting code length (negative log of the probability) realizes the shortest
coding of large integers. This prior is attractive even in the case of finite sets of in-
tegers, because it makes small integers preferable to large integers with the slightest
possible difference. The optimal length, in bits, of an integer Is is :

CRis(Is) = log2(2.865)+ log2(Is)+ log2(log2(Is))+ ...

We then obtain the universal prior probability of Is segments :

p(Is|KT ,Xs,Ns.) = 2−CRis(Is)

Moreover, by using the fact that an internal node has at least two children, the status
of the node has not to be explicitly described. Only the number of segments, either
one for a leaf or between 2 and Ns children for an internal node, are described.
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For a numerical variable, the prior probability of the segmentation intervals is
obtained similarly to the univariate MODL discretization (cf. section 2) :

1
KT

2−CRis(Is) 1(Ns+Is−1
Is−1

)
For a categorical variable, the prior probability is obtained similarly to the uni-

variate MODL grouping method [2] :

1
KT

2−CRis(Is) 1
B(VXs , Is)

B(X ,Y ) is the number of divisions of the X values into Y groups (with eventually
empty groups). When X =Y , B(X ,Y ) is the Bell number. In the general case, B(X,Y)
can be written as a sum of Stirling numbers of the second kind S(X,y) :

B(X ,Y ) =
Y

∑
y=1

S(X ,y)

S(X ,y) stands for the number of ways of partitioning a set of X elements into y
nonempty sets.

Prior probability of a leaf

To end up, it remains to define the prior of leaves probability, that is to say the class
distribution for each leaf. Assuming the distributions are equiprobable, it remains to
calculate the number of multinomial distributions of Nl. instances among J classes :

2−CRis(1) 1(Nl.+J−1
J−1

)
As internal nodes, the terms 2−CRis(1) corresponds to the choice of the size of the

segmentation, which is 1 for leaves.

Likelihood probability

We have now to explicit the likelihood probability of the data given the model.
The data distribution depends only of tree leaves. Knowing the multinomial model
defined on one leaf, we deduce the likelihood :

p(Data|Tree) = ∏
l∈L

Nl.!
Nl.1!Nl.2!...Nl.J!
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MODL decision tree criterion

Endly, taking the negative logarithm of its posterior probability, the optimal tree cost
is :

Copt(T ) = log(K +1)+ log
(

K +KT −1
KT

)
+

+ ∑
s∈STn

logKT +CRis(Is) log2+ log
(

Ns. + Is−1
Is−1

)
+

+ ∑
s∈STc

logKT +CRis(Is) log2+ logB(VXs , Is)+

+ ∑
l∈LT

CRis(1) log2+ log
(

Nl. + J−1
J−1

)
+

+ ∑
l∈LT

log
Nl.!

Nl.1!Nl.2!...Nl.J!

where STn and STc are the internal nodes sets using respectively numerical or
categorical segmentation variable. It is noteworthy that, using Stirling’s approxima-
tion, the last multinomial term of the formula is asymptotically equal to the target
entropy in the leaves of the tree [7]. Thus, the whole crietrion clearly relates to an
entropy-based impurity measure, with a penalization for complex trees.

4 Optimization Algorithms

The induction of an optimal decision tree from a data set is NP-hard [15]. The ex-
haustive search algorithm is then excluded. In this article we exploit a pre-pruning
algorithm 1 and a post-pruning algorithm 2. The pre-pruning algorithm starts with
the root node and searches the best partition according to the criterion presented
above. The leaves are segmented while the criterion is improved. For each leaf, the
partition is performed according to the univariate MODL discretization or grouping
methods, then the global cost of the tree is updated by accounting for this new parti-
tion. The partition is really completed if the global cost is improved. The optimum is
then searched with successive local optimums at leaf levels. This algorithm is close
to those used in ID3 and CHAID decision trees. The difference lies in the fact that
the segmentation of two leaves is not conducted independently as the criterion is
global. One leaf node can not be segmented unless it is the best choice of segmen-
tation. In practice, the additivity of the criterion enables to update only the cost of
the considered node. The algorithm does not guarantee to find the global optimum
but its maximal complexity is O(KJN2Log(N)), in the case of an unbalanced tree.
Its is O(KJN(LogN)2) on average in the case of a balanced tree. This algorithm is
deterministic and thus it always leads to the same local optimum.
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Algorithm 1 Top-Down algorithm with pre-pruning for optimal tree search
Require: T the root tree
Ensure: the tree T̂ which minimizes the proposed criterion

T ∗← T
while criterion improvement do

T̂ ← T ∗

for all leaf l of the tree do
T ′← T ∗

for all variable X of K do
Search the partition rule on the leaf l according X which best improves the criterion
TX ← T ∗+PX (l)
if c(TX ) < c(T ′) then

T ′← TX
end if

end for
if c(T ′) < c(T ∗) then

T ∗← T ′

end if
end for

end while

Unfortunately, the pre-pruning algorithm creates small and under-fitted decision
trees. To go above this horizon effect, we have also exploited our criterion with a
post-pruning algorithm [5]. The post-pruning algorithm consists in two steps. The
first step is the top-down building of the deepest tree by choosing the best univariate
MODL partitions for each leaf, even if it does not lead to an improvement in the
global criterion. The tree with the minimum cost is memorized during this step.
This step ends when there are no more MODL informative variables left. Starting
from the obtained deepest tree, the second step considers only nodes consisting
of leaves, and prunes the node which leads the best improvement of the criterion.
Only the internal node whose children are all leaves are candidates for pruning.
Like in the first step, the tree with the minimum cost is memorized. This algorithm
is also deterministic and it always leads to the same local optimum. At least, this
algorithm guaranties to find a decision tree with a better cost than the tree resulting
of algorithm 1. This means that the posterior probability of the tree can only be
improved using the post-pruning algorithm.

5 Experiments

This section presents an experimental evaluation of our supervised decision trees
methods described in the previous sections.
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Algorithm 2 Top-Down algorithm with post-pruning for optimal tree search
Require: T the root tree
Ensure: the tree T̂ which minimizes the proposed criterion

T ∗← T
while there are MODL informative variables for one leaf node do

T̂ ← T ∗

for all leaf l of the tree do
T ′← T ∗

for all variable X of K do
Search the partition rule on the leaf l according X which best improves the criterion
TX ← T ∗+PX (l)
if c(TX ) < c(T ′) then

T ′← TX
end if

end for
T ∗← T ′

end for
end while
while the tree is not reduced to its root do

T̂ ← T ∗

for all internal node s of the tree whose children are all leaves do
Ts← T ∗− children(s)
if c(Ts) < c(T ′) then

T ′← Ts
end if
T ∗← T ′

end for
end while

5.1 Experiments Setup

We conduct the experiments on two collections of data sets: 30 data sets from the
repository at University of California at Irvine [1] and 5 data sets from the WCCI
2006 performance prediction challenge [10]. These data sets represent a large diver-
sity of number of variables, instances and classes, with numerical and/or categorical
variables. A summary of some properties of these data sets is given in Table 1 for
the UCI data sets and in Table 4 for the challenge data sets.

We evaluate two versions of the pre-pruning algorithm 1 and the post-pruning
algorithm 2, with binary trees and N-ary trees. For binary trees, we constrain the
univariate partition (discretization or grouping) of each node to build at most two
subparts, related to two child nodes. On the opposite, internal nodes of N-ary trees
can have more than two children. For more convenience, we call our decision tree
family MTrees (MODL Trees). Our evaluated methods are:

• MTp : MTree with post-pruning top-down algorithm
• MTp(2) : MTree with post-pruning top-down algorithm and a binary tree struc-

ture.
• MT : MTree with pre-pruning top-down algorithm algorithm
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Table 1 UCI Data Sets. The properties of the used UCI data sets are : number of instances, number
of variables, number of classes and majority accuracy

Name Variables Instances Classes Majority
Accuracy

Adult 15 48842 2 0.76
Australian 14 690 2 0.56
Breast 10 699 2 0.66
Crx 15 690 2 0.56
German 24 1000 2 0.70
Glass 9 214 6 0.36
Heart 13 270 2 0.56
Hepatitis 19 155 2 0.79
HorseColic 27 368 2 0.63
Hypothyroid 25 3163 2 0.95
Ionosphere 34 351 2 0.64
Iris 4 150 3 0.33
LED 7 1000 10 0.11
LED17 24 10000 10 0.11
Letter 16 20000 26 0.04
Mushroom 22 8416 2 0.53
PenDigits 16 10992 10 0.10
Pima 8 768 2 0.65
Satimage 36 6435 6 0.24
Segmentation 19 2310 7 0.14
SickEuthyroid 25 3163 2 0.91
Sonar 60 208 2 0.53
Spam 57 4307 2 0.65
Thyroid 21 7200 3 0.93
TicTacToe 9 958 2 0.65
Vehicle 18 846 4 0.26
Waveform 21 5000 3 0.34
WaveformNoise 40 5000 3 0.34
Wine 13 178 3 0.40
Yeast 9 1484 10 0.31

• MT(2) : MTree with pre-pruning top-down algorithm and a binary tree structure.
• NMT : Naive MODL tree is a top-down building of the deepest tree by choosing

the best univariate MODL partition, without any pruning.

We compared our methods with J48 and SimpleCART which are implementa-
tions of C4.5 and CART in open-source data mining software WEKA [9]. We take
as parameters those defined by default in the software. We evaluate the accuracy
(ACC), the area under the ROC curve (AUC)[8], the number of nodes (internal
nodes and leaves) and the training time. Provost et al. (1998) propose to use re-
ceiver operating characteristic (ROC) analysis rather than the accuracy to evaluate
induction models [17]. The ACC criterion evaluates the accuracy of the prediction,
no matter whether the conditional probability of the predicted class is 51% or 100%.
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The AUC criterion evaluates the ranking of the class conditional probabilities. In a
two-classes problem, the AUC is equivalent to the probability that the classifier will
rank a randomly chosen positive instance higher than a randomly chosen negative
instance. In our experiments, we use the approach of Provost and Domingos (2001)
to calculate the multi-class AUC [16].

We collect and average the four criteria owing to a stratified 10-fold cross vali-
dation, for the seven evaluated methods on the thirty five data sets. In 10-fold cross-
validation, the original data set is partitioned into 10 subsamples. Of the 10 subsam-
ples, a single subsample is retained as the test data for testing the model, and the
remaining 9 subsamples are used as training data. The cross-validation process is
then repeated 10 times.

5.2 UCI Results

The geometric means of the four criteria for each method are summarized in Table 2.
The great diversity of the data sets increases the variance of the criterion. Therefore
we prefer to support our analysis on the geometric mean, which allows comparing
the criterion ratios between the various methods. The full results are also reported
in Table 3.

Table 2 Evaluation of the methods on UCI data sets : accuracy, AUC, size (number of nodes),
training time and tree cost

Train data set Test data set
Method Acc. AUC Acc. AUC Size Time Copt(T)

MT(2) 0.845 0.914 0.819 0.889 17.5 0.5 524
MT 0.841 0.915 0.813 0.884 19.4 0.5 565
MTp(2) 0.840 0.910 0.822 0.891 17.4 0.6 508
MTp 0.834 0.905 0.817 0.890 19.5 0.6 547
NMT 0.879 0.959 0.762 0.844 142.3 0.8 1095
sCART 0.854 0.921 0.822 0.876 30.7 1.0 ×
J48 0.929 0.962 0.834 0.881 77.1 0.1 ×

Overall J48 obtains the best geometric mean of accuracy and MTp(2) obtains
the best geometric mean of AUC. In most of the cases, AUC and accuracy results
are close (cf. Table 3). These weak differences are not surprising, since the decision
trees are a mature technology and the differences of performance are often marginal.
On the other hand, the complexity of the tree structure is approximately four times
less with MTree than with J48 and twice less than with SimpleCART. This property
makes the interpretation of our trees considerably easier for the domain expert, and
their deployment faster. Concerning training time, MTree is five times slower than
J48 and twice faster than SimpleCART. Binary MTrees have better accuracy and
AUC than N-ary MTrees. Constraining the algorithms to build binary trees leads to
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Fig. 2 Train vs test AUC on 30 UCI data sets
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a better optimization of the criterion and a better predictive performance with only
a slight impact on the tree size. The test results show that the tree cost of unpruned
MTrees (NMT) is twice that of pruned MTrees, while the test performances (Acc
and AUC) are far worse. It is noteworthy that the criterion of binary MTrees is
smaller than the one of N-ary MTrees. This shows that the performance (accuracy
and AUC) of the MTree trees is clearly correlated with the value of the tree criterion.
MTp(2) is slightly prone to overfitting but it overfits less the data than the other
methods. Figure 2 clearly shows that the differences between train and test AUC on
30 UCI data sets are lower with MTree than with J48 or SimpleCART.

A detailed analysis of the results (cf. Table 3) shows that MTree accuracy are
worse with data sets having correlated variables such as Letter or image segmen-
tation. On the other hand for marketing data sets such as Adult, MTree is slightly
better while having ten times less nodes than J48.

5.3 Prediction Challenge Results

This section reports the results obtained by our method on the performance pre-
diction challenge of Guyon et al. [10]. The purpose of the performance prediction
challenge is “to stimulate research and reveal the state-of-the-art in model selec-
tion”. Five data sets are used in the challenge (cf. Table 4). The ada data set comes
from the marketing domain, the gina data set from handwriting recognition, the hiva
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Table 3 Test accuracy, AUC and tree size of post-pruned decision tree on UCI data sets, using
ten-fold cross validation

Accuracy AUC Tree Size
Data Set MTp(2) MTp sCart J48 MTp(2) MTp sCart J48 MTp(2) MTp sCart J48
Adult 0.864 0.862 0.863 0.860 0.910 0.911 0.888 0.886 124.8 176.1 120.2 1099
Australian 0.852 0.852 0.857 0.852 0.904 0.903 0.878 0.881 6.2 6.2 5.8 46.2
Breast 0.937 0.957 0.949 0.946 0.965 0.969 0.948 0.948 9.6 8.7 15.8 23.4
Crx 0.861 0.861 0.852 0.861 0.914 0.914 0.866 0.894 7 7 3.6 27.1
German 0.692 0.692 0.750 0.739 0.682 0.682 0.722 0.692 3.2 3.2 19.4 140.6
Glass 0.597 0.649 0.705 0.659 0.778 0.811 0.848 0.793 7.8 8.2 20 47
Heart 0.733 0.719 0.785 0.767 0.808 0.810 0.792 0.755 7.2 7.7 14.2 33.8
Hepatitis 0.806 0.806 0.786 0.838 0.642 0.642 0.598 0.697 3 3 9.6 17.8
HorseColic 0.843 0.843 0.875 0.878 0.822 0.822 0.861 0.864 5.6 5.6 10 19.6
Hypothyroid 0.992 0.992 0.992 0.992 0.979 0.976 0.957 0.95 5.8 10.4 10.8 11.8
Ionosphere 0.898 0.889 0.898 0.915 0.901 0.908 0.896 0.895 5.2 7.9 8.8 27.4
Iris 0.953 0.933 0.953 0.960 0.975 0.963 1.000 0.990 5 4 8 8.4
LED 0.705 0.705 0.725 0.729 0.920 0.920 0.916 0.920 29 29 110 62.2
LED17 0.735 0.735 0.735 0.722 0.951 0.951 0.957 0.891 75.6 75.6 123.8 890
Letter 0.768 0.738 0.869 0.879 0.975 0.966 0.965 0.964 461.2 531.8 2091.2 2321.6
Mushroom 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 12.6 14 13.4 29.8
PenDigits 0.945 0.903 0.963 0.966 0.991 0.984 0.991 0.992 170.6 247 363.4 375.6
Pima 0.741 0.740 0.751 0.738 0.764 0.767 0.725 0.749 8.4 6.9 16.2 37.4
Satimage 0.853 0.852 0.868 0.873 0.972 0.971 0.981 0.979 76 72.3 165.2 551.4
Segmentation 0.938 0.938 0.958 0.971 0.989 0.989 0.998 0.998 31.2 46.1 76.6 82.6
SickEuthyroid 0.978 0.979 0.977 0.979 0.961 0.956 0.96 0.941 11.4 12.5 14 26.2
Sonar 0.735 0.735 0.712 0.712 0.746 0.746 0.722 0.735 4.8 4.8 14.2 29.2
Spam 0.912 0.911 0.922 0.935 0.953 0.955 0.94 0.943 44.8 54.1 131.2 192.2
Thyroid 0.995 0.992 0.996 0.997 0.997 0.996 0.996 0.99 14.4 23 22.4 30.6
TicTacToe 0.923 0.866 0.932 0.851 0.965 0.921 0.963 0.899 42.8 49.1 67.2 135.4
Vehicle 0.676 0.661 0.701 0.726 0.890 0.877 0.926 0.932 24.4 28.2 104.8 136
Waveform 0.756 0.745 0.777 0.759 0.912 0.904 0.903 0.845 72.4 90.4 136.6 541.8
WaveformNoise 0.744 0.751 0.767 0.751 0.907 0.906 0.903 0.847 70.4 84.4 121.4 580.4
Wine 0.917 0.917 0.894 0.939 0.946 0.951 0.963 0.975 8.6 7.4 9.2 9.8
Yeast 0.565 0.542 0.309 0.503 0.776 0.779 0.501 0.749 16.8 22.8 1.4 96.6
Ar. Mean 0.830 0.825 0.837 0.843 0.896 0.895 0.885 0.886 45.5 54.9 127.6 254.4
Geo. Mean 0.822 0.817 0.822 0.834 0.891 0.890 0.876 0.881 17.7 19.9 30.7 77.1
Mean Rank 2.6 2.8 2.3 1.9 2.0 2.2 2.6 2.8 1.3 1.8 2.7 4.0

data set from drug discovery, the nova data set from text classification and the sylva
data set from ecology.

The detailed results of our evaluation are presented in Table 5. Unfortunely, we
cannot report the results of simpleCART and J48 on all the data sets, since some
of these data sets are too large given the Weka implementation of simpleCART and
J48. Overall, MTree with post-pruning is the best method. It comes first on most of
the data sets for the AUC, accuracy and tree size criteria.
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Table 4 WCCI Challenge Data Sets. The properties of the used UCI data sets are : number of
instances, number of variables, number of classes and majority accuracy

Name Variables Instances Classes Majority
Accuracy

ada 48 4562 2 0.75
gina 970 3468 2 0.51
hiva 1617 4229 2 0.96
nova 16969 1929 2 0.72
sylva 216 14394 2 0.94

Table 5 Test accuracy, AUC and tree size of post-pruned decision tree on prediction challenge
data sets, using ten-fold cross validation

Accuracy AUC Tree Size
Data Set MTp(2) MTp sCart J48 MTp(2) MTp sCart J48 MTp(2) MTp sCart J48
ada 0.847 0.847 0.842 0.846 0.887 0.890 0.860 0.860 22.0 23.6 28.1 224.0
gina 0.881 0.863 0.894 0.867 0.923 0.913 0.918 0.862 47.8 49.1 64.4 247.7
hiva 0.966 0.966 - 0.955 0.622 0.622 - 0.659 6.0 6.0 - 64.4
nova 0.866 0.866 - - 0.817 0.817 - - 17.6 17.6 - -
sylva 0.989 0.989 0.991 0.990 0.991 0.991 0.981 0.954 26.2 41.4 41.0 105.2

6 Conclusion

The Bayesian criterion presented in this article gives a complete criterion to evaluate
a decision tree by taking into account the structure of the tree, the choice of the ex-
planatory variables, the segmentation in each internal node and the distributions of
the classes in each leaf. This corresponds to an exact analytic evaluation of the pos-
terior probability of a tree given the data and results in a parameter-free evaluation
criterion. We have tested two optimization algorithms. The first one is a pre-pruning
heuristic and the second one is a post-pruning heuristic which leads to a better opti-
mization and obtain the better performance. Evaluations on 30 UCI data sets show
that MTrees obtains state of the art performance while being much less complex.
The evaluation on prediction challenge data sets show that our method gets the best
results and builds the less complex decision trees. It is also noteworthy that binary
trees are better on average than N-ary trees. Therefore designing new algorithms is
a promising direction to get better performance. Another direction of research is to
use MODL trees with random forest or Bayesian Model Averaging.
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