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Abstract. In multi-relational data mining, data are represented in a
relational form where the individuals of the target table are potentially
related to several records in secondary tables in one-to-many relationship.
To cope with this one-to-many setting, most of the existing approaches
try to transform the multi-table representation, namely by proposition-
alisation, thereby losing the naturally compact initial representation and
eventually introducing statistical bias. Our approach aims to directly
evaluate the informativness of the original input variables over the re-
lational domain w.r.t. the target variable. The idea is to summarize for
each individual the information contained in the non target table variable
by a features tuple representing the cardinalities of the initial modalities.
Multivariate grid models have been used to qualify the joint information
brought by the new features, which is equivalent to estimate the con-
ditional density of the target variable given the input variable in non
target table. Preliminary experiments on artificial and real data sets
show that the approach allows to potentially identify relevant one-to-
many variables. In this article, we focus on binary variables because of
space constraints.

Keywords: Supervised Learning, Multi-Relational Data Mining, one-
to-many relationship, variable selection

1 Introduction

Most of existing data mining algorithms are based on an attribute-value represen-
tation. In this flat format, each record represents an individual and the columns
represent variables describing these individuals. In real life applications, data
usually present an intrinsic structure which is hard to express in a tabular form.
This structure may be naturally described using the relational formalism where
objects are distributed on several tables. That’s why learning from relational
data have recently received a lot of attention in the literature. The term Multi-
Relational Data mining was initially introduced by [10] to describe a new family
of knowledge discovery techniques from multi table relational data. The common
point between these techniques is that they need to transform the relational rep-
resentation : in Inductive Logic Programming ILP [5], data is recoded as logic
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Fig. 1: Relationnel schema of a CRM database

formulas. This causes scalability problems especially with large-scale data. Other
methods called by Propositionalisation [11] try to flatten the relational data by
creating new variables. These variables aggregate the information contained in
non target tables in order to obtain a classical attribute-value format. Conse-
quently, not only we lose the naturally compact initial representation but there
is a risk of introducing statistical bias because of potential dependencies between
the newly added variables.

Let us take as an example, a Customer Relationship Management (CRM)
problem. Figure 1 represents an extract of a virtual CRM relational database
schema. The problem may be, for instance, to identify the customers likely to
be interested in a certain product or service, which turns into a customer classi-
fication problem. For this reason, we focus our analysis on the customers in the
target table. The target variable is the Status attribute which denotes whether
the customer has already ordered a particular product. The Customer table is re-
lated to non target tables, Order and Service, with a one-to-many relationship.
Predicting whether the customer would be interested in a product does not
depend only on the information of that customer. Those describing the other
products that he has ordered may potentially be very informative. Variables like
the product Weight or Price may present correlations with the target variable
and may be very useful to predict its value.

Studying the predictive importance of variables located in non target tables
raises several difficulties because of one-to-many relationships with the target
table. In the attribute-value mono table case, each individual has a single value
per variable. While in multi table setting, for a non target table variable, an
individual may have a value list (eventually empty) of varying size. To the best
of our knowledge, only few studies in the literature have treated the variable
preprocessing problem in the MRDM context with one-to-many relationship.
Some works in ILP operate by selecting predicates in order to reduce the large
search space during the learning step [7, 1]. Others cope directly with the initial
representation : in [9] the authors operate simply by propagating the target
variable toward non target tables. Then they compute the Information Gain in
the same way as in the monotable case. By doing such a propagation, there is a
severe risk of overfitting certain individuals : those having more related records
in the non target table will have more importance.
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The purpose of this article is to study the relevance of a secondary variable
situated in a non target table having a one-to-many relation with the target one3.
This relevance is evaluated by estimating the conditional probability P (Y | A),
where Y is the target variable and A is a secondary variable. This univariate
preprocessing extended to the relational context is of a great interest for filter
feature selection [8] or as preprocessing step for classifiers such as Naive Bayes
or Decision Tree.

The remainder of this paper is organized as follows. Section 2 summarizes
our approach in the case of a binary secondary variable. In Section 3 we evaluate
the approach on artificial and real datasets. Finally, Section 4 gives a summary
and discusses future work.

2 Approach Illustration

Let us remember that our goal is to evaluate the relevance of a variable located
in a non target table. To simplify the problem, let us take the simplest case: a
binary variable with two values a and b. In this case, each individual is described
by a bag of values among a and b 4. Given an individual, all that we need to know
about the secondary variable are the number of a and the number of b in the
bag related to that individual (we denote them respectively na and nb). Thus,
the whole information about the initial variable can be captured by considering
jointly the pair (na, nb). We emphasize that the two variables must be considered
jointly so that we preserve the information about the proportions ( na

na+nb

and
nb

na+nb

) and the cardinalities (na + nb) of the initial values in each bag.

By doing so, the conditional probability P (Y | A) is equivalent to P (Y | na, nb).
To qualify the information contained in the variable pair (na, nb), we suggest to
use bivariate grid models [4]. The idea is to jointly discretize the two numeric
variables into intervals. Individuals are then partitioned into a data grid whose
cells are defined by intervals pairs. The target variable distribution is defined
locally in each cell. Therefore, the purpose is to find the optimal bivariate dis-
cretization which maximizes the class distribution, in other words, obtain the
optimal grid with homogeneous cells according to the class values (cf. figure
2). It is an interpretable representation since it shows the distribution of the
individuals on the data grid while jointly varying the two variables:

– by moving on both axis, we vary the numbers of a and b,
– on the first diagonal (including the origin point), we vary the total number

na + nb,
– on the opposite diagonal, we vary the ratios na

na+nb

and nb

na+nb

,

3 The one-to-one relationship is equivalent to the monotable case. For simplification
reasons, we limit the relationship to the first level : tables directly related to the
target one.

4 This is different from the attribute-value setting, where for a given variable, an
individual can only have a single value.
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Fig. 2: Illustration of the Approach

The optimal bivariate grid is obtained through a greedy optimization proce-
dure by varying at each step the interval bounds. This procedure is guided using
an MDL criterion which evaluates a given bivariate discretization. We follow the
MODL (Minimum Optimized Description Length) approach [4] to define this
criterion in the next section.

2.1 Evaluation criterion

In the MODL approach, the joint partitioning of two continuous variables is
transposed into a model selection problem. The best model is chosen accord-
ing to a maximum a posteriori (MAP) approach: maximizing the probability
p(Model|Data) of the model given the data. By applying the Bayes rule, this is
equivalent to maximizing P (Model)p(Data|Model) since the probability P (Data)
is constant under varying the model.

Notation 1.

– N : number of individuals (number of target table records)
– J : number of target values,
– Ia,Ib : number of discretization intervals respectively for na and nb

– Nia.. : number of individuals in the interval ia (1 ≤ ia ≤ Ia) for variable na

– N.ib. : number of individuals in the interval ib (1 ≤ ib ≤ Ib) for variable nb

– Niaib. : number of individuals in the cell (ia, ib)
– Niaibj : number of individuals in the cell (ia, ib) for the target value j

The partitioning model parameters are the numbers of intervals Ia and Ib, the
frequencies of the intervals {Nia..} and {N.ib.} and the distribution of the target
values {Niaibj} in each cell (ia, ib). A bivariate discretisation model is completely
defined by the parameters {Ia, Ib, {Nia..} , {N.ib.} , {Niaibj}}. The prior distribu-
tion p(Model) is defined on this model space. It exploits the natural hierarchy
of the parameters: the number of intervals are first chosen, then the bounds of
the intervals and finally the frequencies of the target values in each cell. At each
stage of this hierarchy the choice is supposed to be uniform.
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For the likelihood term p(Data|Model), we assume further that the multino-
mial distributions of the target values in each cell are independent from each
other. By applying the Bayes rule we can calculate the exact prior probabilities
p(Model) and the likelihood p(Data|Model). Taking the negative log of these
probabilities, the supervised bivariate discretization criterion of two continuous
variables na et nb is provided in equation 1.

log N + log N + log
(

CN+Ia−1
Ia−1

)

+ log
(

CN+Ib−1
Ib−1

)

+

Ia
∑

ia=1

Ib
∑

ib=1

log
(

C
Niai

b
.+J−1

J−1

)

+

Ia
∑

ia=1

Ib
∑

ib=1

log
Niaib.!

Niaib1!Niaib2! . . .NiaibJ !

(1)

The first five terms stand for the prior probability: choosing the numbers of
intervals, their frequencies and the distribution parameters for the target values
in each grid cell. The last term represents the conditional likelihood of the data
given the model.

2.2 Grid Optimisation

The bivariate discretization criterion is optimized starting from an initial random
solution and alternating partial optimization per variable. Bottom-up greedy
heuristics are used for theses partial optimizations. Pre and post optimization
steps are used to escape from eventual local optima. The overall complexity of

the algorithm is O
(

JN
3

2 log (N)
)

[4].

3 Experiments

This section evaluates our approach in the case of a binary secondary variable.
We use real and artificial datasets. Using artificial datasets allows controlling
the relationship between the secondary variable and the target.

3.1 Protocol

The intrinsic predictive power of a binary secondary variable is evaluated using a
univariate classifier based on this variable only. For each secondary variable, we
apply the approach described in section 2 in order to obtain the corresponding
optimal bivariate data grid. The data grid built during the training step is used
as a decision table. To classify an individual in the test set, we place it in the data
grid. The predicted target value is the most frequent class in the corresponding
cell (according to the collected frequencies during training). We call this classifier,
henceforth, the Bivariate Grid (BG) classifier.

The relevance of a secondary variable is evaluated using the accuracy rate
and Area Under ROC Curve AUC [6] of the corresponding classifier. We also
report the optimal grid size which provides some insight related to the under-
lying pattern complexity. For all experiments, we use a 10 fold stratified cross
validation.
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Fig. 3: Scatterplots of the artificial datasets (T , R, M1 and M2 are thresholds)
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3.2 Artificial datasets

The artificial data sets have a relational structure consisting of two tables: a
target table in one-to-many relation with a secondary table which contains only
one binary variable. The data generator takes as parameters the number of in-
dividuals (target table records) and the maximum number of records related to
each individual in the secondary table. The non target records are uniformly dis-
tributed between the ‘a’ and ‘b’ values; and the target value (binary) is generated
according to a controlled pattern in the secondary variable.

Figure 3 depicts the scatter plots of the generated datasets as well as the
subsequent patterns (for each individual the number of records is uniformly
chosen in [0..100]). The random pattern where there is no dependency between
the secondary variable and the target one allows us to evaluate the robustness of
the approach. The other datasets aim to check whether the subsequent pattern,
more or less complex, could easily be found.

Figure 4a illustrates the classification results for the 5 artificial datasets for
different individuals number. At first, the results show that the method can easily
detect a totally random pattern. The absence of predictive information in the
data grid is materialized by a bivariate discretization in one single cell (Figure 4b)
and a test accuracy of about 50%. The method can also detect complex patterns.
Figure 4a shows that the classification performance improves with the number
of individuals in the database. With enough individuals, the accuracy reaches
approximately the theoretical performance. The grid size varies according to
the complexity of the bivariate pattern: for a fairly simple pattern based on
cardinalities, the grid is always composed of two cells; for more complex patterns,
the grid size increases with the individuals number, thereby approximating finely
the pattern.

To see some examples of the optimal data grids, we show in Figure 5 the
obtained bivariate partitioning on the dataset of Figure 3d with respectively
103, 104 and 105 individuals. The figures represent the probability distribution
of the target variable P (Y |na, nb) in each cell. The resulting grids show that
the more we have individuals in the dataset, the more our approach is able to
recognize the pattern.

In order to study the advantage of our approach over aggregation based
methods, we compare the performance of our approach with attribute-value
classifiers using aggregated features. We introduce two classifiers: a Naive Bayes
(NB) [12] and Best Univariate (BU). Both of these classifiers are based on a
univariate preprocessing: first the optimal discretization model for each input
feature is found (we use the MODL method applied to the univariate case [2],
i.e. by considering each feature independently from the others). After that, for
the NB classifier, the univariate conditional probabilities are deduced from the
target values frequencies in the subsequent intervals. The BU classifier looks for
the best feature which maximizes the probability that its discretization model
explains the feature. In order to classify an instance in test, the corresponding
interval is determined with respect to the trained discretization model. The
predicted target value is then the most frequent one in that interval.
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We evaluate different variants of these classifiers according to the used ag-
gregation feature set. Experimentations are performed on the datasets of Figure
3. To summarize, the evaluated classifiers are:

– Bivariate Grid: the bivariate optimum data grid obtained as described in our
approach by considering jointly the pair (na, nb)

– Best Univariate the BU classifier using all the aggregation features: na, nb,
na + nb,

na

na+nb

and nb

na+nb

– Naive Bayes (A): the NB classifier using all the previous features
– Naive Bayes (C): the NB classifier using cardinality based aggregation fea-

tures na and nb

– Naive Bayes (R): the NB classifier using ratios na

na+nb

and nb

na+nb

.

Figure 6 depicts the test accuracy obtained with these classifiers by varying
the number of individuals. There are several observations that can be made from
looking at these histograms. First, for datasets with a cardinality based pattern
(Figure 6a), all classifiers do well (since they are using na) except NB(R) which
is based only on ratios na

na+nb

and nb

na+nb

.

Next, for the proportion based pattern (Figure 6b), as one could expect, all
classifiers exploiting the feature na

na+nb

(NB(A), NB(R) and BU) recognize easily
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the pattern. Interestingly, the Bivariate Grid classifier even if it exploits only car-
dinality features, it is able with enough individuals to approximate the pattern.
In contrast, NB(C) which is using cardinality features has less performances.

In Figure 6c, the pattern is harder since it implies more than one feature. Not
surprisingly, the BG classifier carries the best accuracies and reaches the theo-
retical performances. BU is unable to recognize the pattern as it is a univariate
classifier which is not sufficient. What is a bit surprising is that the performance
of the Naive Bayes classifier (NB(A) and NB(C)) is pretty good (although less
than that of BG). The reason for that is that the univariate preprocessing car-
ried out by the NB is fairly good and that the NB classifier efficiently exploits
all the agregated features.

To summarize, in comparing the results obtained when using BG versus NB,
both classifiers have almost the same performance on relatively simple patterns.
However, with a more complex pattern (Figure 6c) and with enough individuals,
the former has better accuracy. We believe that this is because NB performs
a univariate preprocessing, whereas, BG makes a bivariate one. The same ob-
servation can be made by comparing BG to BU. Looking further at the used
aggregation features, it can be seen that by considering only two features (na

and nb), our approach performs as well as NB and BU classifiers, and even bet-
ter, than when using more features. As expected, the pair (na, nb) preserves the
whole information contained in the initial non target table variable, namely the
information on cardinalities and ratios.

3.3 Stulong dataset

Stulong [13] is a medical dataset collected during a 20-year longitudinal study
on risk factors of atherosclerosis 5 in a population of 1 417 middle aged men.
In this dataset, we are interested in tables Entry and Control. In table Entry,
the target table, the variables describe the patients’ properties. Among these
variables only some of them can be considered as target ones. The others do
not concern us because we focus on those located in a one-to-many non target
table, namely, those of table Control. This table contains 66 variables describing
10 610 tests performed on the 1 417 patients over 20 years of the study. Figure 7
depicts the Stulong dataset relational schema 6.

Since in this article we focus on binary variables, categorical variables are
binarized. The purpose of the experiment is to find the most relevant secondary
variables for predicting the target ones. The experimental results obtained on the
Stulong dataset are presented in Table 1. We present for each target variable
the five most relevant secondary variables. The results show that even by bina-
rizing the categorical variables, we are able to identify those having a correlation
with the target. Even by using merely a single secondary binary variable, the bi-
variate datagrid classifier offers high test accuracy and AUC. Table 2 shows some

5 A cardiovascular disease due to the gradual accumulation of fatty materials.
6 A description of all variables could be found on http://euromise.vse.cz/

challenge2004/data/index.html
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Target Variable Variable test acc. (%) test AUC (%) Grid size

GROUP (0,69)∗

HODNSK (B2)† 88,7 (±2, 1) 88,6 (±2, 9) 4
HODNSK (B1) 82,4 (±2, 7) 84,3 (±3, 7) 6,6
ZMKOUR (B0) 80,3 (±2, 7) 84,2 (±3, 3) 6
HODNSK (B0) 82,9 (±2, 6) 83,4 (±3, 4) 6,2
ZMKOUR (B1) 81,4 (±2, 9) 82,5 (±3, 0) 4

HTRISK (0,73)

LEKTLAK (B0) 81,2 (±1, 9) 79,1 (±3, 2) 6

HYPERSD‡ 83,2 (±1, 6) 78,0 (±3, 8) 4
LEKTLAK (B2) 76,3 (±1, 4) 71,9 (±2, 7) 6
LEKTLAK (B4) 77,7 (±1, 6) 68,7 (±3, 1) 4

HYPCHL‡ 74,0 (±1, 6) 65,7 (±2, 8) 6

KOURRISK (0,55)

ZMKOUR (B0) 81,3 (±4, 2) 85,0 (±4, 2) 6
HODNSK (B2) 71,9 (±3, 6) 79,0 (±3, 8) 6
ZMKOUR (B2) 75,1 (±5, 3) 78,5 (±5, 1) 6
ZMKOUR (B3) 70,3 (±4, 9) 74,1 (±4, 5) 6
HODNSK (B1) 65,0 (±2, 9) 72,4 (±3, 0) 6

CHOLRISK (0,72)

HYPCHL‡ 83,5 (±3, 1) 79,2 (±4, 3) 4
ZMDIET (B0) 72,8 (±0, 3) 63,1 (±4, 9) 4
HODNSK (B2) 72,8 (±0, 3) 62,1 (±2, 7) 4
JINAONE (B1) 72,8 (±0, 3) 60,4 (±3, 7) 4

HYPTGL‡ 72,8 (±0, 3) 59,9 (±3, 6) 4

∗ Percentage of the majority class
† The notation (Bi)

i≥0
denotes a binarized variable. for example, if HODNSK has 3

modalities then its binarization generates 3 features: HODNSK(B0), HODNSK(B1)
and HODNSK(B2)
‡ These variables are originally binary

Table 1: Examples of relevant variables w.r.t some target variables in the Stu-

long datasets

correlations found between the studied target variables and some secondary vari-
ables in table Control. A secondary variable is considered to be correlated with
the target one if it presents a correlation with at least one of the corresponding
binarized variables.

Take for example the binary variable HYPERSD that describes for each
exam whether the patient has a Systolic/Diastolic HYPERtension. This variable
is relevant to predict the value of the target variable HTRISK (which indicates
whether the patient has high blood pressure). The transformation of the variable
HYPERSD generates two variables NB1 (the number of examinations with a
positive HYPERSD) and NB0 (the number of examinations with a negative
HYPERSD). Figure 8 shows the distribution of patients on the bivariate space
NB1 × NB0. The optimal bivariate discretization of the two variables NB1 and
NB0 is represented on the scatterplot. The corresponding data grid can separate
the two classes (normal and high blood pressure). It achieves 83.2 % of test acc.
and 78 % of AUC.
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4 Conclusion

In this paper, we have proposed an approach for assessing the relevance of a
binary secondary variable in the context of multi-relational supervised learning.
The method consists of flattening the original relational representation by cre-
ating two numerical features which represent the cardinalities of the original bi-
nary values. A bivariate discretization model of both these features is generated,
thereby inducing a bivariate partition. This partition qualifies the information
provided jointly by the new features with respect to the target variable which
is equivalent to assessing the relevance of the initial secondary variable since its
information is not lost. For this, a criterion is proposed to evaluate each bivariate
partition by means of a Bayesian approach.

We evaluated our approach on artificial and real datasets. Preliminary results
on binary variables show that the evaluation criterion allows selecting highly in-
formative variables. Future works are envisaged to provide efficient optimization
procedures of this criterion in the case of continuous and categorical variables
(eventually with large number of values). Classifiers using a univariate prepro-
cessing like Naive Bayes or Decision Trees could therefore be extended to multi-
relational data.
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2. Boullé, M.: MODL: A Bayes optimal discretization method for continuous at-
tributes. Machine learning 65(1). pp. 131–165 (2006)
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