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Abstract— The K Nearest Neighbors (KNN) is strongly
dependent on the quality of the distance metric used. For
supervised classification problems, the aim of metric learning is
to learn a distance metric for the input data space from a given
collection of pair of similar/dissimilar points. A crucial point is
the distance metric used to measure the closeness of instances.
In the industrial context of this paper the key point is that a very
interesting source of knowledge is available : a classifier to be
deployed. The knowledge incorporated in this classifier is used
to guide the choice (or the construction) of a distance adapted
to the situation Then a KNN-based deployment is elaborated to
speed up the deployment of the classifier compared to a direct
deployment.

I. INTRODUCTION
A. Industrial problem

Data mining consists in methods and techniques which
allow the extraction of information and knowledge from data.
Its use allows establishing correlations between data and,
for example within the framework of customer relationship
management, to define types of customer’s behavior.

Given a database, one common task in data analysis is
to find the relationships or correlations between a set of
input or explanatory variables and one target variable. This
knowledge extraction often goes through the building of
a model which represents these relationships. Faced with
a classification problem, a probabilist model estimates the
probabilities of occurrence of each target class for all ins-
tances of the database given the values of the explanatory
variables. These probabilities, or scores, can be used to
evaluate existing policies. The scores are used for example
in customer relationship to evaluate the probability that a
customer will buy a new product (appetency) or resign
a contract (churn). The scores are then exploited by the
marketing services to personalize the customer relationship.

To produce scores, a predictive model (M) has to be
applied for all instances using explanatory variables. To
speed up this process, [1, 2] have proposed to build a
table of paragons containing representative individuals. This
table contains representative examples (customers) given the
explanatory variables used by the predictive model. The
paragons are connected by an ‘Index Table’ to all the
population.

The Figure 1 describes the deployment process with and
without the Index Table. In a classic deployment, without
the Index Table, the deployment process includes two main
steps : (i) the data table T1 (K1 instances represented by
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Fig. 1. Classifier deployment - With or without an Index Table

J explanatory variables) is extracted and (ii) the classifier
is applied on all instances of this table. In the industrial
platform [1], the input data from information system are
structured and stored in a simple relational database (table
on the left in Figure 1). The extraction consists in (i) the
construction of explanatory variables from joints between
different tables (in the relation database), (ii) the elaboration
of a flat instance x variables representation. The explanatory
variables are built and selected automatically for each speci-
fic marketing project. The deployment cost is the addition of
the extraction cost (C,.1) and the classification cost (Cy).
If the classification problem is supposed to be stationary
the classifier does not need to be trained again and can be
deployed other times by repeating these two steps.

To decrease the cost of subsequent deployments, two
tables are elaborated at the end of the first deployment :
(i) the paragon table, T2 (K2 instances represented by .J
explanatory variables) using random sampling on T1 and
(i1) the Index Table which contains for each instance of T1
its K nearest neighbors in T2 ; these two elaborations have
respectively the costs C).s and Cg.

The table of paragons is drawn from the data table (T1) to
be representative of the variables relevant for the model. To
produce and maintain online a sample of size n, Reservoir
Sampling algorithm [3]) is used. The indexing task has
to be executed for all the instances of the database. The
search of nearest neighbors is an expensive operation. In
order to accelerate the research of nearest neighbors Locality
Sensitive Hashing [4] is used. Due to place considerations
for more details on data extraction, variable construction
and variable selection the reader can find in [2] a list of
the workflow which briefly points out, for each step, which
technique is applied.



For the second deployment, the classifier is deployed on
T2 to obtain the scores of the paragons (with a cost C.2).
The scores of all instances (T1) are obtained by a simple
join between the paragon table and the Index Table (with a
cost Cj,) : each instance of T1 gets the score of its nearest
neighbors in T2.

This method of deployment is particularly effective when
the model is deployed several times. For example for monthly
marketing campaigns, only the reduced table of paragons
is built each month to produce the scores of all instances.
This approach makes it possible to increase dramatically the
number of scores that can be produced on the same technical
architecture.

The gain is twofold : (1) in the extraction step (K2 <
K1), (2) in the deployment step since the joint between the
paragon table and the Index Table is faster ((Ce2 + Cj,) <
C.1) than the application of the classifier on all instances.

In this particular industrial framework, the key point
consists in building the Index Table (grey disk in the Figure
1) which contains for each instance its nearest neighbor(s)
in the paragon table. The problem is therefore the building
of a KNN-based deployment (between 7T'1 and 72) with a
minimum loss of performance by comparison with the “di-
rect” deployment (classifier applied to the total population,
T'1). To understand the paper it is important to note that the
aim is not to elaborate a new classifier based on a KNN.
The purpose is to elaborate a metric so that the deployment
based on the Index Table realizes at best the deployment of
the initial classifier (M).

B. KNN

The algorithm based on KNN comes from the family of
lazy learners : contrary to many learning methods, there is
no training step to determine parameters (except the value
of K). Given a training set of instances correctly labeled and
an integer K, the KNN classifier determines the label of a
new instance (in a test set) by attributing it to the majority
class of the K instances (in the training set) which are the
most similar to it. A crucial point is the distance metric used
to measure the closeness of instances. There is no universal
distance metric and a good knowledge of the classification
problem generally guides the choice of this distance.

But, in our industrial context, the key point is that we
have a very interesting source of knowledge : the classifier
to be deployed. In this article we show how the knowledge
of the classification problem to be solved and the existence
of the classifier to be deployed can guide the construction of
a distance adapted to the situation. The proposed approach
is to project the instances in the importance space of the
explanatory variables of the classifier to be deployed, then to
build a KNN on this new representation. We will show that
using a sensitivity analysis, not dedicated to the classifier
to be deployed, a representation based on the classifier is
obtained, and that deployment is very efficient using this
new representation for the KINN.

C. Outline

The paper is organized as follow :

— The Section II positions our approach. Learning metric
and projections are briefly presented and the conclusion
is that they are not adapted to our industrial problem.
Therefore, a new approach is proposed : to project the
instances in the importance space of the explanatory
variables of the classifier to be deployed, then to build
a KNN on this new representation

— The Section III details the three main methods, of the
state of art, to realize this projection whatever is the
classifier.

— Since in our industrial context our classifier is a naive
Bayes classifier, the Section IV applies these three
methods for this particular type of classifier.

— The method is then tested in Section V on three
real classification problems which correspond to our
industrial framework. One shows that the representation
based on variable importance using a sensitivity analysis
gives similar performance than a representation based
on variable importance using a method dedicated to the
classifier. The results are also close to those obtained
using the direct deployment.

II. REPRESENTATION BUILT USING A CLASSIFIER -
DESCRIPTION AND POSITIONING

A. Learning metric

Many machine learning algorithms, such as K Nearest
Neighbors (KNN), heavily rely on the distance metric for
the input data patterns. The aim of distance Metric learning
is to optimize a distance to separate a given collection
of pairs of similar/dissimilar points. This metric has to
preserve (resp. increase) the distance among the training data
similar (resp. different). Many studies have demonstrated [5],
both empirically and theoretically, that a learned metric can
significantly improve the performance in classification and
this particularly when the classifier is a KNN.

B. Projection

Many projection techniques (global or local, linear or
nonlinear) exist [6] such as Principal Component Analy-
sis (PCA) that transforms a number of possibly correlated
variables into a smaller number of uncorrelated variables
called principal components, Factorial Analysis (FA) which
describes variability among observed variables in terms of
fewer unobserved variables called factors; Isometric Fea-
ture Mapping (ISOMAP) ; Multidimensional Scaling (MDS),
etc... These projections can be considered as unsupervised
learning of metrics.

Within the framework of a supervised classification these
various projections aim at projecting the data in a space
where the problem will be easier to solve. It is also the case
of Support Vector Machine (SVM) [7] and kernel methods

[8].



C. A Projection using a classifier

In this paper we will show how to exploit the knowledge
of the classification problem to be solved and the existence
of a classifier to be deployed. Learning metric is here not
adapted since the model already exists and the deployment
process does not have to change of model or to train a new
model. Projection is not appropriate since this kind a method
does not use the knowledge included in the classifier to be
deployed.

We propose to project the instances in the importance
space of the explanatory variables of the classifier to be
deployed, then to build a KNN on this new representation.
The obtained representation should incorporate information
related to the topology of the classification problem [9] and
allow the KNN to reach the performance of the original
classifier.

III. PROJECTION IN THE IMPORTANCE SPACE - GENERAL
CASE

In this section, notations used below in the paper and the
tools, which allow the projection in the importance space,
are presented. Different methods to compute the variable
importance are detailed in the last part of the section.

A. Description

Let :

— T be a training data table (K instances and J explana-
tory variables : V'1,...,Vy);

— C be the number of classes of the classification pro-
blem;

— M be a probabilistic classifier trained using 7;

— G be a method, knowing M, which computes the
importance of the explanatory variables of the classifier ;
this importance is computed instance by instance ;

— an instance zj represented by a vector of J compo-
nents : xp = (Vi = x1, ..., Vi = zj1).

After the training step, M classifies the instances in 7" (or
in another deployment table) so that any instance (k) belongs
to a class ¢ (x € C.).

From then armed with M, T and G, all instances in 7' can
be projected in the importance space of the classifier. This
projection is illustrated in Figure 2.
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Fig. 2. Projection in the importance space

B. Which measure of importance ?

Specific methods : For many classifiers, the literature
proposes one or several methods [10] for the computation of
the importance of explanatory variables for the classification
by M of each instance in 7. We name [ the importance
table such that I7(zy) is the importance value of the input
variable V; for the instance xj, given a class z. Such methods
are methods where the computation of the importance is
dedicated to a specific classifier (decision tree, SVM . . .).

Generic methods : Generic method often consider /7 (zy)
as an indicator which “measure” the difference between the
output of the model with an explanatory variable and without
this explanatory variable [11]. This indicator is noted in this
paper I7(xy) = diff [M(z1) , M(z1\V;)] where M (zy) is
the output value of the model and M (z;\V;) the output
value of the model in the absence of the input variable V.
The use of these generic methods requires the computation
of M(x,\V;) which is not always easy depending on the
classifier used. In practice, this often requires to have access
to the internal parameters of the model.

Methods based on sensitivity analysis : Another approach,
called sensitivity analysis, consists in analyzing the model
as a black box by varying its input variables. In such “what
if” simulations, the structure and the parameters of the model
are important only as far as they allow accurate computations
of dependent variables using explanatory variables. Such an
approach works irrespective of the model.

The measure of importance is then based on sensitivity
analysis of the output of the model. Such a method is
described in [12].

IV. CASE OF A NAIVE BAYESIAN CLASSIFIER

This section first presents the naive Bayes classifier and
the version that comes from an averaging of selective naive
Bayes classifiers. The second part of the section presents the
different methods used to measure the variable importance
which will be tested below in the experiments section of this

paper.
A. Introduction

The naive Bayes classifier [13] assumes that all the
explanatory variables are independent knowing the target
class. This assumption drastically reduces the necessary
computations. Using the Bayes theorem, the expression of
the obtained estimator for the conditional probability of a
class C, is :

P(C) HJJ:1 P(Vj = x;i|C)
S [PCOTT, PV; = wjilC)

The predicted class is the one which maximizes the condi-
tional probabilities P(C,|zi). The probabilities P(V; =
zjx|C.)(Vj, k, z) are estimated using counts after discreti-
zation for numerical variables or grouping for categorical
variables. The denominator of the equation 1 normalizes the
result so that ) P(C;|xy) = 1.

P(Clxy) =

ey



When the naive Bayes classifier comes from an averaging
of selective naive Bayes classifiers [14] each explanatory
variable j is weighted by a weight W; (W, € [0 — 1]). The
formulation of the conditional probabilities becomes :

P(CZ) H‘j]:1 P(V] = l‘jk|Cz)WJ’
Ztczl P(Ct) H‘;]:l P(V} = xjk|Ct)Wji|

Note 1 : Each instance, x;, is a vector of values (nu-
merical or categorical) such as : xy = (Z1k, Tok, ..., TJk)-
After a discretization / grouping respectively for numerical
/ categorical variables, each explanatory variable j is coded
on Hj values. Every instance is then coded in the form of
a vector of discrete values. In this case the equations 1 and
2 should incorporated P(V; = (z;i € [.,.])|C>) in place of
P(V; = 2;,|C.). Below in this paper this coding is implied
without being formally noted.

Note 2 : Below in the paper, the class conditional proba-
bilities (P(V; = z;,|C)) are estimated using the MODL
discretization method [15] for the numeric variables and the
MODL grouping method [16] for the categorical variables.

P(Cz|xk) = (2)

B. The measures of importance studied

1) Representation dedicated to the classifier: For the
naive Bayes Classifier an exact representation can be written
knowing the parameters of the model. The representation is
defined as :

I7 =log(P(Vj = zx|C.)) 3)

Indeed, starting with the naive Bayes predictor which takes
recoded explanatory variables (supervised discretization or
grouping) and using the log function, one has :

log(P(C:|zk)) =

J
>~ 10g(P(V; = 2,4]C.)) + log(P(C.) = log(P(zy)

“)
We then introduce the following distance :
Dist(zy, 7,) =
J C )
>3 Jeg(P(V; = wjlC2)) — tog(P(V; = wjy]C2)
j=12=1
4)

This relates to a representation of every instance on a
vector of J = C' components (for example for C = 2) :
(lOg(P(Vl = x1k|01)), ceey lOg(P(VJ = .’I?Jk|01)),
log(P(Vy = x1%|C2)), ..., log(P(Vy = z 51 |C2))) (6)
The proposed distance corresponds to the L1 norm using
this coding.
Knowing that the classifier comes from the averaging of

classifiers :

(log(P(Vi = z1%|C1))Wa, ..., log(P(Vy = 2k |C1)) W,
log(P(Vi = z1|C2))W1, ...log(P(V; = z55|C2))W; ) (D

In this case the representation is therefore defined as :
MODL; = log(P(V; = ;i |C.))W; (8)

The equation 8 is the indicator of the representation
named “MODL” below in this paper when the classifier is a
selective naive Bayes classifier averaged [14]. This indicator
represents an optimal result knowing the internal parameters
of the model. This is this indicator which is tested the
experiments part of this paper.

2) Generic Representation: The use of these generic
methods requires the computation of P(C'|z;\V;) which is
not always easy depending on the classifier used. A way to
have an estimation of this is to use the equation 5 (applied
to a single instance) in [12] (also employed in equation 6 in

[11]) :

mg

P(C|z\V;) = Y P(Celay < Vj = ag)P(V; = ay)

s=1

Here m,; represents the number of values of the variable
Vj, the term P(C.|zi < V; = a) represents the probability
we get for C; when in x; we replace the value of the
component V; with the value a,; and P(V; = as) is prior
on the value ag.

In the case of the naive Bayes classifier, the appendix 1 in
[11] shows that the use of this measure for sensitivity analysis
produces an exact result. There is an exact matching between
generic methods and methods based on sensitivity analysis.
Therefore methods to compute indicator importance, descri-
bed in [11], can be used. These indicators are the references
in the state of art for the naive Bayes classifier :

— “Information Difference (IDI)” - This indicator mea-

sures the difference of information :

IDIF = log (P(C:|zx)) — log (P(C:lzx\V;))  (9)

— “Weight of Evidence (WOE)” - This indicator measures
the log of the odd ratio :

WOoE? = log (0dds(C.|x1)) — log (odds(C,|zi\Vj)

(10)
where odds(.) = p(.)/(1 —p(.))

— “Difference of probabilities (DOP)” - This indicator
simply measures the mathematical difference between
the output of the classifier with and without the expla-
natory variable j :

DOP; = P(C.|xy) — P(C.|xx\Vj) (11)

To this state of art, another indicator of importance is added :
— “Kullback-Leibler divergence (KLD)” - This indicator
measures the Kullback-Leibler divergence in the case
where the distribution of reference is the distribution of

the output of the classifier with the explanatory variable



j. The distribution to compare is the distribution of the
output of the classifier in absence of the explanatory
variable j :

P(Cz|xk)
P<cz|xk\vj>> (12

3) Supervised representation without classifier: The state
of art [17] shows that supervised discretization is better
than unsupervised discretization for classification problems.
Therefore only the supervised representation is tested in this
paper. For this supervised case, the problem is to define
for every explanatory variable a representation which takes
into account the conditional distribution of the target classes.
Another problem is to be able to cumulate the contribution
of each explanatory variable.

Three supervised indicators are introduced “MOP” (see
equation 13), “LMOP” (see equation 14) and “VPD” (see
equation 15). The MOP indicator is close to the indicator
“Value Difference Metric” (VDM, ([18])). The inconvenient
of VDM mentioned in ([18], section 2.5) is here relieved
since explanatory variables are discretized/grouped with an
efficient supervised method ([14]) (see classifier Section V-
B.3). These three indicators are :

— “Modality probability (MOP)”- This indicator simply

measures the probabilities of occurrence of the values
of the explanatory variables such as :

KLD; = P(C.|zy)log (

MOP; = P(V; = z;|C.) (13)

This indicator is not really an indicator of importance
but it allows to capture the distribution P(z)) knowing
the discretization model (or grouping model).

— “Log Modality probability (LMOP)”- This indicator
simply measures the information which contained in
the probabilities of occurrence of the values of the
explanatory variables such as :

LMOP? = log (P(V; = z;x|C.)) (14)

Note that this representation is the representation asso-
ciated to a not averaging naive Bayes classifier.

— “Minimum of variable probabilities difference (VPD)”
- This indicator measures the minimum difference bet-
ween the probability of the variable j knowing a re-
ference class and the probability of the same variable
knowing another class such as :

VPD} = P(V; = z;i|C:) — r?ij(Vj = z;k|Cy)
15)
The VPD values belongs to [—1,1] and measure the
positive, neutral or negative contribution of the variable
Jj in the probability P(C,|z). In the section V the re-
ference class used is the predicted class by the classifier
built.

4) Summary and discussion: Whatever is the chosen
method, every instance xj is represented by a vector of
the importance indicator, this for all the classes (C) of the
classification problem. The initial number of components of

xy, is therefore multiplied by C. For example for the indicator
‘WOE’, the vector is :

Tk = (WOE},...,WOEb,WOE%, ..., WOEZ, ..., WOEY, ...,WOE§>
(16)

For the indicators IDI, WOE and KLD, a Laplace estimator
is used to estimate P(.) such as P(.) is always above 0 and
below 1 (P(.) €]0,1]), this to avoid numerical problems as
dividing by zero.

The distance between two instances corresponds to the L1
norm for all the indicators presented above such as :

xk) a7

Dist( mk,xk

The Table I summarizes the eight indicators based or not
on sensitivity analysis and dedicated or not to the naive Bayes
classifier.

TABLE I
SUMMARY OF THE 8 INDICATORS OF IMPORTANCE (1) MODL, (2) IDI,
(3) WOE, (4) DOP, (5) KLD, (6) MOP, (7) LMOP, (8)VPD

11213456 |7]8

Sensitivity

Analysis (Yes/No)
Dedicated to the

naive Bayes (Yes/No)
Takes into account the
weights (W;) (Yes/No)

~<o=< | Z
I A
=<1z |
I A
I A e
zZ |Z |z
Z |=< |Z
Z |z |z

These eight indicators cover the 3 axis mentioned in the
first column of the Table I. They allow the analysis of the
generic behavior of the proposed method : the use of any
classifier and a measure of the importance of the explanatory
variables using sensitivity analysis.

V. IMPACT OF THE REPRESENTATION ON A KNN -
EXPERIMENTATIONS

A. The data - The small KDD 2009 challenge

The purpose of the KDD Cup 2009 was to predict the
propensity of customers to switch provider (churn), buy new
products or services (appetency), or buy upgrades or add-
ons proposed to them to make the sale more profitable
(up-selling). In the ‘small’ version of the challenge, each
classification problem was constituted of a database. The
database consisted of 100 000 instances (customers), split
randomly into equally sized train and test. An instance was
constituted of 230 explanatory numerical and categorical
variables. This dataset offers a variety of other difficulties :
heterogeneous data, noisy data, unbalanced distributions of
predictive variables, sparse target values (only 1 to 7 percent
of the examples belong to the positive class) and many
missing values. The entire description of the challenge and
the analysis of the results can be found in [19].

In this section only the train set (50000 instances) is used
since the labels of the test set remain hidden by the organizers



of the challenge. The percentages of positive instances for the
three problems are : (1) Churn problem : 7.3% (3672/50000
on train); (2) Appetency problem : 1.8% (890/50000 on
train) ; Up-selling problem : 7.4% (3682/50000 on train).
Therefore all the data used in this section are publicly
available and the results are reproducible.

B. Protocol

1) Data normalization: One weakness of many distance
function is that if one of the input attributes has a relatively
large range, then it can overpower the other attributes. In this
article the calculation of indicators of importance project the
data in a consistent space. All the projected variables contain
the same type of information and therefore no normalization
is required.

2) K-fold cross validation: A 5-fold cross validation pro-
cess has been used. The performance of every model is
computed on the fold which has not been used to train the
initial classier or the KNN. The five ‘test’ results are then
combined to give an estimation of the generalization error
of the architecture tested. The folds used to do the training
of the initial classifier or the KNN classifier do not cross the
test set. For reproducibility reason the following indication
is given : the initial train set of the KDD challenge has been
divided in 5 folds of 10000 instances each in the order of
the downloadable file (the order of the instances in the train
set of the challenge does not has a particular structure). The
five fold cross validation allows to have a mean result with
its standard deviation for the initial classifier and the KNN
classifier.

3) Classifier beforehand built: The Table II presents the
obtained results by the initial classifier (M), the selective
naive Bayes classifier (SNB), for the Train AUC [20] (4
folds) and the Test AUC (1 fold). This classifier is the clas-
sifier (M) to be deployed and described in the introduction
of this paper.

TABLE 1T
PERFORMANCES OF “SELECTIVE NAIVE BAYES” CLASSIFIER (AUC)

Problem AUC Train AUC Test Nb variables

Appetency | 0.834 £ 0.003 | 0.817 £ 0.009 | 17, 18, 17, 20, 18
Churn 0.737 £ 0.004 | 0.728 £ 0.018 | 34, 35, 32, 34, 33
Upselling 0.868 £+ 0.002 | 0.863 £ 0.007 | 50, 50, 51, 59, 51

The last column of the Table II indicates the number
of used variables by the selective classifiers (foldl, ... ,
fold5), number to compare to the 230 initial variables. These
classifiers have been obtained using the Khiops' software.

4) KNN classifier: In the KNN procedure the following
algorithm is used :

1) for each test instance (¢) its k£ nearest neighbors
(KNNjy, ..., KNN) are looked for in the train set data
base using a distance based on the L1 norm and the
considered representation (MOP, VPD, MODL, IDI,
WOE, DOP, KLD), see equation 17;

1www.khiops.com

2) each of the nearest neighbors of the instance ¢ receives
the conditional probabilities P(C;|[KNNy,), Vj ; proba-
bilities computed using the initial classifier (SNB);

3) the instance t receives the mean of the conditio-
nal probabilities of its nearest neighbors P(C;|t) =

- , V7.

4) the belonging class of ¢ is the one which maximizes
the conditional probability P(C}|t).

5) the train and test AUC are estimated.

C. Results & Discussion

The Figures 3, 4, 5 present respectively the mean Test
AUC for appetency, churn and upselling. On each Figure the
horizontal axis represents the number of nearest neighbors
and the vertical the mean AUC (on the 5 folds). The results
of eight representations have been distributed on the left and
right part of each figure to have a good readability. The left
part of each figure gives the results of the initial classifier
(SNB), the unsupervised representations and the dedicated
representation, the right part the results of the representation
based on sensitivity analysis. The scales are the same for the
left and right part for left/right comparisons. The variances of
the results are not presented for place or readability reasons.
The eight variances have the same magnitude and belong
to the following intervals : appetency [0.007-0.014], churn
[0.014-0.020] and upselling [0.005-0.009]; irrespective of
the number of nearest neighbors.

The KNN-based deployment is based on two things :
(i) the use of a representation (a geometry) to decide the
proximity of the instances and (ii) the use of the model to
be deployed (SNB) to set the conditional probability of the
classes. The Figures 3, 4, 5 give an evaluation of the quality
of the geometry. They indicate that a representation based
on sensitivity analysis (IDI, WOE, DOP and KLD) allow
obtaining the same results as the dedicated representation.
This point is the main result of this paper and the goal is
reach : the KNN-based deployment is equal to the direct
deployment. The use of a representation not based on the
classifier does not allow obtaining this result. In this case,
the degradation in the deployment is important.

The generic representations and the dedicated representa-
tion reach the same performance than the initial classifier
except for the Churn problem where a small degradation
of the results can be seen : mean AUC ~ 0.721 + 0.017
with the KNN (for £ from 1 to 10) against a mean AUC =
0.728 £ 0.018 for the SNB.

The analysis of the results versus the number of nearest
neighbors shows a very good performance even for a small
number of neighbors. This good performance is kept when
the number of neighbors increases except for the MOP and
LMOP representations where a relative degradation of the
performances can be seen more (Churn) or less (Appetency,
Upselling).

Another interesting point comes from the results of the
representations MOP, LMOP and VPD which allow having
a better result than a direct deployment realized using the
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classical naive Bayes (NB : naive Bayes classifier without va-
riable selection and model averaging). The Table III presents
simultaneously the results obtained by this NB classifier,
the SNB classifier and those obtained using a KNN which
uses the representations MOP, LMOP and VPD. The gap
between the results with the direct deployment of the SNB
and KNN-base deployment using LMOP indicates that the
geometry given by a naive Bayes classifier is not equal to
the geometry of the dedicated model. The gap between the
results with the direct deployment of the NB and KNN-base
deployment using LMOP indicates that the geometry given
by a naive Bayes classifier combined by the scoring of the
SNB is interesting. Further research on this point will be
investigated.

TABLE III
PERFORMANCES (AUC) OF THE “NAIVE BAYES (NB)” ON THE TEST
SET VERSUS THE KNN WHICH USES THE MOP, LMOP orR VPD
REPRESENTATION ; THE NUMBER BETWEEN () IS THE VALUE OF K.

Appetency Churn Upselling
SNB 0817 £ 0.009 0.728 £ 0.018 0.863 £ 0.007
NB 0.785 £ 0.008 0.672 £ 0.020 0.754 £ 0.004
MOP 0.809 £ 0.011(2) 0.680 £ 0.020 (9) | 0.828 4 0.008 (5)

LMOP | 0.814 & 0.011 (8)
VPD 0.816 =+ 0.009 (9)

0.705 % 0.019 (8)
0.690 == 0.015 (2)

0.850 = 0.009 (8)
0.855 =+ 0.008 (6)

VI. CONCLUSION

We presented in this article a method to build a data
representation which allows a KNN to reach the performance
of a beforehand built classifier to be deployed. It was shown
that the proposed method is generic : (1) the instances can
be projected using a sensitivity analysis not dedicated to
the beforehand built classifier (2) there are no restrictions
on the type of (probabilistic) classifier. It was shown on
three marketing problems that it is possible to create an
effective representation in terms of nearest neighbors with
performance similar to the classifier directly deployed. The
industrial problem presented in introduction, to calculate the
Index Table, receives an extremely effective solution.

The concept of instance selection of the train set or
reduction of the size of the train set represents a direction
for future researches. The eight representations used in this
article are integrated into the software Kawab, available as a
shareware.
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