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Abstract. In multi-relational data mining, data are represented in a
relational form where the individuals of the target table are potentially
related to several records in secondary tables in one-to-many relation-
ship. In this paper, we introduce an itemset based framework for con-
structing variables in secondary tables and evaluating their conditional
information for the supervised classification task. We introduce a space
of itemset based models in the secondary table and conditional density
estimation of the related constructed variables. A prior distribution is
defined on this model space, resulting in a parameter-free criterion to
assess the relevance of the constructed variables. A greedy algorithm is
then proposed in order to explore the space of the considered itemsets.
Experiments on multi-relationalal datasets confirm the advantage of the
approach.

Keywords: Supervised Learning, Multi-Relational Data Mining,
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1 Introduction

Most of existing data mining algorithms are based on an attribute-value rep-
resentation. In this flat format, each record represents an individual and the
columns represent variables describing these individuals. In real life applica-
tions, data usually present an intrinsic structure which is hard to express in a
tabular format. This structure may be naturally described using the relational
formalism where each object (target table record) refers to one or more records
in other tables (secondary tables) through a foreign key.

Example 1. In the context of a Customer Relationship Management (CRM)
problem, Figure 1 shows an extract of a virtual CRM relational database schema.
The table Customer is the target table, whereas Call detail record (CDR) is a
secondary table related to Customer through the foreign key CID. The problem
may be, for instance, to identify the customers likely to be interested in a cer-
tain product. This problem turns into a classification problem where the target
variable is the variable Appetency, which denotes whether the customer is likely
to order a particular product.
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Fig. 1. Relational schema of a CRM database

Learning from relational data has recently received increasing attention in the
literature. The term Multi-Relational Data Mining (MRDM) was initially intro-
duced by [1] to address novel knowledge discovery techniques from multiple rela-
tional tables. The common point between these techniques is that they need to
transform the relational representation. In Inductive Logic Programming (ILP)
[2], data is recoded as logic formulas. Other methods known as propositionali-
sation [3] flatten the relational data by creating new variables.

Our goal in this article is to directly exploit the informativeness of secondary
variables w.r.t. the target variable. We propose a multivariate pre-processing of
secondary variables in order to construct multivariate itemsets from secondary
tables. This pre-processing consists in a discretization in the numerical case
and a value grouping in the categorical case. To the best of our knowledge,
only few studies have considered the variable pre-processing problem within the
multi-relational setting with one-to-many relationship (in particular, discretiza-
tion and variables selection) [4,5,6]. In these approaches, secondary variables are
considered independently from each other, which does not make it possible to
take into account their correlation to predict the class label.

In our approach, the considered itemsets are in secondary tables while the class
labels are in the target one. In order to evaluate these itemsets and exploit their
information for classification, we construct new binary variables in the secondary
tables. We propose a conditional density estimation of the constructed variables
in order to extend the Naive Bayes classifier to multi-relational data, and we
define a prior distribution on the itemsets model space. As a result, we obtain a
parameter-free relevance criterion for the constructed variables.

Example 2. Given our CRM example, let us consider the following itemset π
in the CDR secondary table: (WeekDay ∈ {Saturday}) ∧ (10 : 00 : 00 ≤
T ime < 11 : 30 : 00) ∧ (Destination ∈ {International}) where WeekDay
and Destination are categorical variables and T ime is a numerical variable.
This itemset allows constructing a new binary variable in the secondary table,
according to whether the secondary records are covered or not by the itemset.
For example, the secondary table record (“C901”, “Mobile”, “International”,
“Saturday”, “10 : 30 : 00”) is covered by π and therefore the value of Aπ for
that record is “1”.

Computing features as a pre-processing step is a classical solution in MRDM
in order to be able to use a propositional classifier. In the 1BC system, [7]
compute a set of conjunctive patterns consisting of first-order conditions which
are used as features in a classical Naive Bayes classifier. 1BC2 [8] and Mr-SBC [9]
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extend this approach with more accurate estimation of conditional probabilities
and with improved results. It is worthy of mention that our method is not a
propositionalisation approach [10]. The new binary variables are created in the
secondary table, not in the target one. Their conditional probability is estimated
directly by using the multi-relational approach introduced in [11].

The remaininder of this paper is organized as follows. In the next section, the
present work is motivated and related to alternative approaches. Section 3 recalls
the method [11] exploited to estimate the conditional probability of a binary
secondary variable. Section 4 introduces the space of constructed itemset-based
secondary variables and presents their evaluation criterion. This section also
gives a heuristic algorithm in order to explore the itemset space. In Section 5, an
experimental evaluation of the proposed approach on real-world multi-relational
datasets is reported. Finally, Section 6 gives a summary and discusses future
work.

2 Motivation and Related Work

Classifying data scattered over the multiple tables of a relational database has
recently received a growing attention within the data mining community. In this
paper we are interested in classifying individuals contained in a target table with
a one-to-many relationship with secondary tables.

The novelty of this multi-relational setting, compared to classical attribute-
value methods, consists in exploiting the predictive power of secondary variables
belonging to secondary tables. The difficulty when dealing with these variables
arises from the presence of one-to-many associations. In the attribute-value single
table case, each individual has a single value per variable, while in multiple table
setting, for a secondary variable, an individual may have a set of values (possibly
empty) of varying size.

2.1 Motivation

The idea behind using itemsets on non target tables is to discover multivariate
patterns between secondary variables in order to detect significant differences
between individuals of distinct classes. In this paper we propose to use a multi-
variate approach. Instead of considering only one variable at a time, we introduce
itemsets of secondary variables in order to take into account correlations between
these variables w.r.t. to the target variable. In some problems, a single secondary
variable may not be relevant to predict the class label, whereas several secondary
variables considered jointly may help predicting the target variable.

Example 3. Let us consider the Digits1 dataset where the task is to recognize
handwritten digits (classes are digits from 0 to 9) [12]. In its original version,
this dataset has an attribute-value tabular format where each line represents an
image with 28×28 pixels. This database can be represented in a relational format

1 Available at http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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Fig. 2. Relational schema of the Digits database

Fig. 3. Relevant itemset in the table Pixel of the Digits database

composed of two tables: a target table Digit as well as a secondary table Pixel
which describes pixels composing each image. Figure 2 shows the corresponding
relational schema. A handwritten digit is then associated with 784 lines in the
table Pixel. A pixel is described by three secondary variables: Gray level as well
as X position and Y position which represent the position of the pixel in the
original image.

The problem turns into a multi-relational classification problem. It is clear
from Figure 3 that identifying the digit represented by the handwritten charac-
ter (for example whether it is a 9 or a 4) requires taking into account simultane-
ously the values of the three secondary variables: Gray level , X position and
Y position. The itemset

π : (X position ∈ IX) ∧ (Y position ∈ IY ) ∧ (Gray level > 0)

gives a discriminant pattern characterizing a 9 or a 4 digit. The binary secondary
variable which denotes whether a pixel is covered or not by this itemset can
accurately predict the class.

2.2 Related Work

Mining itemsets of secondary variables can be seen as a descriptive task which
joins many studies on association rules and frequent patterns. Classical solutions
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assume that data are stored in a single attribute-value data table. But many
attempts have been proposed recently to deal with relational data.

First multi-relational association rules and frequent patterns are based on ILP
in order to discover frequent Prolog queries ([13,14]) or frequent predicates ([15]).
These methods need to transform the initial relational database into a deductive
one. Furthermore, they have a high complexity and the mined patterns may be
difficult to understand [16]. Some other approaches use a classical attribute-value
association rule algorithm on a single table obtained by joining all the tables in
order to generate a cross table [16] or by propagating the target variable to the
secondary tables [17]. Such transformations may lead to statistical skews since
individuals with a large number of related records in a secondary table will be
overestimated thereby causing overfitting.

Beside descriptive tasks [18,19], association rules have been proposed for a
classification purpose. [20] investigated the use of logical association rules in or-
der to classify spatial data. Discrimininant features are generated based on these
rules and are exploited for propositionalization and to propose an extension of
the Naive Bayes classifier. The proposed approach is limited to spatial relational
data described by a hierarchy of concepts.

[21] used emergent patterns over multiple tables in order to extend the Naive
Bayes classifier to relational data. The considered emergent patterns are con-
junctions of logical predicates modeling properties of the relational objects and
associations between them. Using these patterns, the authors propose a decom-
position of the posterior probability based on the naive Bayes assumption to
simplify the probability estimation problem. The problem of this approach is
that it suffers from a high number of considered emerging patterns and scalabil-
ity limits since it is based on logical inference.

We notice that in this article we restrict ourselves to secondary variables
located in tables with direct one-to-many relationships with the target table.
More generally, we consider a star schema with a central target table related
to secondary tables. The second level of one-to-many relations is intrinsically
challenging and is left for future work.

3 Evaluation of Binary Secondary Variables

In this section, we summarize the method introduced in [11] to evaluate the
relevance of a binary secondary variable A with values a and b.

3.1 Binary Secondary Variable Evaluation

In this case, each individual of the target table is described by a bag of sec-
ondary values among a and b, and summarized without loss of information by
the numbers na of a and nb of b. Thus, the whole information about the initial
secondary variable can be captured by considering jointly the pair (na, nb) of
primary variables. We emphasize that the two variables are considered jointly
so that information is preserved, as illustrated in Figure 4.
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Fig. 4. Evaluation of the secondary variable Destination for the prediction of the target
variable Appetency. Here, customers with a small number of national CDR and a large
number of international CDR are likely to have the value Yes of Appetency.

By doing so, the conditional probability P (Y | A) is equivalent to the prob-
ability P (Y | na, nb). Bivariate data grid models [22] are used to qualify the
information contained in the pair (na, nb). The couple of numeric variables are
partitioned jointly into intervals. Individuals are then partitioned into a data
grid whose cells are defined by interval pairs, and the target variable distribu-
tion is defined locally in each cell. Therefore, the purpose is to find the optimal
bivariate discretization which maximizes the class distribution, in other words,
the purpose is to obtain the optimal grid with homogeneous cells according to
the class values. Applying a Bayesian model selection approach, a criterion ce(A)
is obtained to assess the relevance of a secondary binary variable.

Notation 1.

– N : number of individuals (number of target table records)
– J : number of target values (classes),
– Ia,Ib : number of discretization intervals respectively for na and nb

– Nia.. : number of individuals in the interval ia (1 ≤ ia ≤ Ia) for variable na

– N.ib. : number of individuals in the interval ib (1 ≤ ib ≤ Ib) for variable nb

– Niaib. : number of individuals in the cell (ia, ib)
– Niaibj : number of individuals in the cell (ia, ib) for the target value j

ce(A) = logN + logN + log

(
N + Ia − 1

Ia − 1

)
+ log

(
N + Ib − 1

Ib − 1

)
(1)

+

Ia∑
ia=1

Ib∑
ib=1

log

(
Niaib. + J − 1

J − 1

)
+

Ia∑
ia=1

Ib∑
ib=1

log
Niaib.!

Niaib1!Niaib2! . . .NiaibJ !

The first five terms of Formula 1 stand for the prior probability: choosing the
numbers of intervals, their frequencies and the distribution parameters for the
target values in each grid cell2. The last term represents the conditional like-
lihood of the data given the model. The bivariate discretization criterion is

2 Notation
(
n
k

)
represents the binomial coefficient: number of k-combinations of n

elements.
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optimized starting from an initial random solution, using a bottom-up greedy
heuristic. Pre and post-optimization steps are employed based on alternating
partial optimizations per variable. The overall complexity of the algorithm is
O(JN log (N)) [22]. Details regarding this criterion and the optimization algo-
rithm can be found in [22]. Beyond the evaluation of binary secondary variables,
our goal is to extend the method to numerical and categorical secondary variables
while capturing the potential correlations that may exist between secondary
variables. In the next section, we introduce a similar criterion for itemset-based
models defined over sets of secondary variables, in order to take into account
this multivariate correlation.

3.2 Naive Bayes Extension

The constructed secondary variable is used to build a Naive Bayes classifier which
aims to classify an object o by maximizing the posterior probability P (Yj | o)
that o is of class Yj . This probability can be reformulated by applying the Bayes
rule:

P (Yj | o) =
P (Yj)P (o | Yj)

P (o)
(2)

P (Yj) is the prior probability of the class Yj and the term P (o | Yj) is esti-
mated by using the Naive Bayes assumption: if Xk are descriptive variables,
then P (o | Yj) = P (X1, X2, · · · , XK | Y = j) =

∏K
k=1 P (Xk | Yj).

The above formulation of the Naive Bayesian classifier is clearly limited to
the attribute-value representation. In order to take into account the multi-table
data, in particular the secondary variables, we need to assume that the sec-
ondary variables are independent given the target variable, and then estimate
the conditional probabilities P (Xk | Yj) where Xk are secondary variables.

Estimating P (Xk | Yj) is equivalent to evaluating P (na, nb | Yj) which is per-
formed by simple counting locally in each cell of the optimal bivariate data grid.
More explicitly, if for an object o in test, the corresponding cell is (ia, ib), and
if Nj denotes the number of objects of class j, P (Xk | Yj) can be estimated as
follows :

P (Xk | Yj) =
Niaibj

Nj
, (3)

where Niaibj stands for the number of objects in the cell (ia, ib) for the target
value j.

4 Itemset Based Variable Construction

In this section, we introduce a method to construct new binary variables in
secondary tables, based on itemset models. We first introduce a model of itemset
based secondary variables, then present a criterion to evaluate these constructed
variables, and finally propose an algorithm to construct itemset based variables
and evaluate them.
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4.1 Variable Construction Model

Let us first introduce a model of itemset based variable construction in a sec-
ondary table. We exploit the model of [23] to define itemsets with numerical or
categorical variables, where the itemset is defined by a conjunction of intervals
in the numerical case and sets of values in the categorical one, for a secondary
table with a one-to-many path from the target table.

Definition 1 (Itemset Based Construction Model). An ( ibcm) itemset
π, at the basis of a secondary Boolean constructed variable Aπ, is defined by:

– the secondary table with a one-to-many path from the target table,
– the constituent variables of the itemset,
– the group of values involved in the itemset, for each categorical variable of

the itemset,
– the interval involved in the itemset, for each numerical variable of the

itemset,

where the value of Aπ is true for secondary records that are covered by the itemset,
false otherwise.

An example of itemset is provided in Example 2.
In [24] we considered any interval and groups of values for the constituents of

itemsets. In the numerical case, a number of discretization intervals is chosen,
then the bounds of the interval, and finally, the index of the interval belonging
to the itemset. In the categorical case, a number of groups of values is chosen,
then the partition of the values into groups and finally the index of the group
belonging to the itemset. In this paper, we focus on quantile partitions for each
secondary variable. Given a partition, a quantile is defined solely by an index,
whereas an interval requires two bounds. This allows us to consider itemset
models which are both more interpretable and parsimonious, and enables efficient
optimization heuristics. An itemset is then defined by a choice of a quantile part
for each constituent variable, where the quantile parts are themselves defined
solely by a size of partition and a part index. In definitions 2 and 3, we precisely
define quantile partitions both for numerical and categorical variables.

Definition 2 (Numerical quantile partition). Let D be a dataset of N in-
stances and X a numerical variable. Let x1, x2, . . . , xN be the N sorted
values of X in dataset D. For a given number of parts P , the dataset is di-
vided into P equal frequency intervals ] − ∞, x�1+N

P �[, [x�1+N
P �, x�1+2N

P �[, . . .,

[x�1+iN
P �, x�1+(i+1)N

P �[, . . ., [x�1+(P−1)N
P �,+∞[.

Definition 3 (Categorical quantile partition). Let D be a dataset of N
instances and X a categorical variable with V values. For a given number of parts
P , let NP = �N

P � be the expected minimum frequency per part. The categorical
quantile partition into (at most) P parts is defined by singleton parts for each
value of X with frequency beyond the threshold frequency NP and a “garbage”
part consisting of all values of X below the threshold frequency.
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Now, we can give a formal definition of ibcm itemset models, using the following
notations.

Notation 2.

– T = {T1, T2, . . .}: set of secondary tables having a one-to-many relation with
the target table

– |T |: number of secondary tables
– T ∈ T : secondary table containing the variables which compose the itemset
– Ns : number of records in the secondary table T
– m: number of variables in the secondary table T
– X = {x1, . . . , xk}: set of k variables of T which compose the itemset
– Ix: size of the quantile partition of variable x
– ix: index of the quantile part of variable x involved in the itemset

An ibcm itemset model π is then defined by the secondary table T , the set X
of variables of T which compose the itemset, and for each constituent variable
by the size Ix of the quantile partition and the index ix of the quantile part
involved in the itemset.

4.2 Evaluation of Constructed Variables

The new variable Aπ that we have built is seen as a binary secondary variable
which can be evaluated using the cost ce(Aπ) of Formula 1. Let ce(∅) be the null
cost when no input variable is used estimate the target variable. This corresponds
to a bivariate data grid with one single cell, whose cost is

ce(∅) = 2 logN + log
N !

N1!N2! . . . NJ !
, (4)

= NEnt(Y ) +O(logN), (5)

where Ent(Y ) is the Shannon entropy of the target variable Y (cf. Formula 1
and using [25]). Therefore, any constructed variable with an evaluation cost
beyond the null cost can be discarded, as being less informative than the target
variable alone. When the number of constructed variables increases, the risk
of wrong detection of informative variables grows. In order to prevent this risk
of overfitting, we suggest to introduce a prior distribution over itemset based
constructed variables, so as to get a construction cost cc(Aπ) derived from a
Bayesian approach. We then evaluate the overall relevance cr(Aπ) of Aπ by
taking into account the construction cost cc(Aπ) as well as the evaluation cost
ce(Aπ):

cr(Aπ) = cc(Aπ) + ce(Aπ). (6)

4.3 Prior Distribution on Itemset Models

To apply the Bayesian approach, we need to define a prior distribution on the
itemset based construction model space. We apply the following principles in
order to guide the choice of the prior:
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1. the prior is as flat as possible, in order to minimize the bias,
2. the prior exploits the hierarchy of the itemset models.

MODL hierarchical prior. We use the following distribution prior on ibcm item-
sets, called the MODL hierarchical prior. Notice that a uniform distribution is
used at each stage3 of the parameters hierarchy of the ibcm models:

1. the itemset table T is uniformly distributed among the tables of T

p(T ) =
1

|T | . (7)

2. the number of variables k in the itemset (k ≥ 0) is distributed according to
the universal prior for integers 4 [26]

p(k) = 2−L(k+1). (8)

3. for a given number k of variables, every set of k constituent variables of the
itemset is equiprobable, given a drawing with replacement. The number of
such sets is given by

(
m+k−1

k

)
. We obtain

p(X |k) = 1(
m+k−1

k

) . (9)

4. for each constituent variable x, the size Ix of the quantile partition is neces-
sarily greater or equal to 2, and distributed according to the universal prior
for integers

p(Ix) = 2−L(Ix−1). (10)

5. for each constituent variable xk, the index ix of the quantile part is uniformly
distributed between 1 and Ix

p(Iix|Ix) =
1

Ix
. (11)

Given the definition of the model space and its prior distribution, we can now
express the prior probabilities of an IBCM model.

3 It does not mean that the hierarchical prior is a uniform prior over the itemset space,
which would be equivalent to a maximum likelihood approach.

4 This universal prior is defined so that the small integers are more probable than the
large integers, and the rate of decay is taken to be as small as possible. The code
length of the universal prior for integers is given by

L(n) = log2(c0) + log∗2(n) = log2(c0) +
∑

j>1

max(log
(j)
2 (n), 0),

where log
(j)
2 (n) is the jth composition of log2 (log

(1)
2 (n) = log2(n), log

(2)
2 (n) =

log2(log2(n)), . . .) and c0 =
∑

n>1 2
−log∗2 (n) = 2.865 . . . The universal prior for inte-

gers is then p(n) = 2−L(n).
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Construction cost of an IBCM variable. We now have an analytical formula
for the construction cost cc(Aπ) of a secondary variable Aπ constructed from an
ibcm itemset π:

cc(Aπ) = log |T |+ L(k + 1) log 2 + log

(
m+ k − 1

k

)
(12)

+
∑
x∈X

(L(Ix − 1) log 2 + log Ix).

The cost of an ibcm variable is the negative logarithm of probabilities which
is no other than a coding length according to Shannon [27]. Here, cc(Aπ) may
be interpreted as a variable construction cost, that is the encoding cost of the
itemset π. The first line in Formula 12 stands for the choice of the itemset table,
the number of variables and the variables involved in the itemset. The second
line is related to the choice of the size of the quantile partition and the quantile
part for each variable involved in the itemset.

In Formula 6, the construction cost cc(Aπ) acts as a regularization term. Con-
structed variables based on complex itemsets, with multiple constituent variables
or with fine-grained constituent parts in the itemset, are penalized compared to
simple constructed variables.

4.4 Variable Construction Algorithm

The objective is to construct a set of itemset based secondary variables in order
to obtain a data representation suitable for supervised classification. The space
of ibcm variables is so large that exhaustive search is not possible. We propose
a greedy Algorithm 1 that constructs all potential variables based on quantile
partitions of power of 2 sizes, given a maximum number Maxk of constituent
variables in a secondary table T , a maximum size Maxs of partitions and a
maximum number Maxc of constructed variables. For clarity purpose, this algo-
rithm is described for one single secondary table T . It just has to be applied in a
loop over the tables of T to construct itemset-based variables for all secondary
tables of T .

Filtering Actual Quantile Partitions. Let us first notice that definitions 2 and 3
relate to formal descriptions of quantile partitions. Actual partitions may contain
empty parts or fine grained parts that are redundant with coarse grained parts.
This is the case when the partition size is greater than the number of values,
especially when the number of values is below the number of instances in the
dataset. To illustrate this, let us consider a variable with only three values 1, 2
and 3 and a dataset of 10 instances, with the following sorted instances values:
1, 1, 1, 2, 2, 2, 3, 3, 3, 3. According to Definition 2, the 2-quantile partition is { ]−
∞, 2[, [2,+∞[ }, the 3-quantile partition is { ]−∞, 2[, [2, 3[, [3,+∞[ } and the 4-
quantile partition is { ]−∞, 1[, [1, 2[, [2, 3[, [3,+∞[ }. In the 4-quantile partition,
the first part ] − ∞, 1[ is empty while the last two ones are redundant with
those of the 3-quantile partition. Overall, we can filter the quantile partitions
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Algorithm 1. Greedy construction of itemset based variables

Require: T {Input secondary table}
Require: Maxk {Maximum number of constituent variables}
Require: Maxs {Maximum size of quantile distribution of constituent variables}
Require: Maxc {Maximum number of constructed variables}
Ensure: Aπ = {Aπ, cc(Aπ)+ ce(Aπ) < ce(∅)} {Set of relevant constructed variables}
1: {Step 1: Compute quantile partitions for power of 2 sizes}
2: Read secondary table T
3: for x ∈ T do
4: for all s = 2i, 1 ≤ i ≤ log2 Maxs do
5: Compute quantile partition of size s for variable x {cf. definitions 2 and 3}
6: end for
7: end for
8:
9: {Step 2: Construct itemset based variables}
10: {Exhaustive construction by increasing number of variables and partition size}
11: Aπ ← ∅, varNb← 0
12: for k = 0 to max(Maxk, m) do
13: subsetNb← m!

k!(m−k)!
{Number of subset of k variables among m}

14: if varNb+ subsetNb ∗ 2k ≤Maxc then
15: maxSizek ← argmaxs∈{2,4,8,...} (varNb+ subsetNb ∗ (2s− 2)k ≤Maxc)

16: varNb← varNb+ subsetNb ∗ (2 ∗maxSizek − 2)k

17: for all Aπ with k variables and parts in partition of size 2, 4, 8, . . . ,maxSizek
do

18: {Construct only new variables by avoiding missing or redundant parts}
19: if Aπ contains only non empty and non redundant parts then
20: Aπ ← Aπ ∪ {Aπ}
21: end if
22: end for
23: end if
24: end for
25:
26: {Step 3: Evaluate constructed variables and keep relevant variables

only}
27: Read secondary table T
28: for all Aπ ∈ Aπ do
29: Compute values of constructed variable Aπ

30: Evaluate Aπ according to cr(Aπ) = cc(Aπ) + ce(Aπ)
31: if cr(Aπ) > ce(∅) then
32: Aπ ← Aπ − {Aπ}
33: end if
34: end for
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by keeping {[2, 3[, [3,+∞[ } for the 3-quantile partition and { [1, 2[} for the
4-quantile partition.

Now, we can detail the variable construction Algorithm 1, that consists in
three steps.

1. In the first step (line 1), Algorithm 1 reads the Ns records of table T and
computes all quantile partitions for power of 2 sizes up to Maxs, accord-
ing to definitions 2 and 3. This step requires sorting the records for each
secondary variable (among m), then processing them for partition sizes
2, 4, 8, . . . ,min(Maxs, Ns), that is at most log2 Ns times. Empty or redun-
dant parts in actual quantile partitions are removed at this step, and the
overall number of parts per variable that need to be stored is less than or
equal to the number Ns of records.

Overall, the first step of the algorithm requires O(mNs logNs) time and
O(Ns m) space.

2. In the second step (line 9), Algorithm 1 iterates on itemsets by increas-
ing number of constituent variables, and for each number of variables, by
increasing the size of partitions, considering only power of 2 sizes. For a
given number k of constituent variables, the number of subsets of variables
is subsetNb = m!

k!(m−k)! . For a given maximum size of partition maxSize =

2i, i ≥ 1, the total number of usable parts is 2 ∗maxSize− 2 = 2 + 4 + 8 +
. . . + maxSize. The total number of potential itemsets with k constituent
variables and part from quantile partitions with power of 2 sizes less than
or equal to maxSize is subsetNb ∗ (2 ∗maxSize)k. In line 15, Algorithm 1
computes the maximum size maxSizek of quantile partitions that can be
considered to build all related itemset based variables, while not exceeding
the maximum number of requested constructed variables Maxc. In line 19,
Algorithm 1 exploits the actual quantile partitions obtained after the first
step, so as to filter the itemset based constructed variables. Any constructed
variable involving an empty or a redundant part is removed, since the same
records will be covered by a simpler itemset, with a lower construction cost.

The variable construction step is similar to a breadth first tree search of the
space of itemsets, constrained by a maximum size of quantile partitions, of
number of variable s and of total constructed variables. Overall, this step re-
quires O(Maxc Maxk) time and O(Maxc Maxk) space, since at most Maxc

variables are constructed, each involving at most Maxk constituent variables
in the itemsets.

3. In the third step (line 26), Algorithm 1 reads all the dataset (N instances
of the target table and Ns records of the secondary table) to compute the
values of all constructed variables, that is new binary values in secondary
tables. To evaluate these binary secondary variables, the method described
in Section 3 needs two count variables per itemset-based constructed binary
variable in the target table: the number of secondary records covered or not
by the itemset. The evaluation algorithm (see Section 3) requires O(N logN)
time to evaluate a binary secondary variable Aπ . In line 31 of Algorithm 1,
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a comparison between the relevance criterion cr(Aπ) and the null cost ce(∅)
allows to filter the constructed variables and to keep only the relevant ones.
Overall, this step requires O(Maxc Maxk Ns) time to compute the values
of the binary itemset based constructed variables and O(Maxc N) space to
keep the count values in the target table. Evaluating the relevance of all
variables requires O(Maxc N logN) time and O(Maxc N) space.

Overall, Algorithm 1 needs to read the whole dataset twice, one in the first step
to build the actual quantile partitions and one in the third step to compute
the values of all constructed variables. The time complexity is O(mNs logNs +
Maxc (Maxk Ns+N logN)) and the space complexity isO(Ns m+MaxcN). For
itemsets involving few constituent variables, it is approximatively super-linear
with the number of instances in the target table, of records in the secondary
table, of secondary variables and of constructed variables.

5 Evaluation

We evaluate the proposed method by focusing on the following aspects: ability to
generate large numbers of variables without combinatorial explosion, resistance
to overfitting and contribution for the prediction task.

5.1 Evaluation on 20 Benchmark Datasets

In this first evaluation, we use 20 datasets from the multi-relational data mining
community. Since we are interested in secondary variables, we ignore those of
the target table. We focus on the itemsets-based variable construction method
presented in Section 4.

After the variable construction step, we exploit the extension of the Naive
Bayes classifier to secondary variables described in section 3.2. In this article, we
use the Selective Naive Bayes (SNB) classifier [28]. It is a variant of the Naive
Bayes with variable selection and model averaging, which is robust and efficient
in the case of very large numbers of variables.

In order to have a baseline of comparison, we consider the method Relaggs
[10], based on the following propositionalisation rules:

– for each secondary numerical variable: Mean, Median, Min, Max, StdDev,
Sum

– for each categorical secondary variable: Mode, CountDistinct (number of
distinct values) and the number of occurrences per value.

– the number of records in the secondary table.

The classifier used after propositionalisation is also the SNB classifier.
The used multi-relational datasets5 belong to different domains : image pro-

cessing domain (datasets Elephant, Fox, Tiger [29], and the Miml dataset [30],

5 Miml: http://lamda.nju.edu.cn/data_MIMLimage.ashx , Fox, Elephant, Tiger, Mu-
tagenesis, Musk1, Musk2: http://www.uco.es/grupos/kdis/mil/dataset.html,
Diterpenses: http://cui.unige.ch/~woznica/rel_weka/, Stulong:
http://euromise.vse.cz/challenge2003

http://lamda.nju.edu.cn/data_MIMLimage.ashx
http://www.uco.es/grupos/kdis/mil/dataset.html
http://cui.unige.ch/~woznica/rel_weka/
http://euromise.vse.cz/challenge2003
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with target variables Desert, Mountains, Sea, Sunset, Trees), molecular chem-
istry domain (Diterpenses [31], Musk1, Musk2 [32], and Mutagenesis [33] with
three representations), health domain (Stulong6 [34], with target variables Chol-
risk, Htrisk, Kourisk, Obezrisk and Rarisk), game domain (TicTacToe [35], con-
sidered as multi-relational with the nine cells of the game in the secondary table).
These datasets have a small size, containing from 100 to 2000 individuals. A de-
scription of the datasets is provided in Table 1

In all experiments, Algorithm 1 is used with at most five variables per itemset,
and quantiles partition of at most 100 parts. By using Algorithm 1, we are able to
control the size of the representation by generating 1, 10, 100, 1,000, 10,000 and
100,000 variables per dataset in the training samples of the 10-folds stratified
cross-validation process, which leads to almost 20 million constructed variables.

Interpretability. To see an example of how we can interpret an itemset on real
world data, let us consider the Stulong dataset [34]. It is medical database com-
posed of two tables in a one-to-many relationship: (i) the target table Entry
contains patients, and (ii) the table Control describes results of clinical exam-
inations for each patient. We consider the target variable CHOLRISK (with
two values: Normal and Risky) which denotes whether the patient presents a
cholesterol risk. The task is to predict the value of this class by considering
the secondary variables in table Control. We give here an example of a relevant
itemset proposed by our approach: π : HY PCHL ∈ {1}. π contains only one
secondary variable HYPCHL. The corresponding binary constructed variable Aπ

means whether the control performed by the patient presents or not a hyperc-
holesterolemia. Figure 5 depicts the optimal bivariate data grid related to Aπ. It
can be seen that we obtain a contrast of the target values (Normal and Risky) in
each cell of this grid. For example the top-left cell gives an interpretable rule: if
the patient has at most one control with hypercholesterolemia and at least one
control without hypercholesterolemia then he is not likely to have a cholesterol
risk (i.e. CHOLRISK=normal) in 90% of cases.

Performance evaluation. In a first analysis, we collect the average test accuracy
for each number of generated variables. The method Relaggs, which relies on
variable construction by applying systematic aggregation rules, cannot control
the combinatorial number of generated variables which varies from a dataset to

6 The study (STULONG) was realized at the 2nd Department of Medicine, 1st Faculty
of Medicine of Charles University and Charles University Hospital, U nemocnice 2,
Prague 2 (head. Prof. M. Aschermann, MD, SDr, FESC), under the supervision
of Prof. F. Boud́ık, MD, ScD, with collaboration of M. Tomečková, MD, PhD and
Ass. Prof. J. Bultas, MD, PhD. The data were transferred to the electronic form by
the European Centre of Medical Informatics, Statistics and Epidemiology of Charles
University and Academy of Sciences (head. Prof. RNDr. J. Zvárová, DrSc). The data
resource is on the web pages http://euromise.vse.cz/challenge2004 . At present
time the data analysis is supported by the grant of the Ministry of Education CR
Nr LN 00B 107.

http://euromise.vse.cz/challenge2004
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Fig. 5. Example of itemset interpretation on Stulong dataset

another (from about ten variables to 1,400 variables). It is still applicable in the
case of small bases and provides here a competitive baseline performance.

The results depicted in Figure 6 show that the performance of our approach
systematically increases with the number of constructed variables, and reaches or
exceeds the performance of Relaggs over 15 of the 20 datasets when the number
of the constructed variables is sufficient. For five datasets (Fox, Musk1, Musk2,
MutagenesisAtoms and Tiger), the performance of our approach is significantly
worse than Relaggs. These five datasets are either very noisy (Fox with Acc =
0.63±0.10 for Relaggs), very small (Musk1, Musk2 and MutagenesisAtoms with
less than 200 instances) or with large variance in the results for Relaggs (from
0.07 to 0.14 of standard deviation in accuracy, eg. 0.9 for Tiger). For these
small datasets, there is not sufficient number of instances to reliably recognize
a potential pattern. In this case, the regularization (criterion 6) eliminates most
of the constructed variables (cf. Figure 7), which brings down the performance.
Another explanation that can be provided is that for certain datasets, the pattern
in the secondary variables may be easily expressed with an aggregate function.
In the case of such a favorable bias, Relaggs is likely to perform better than any
other approach.

In order to see the ability of the regularization cost of criterion 6 to eliminate
non relevant secondary variables, we report in Figure 7 the number of selected
variables with respect to the number of the constructed ones. The results show
that criterion 6 significantly prunes the space of the constructed variables. Only
a very small number among these variables are considered to be relevant. For
example, for 100,000 constructed variables, the proportion of relevant variables
is inferior to about 1% for most of the datasets. For some datasets (Elephant,
Miml-Sea, TicTacToe, Stulong-Obezrisk and Tiger), only about 10 variables are
selected among the 100,000.

Robustness Evaluation. In a second analysis, the experiment is performed after a
random reassignment of classes for each dataset in order to assess the robustness
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Fig. 7. Number of selected variables with respect to the number of constructed
variables

of the approach. We collect the number of selected variables, taking into account
the construction cost of the variables according to criterion 6. The method is
extremely robust since all 20 million generated variables are identified as non-
informative, without exception.

5.2 Handwritten Digits Dataset

In a second evaluation, we use the Digits dataset mentioned earlier in Example 3.
In Figure 8, results on the Digits dataset are reported. We used a train and
test evaluation with 60,000 instances in training and 10,000 in testing. It is a
relatively large dataset with about 50 million records in the secondary table.
We report the test accuracy results of the SNB classifier with 1, 10, 100, 1,000,
10,000 and 100,000 constructed variables. These results are compared to those
obtained with Relaggs as well as with an SNB on the initial tabular attribute-
value representation. We report in the same graphic the number of relevant and
filtered variables according to criterion 6 for the different numbers of constructed
variables.

The first observation is that the problem is difficult in its initial tabular rep-
resentation for the SNB classifier which obtains 87.5% of test accuracy. Relaggs
only gets 22.4%. In a second observation, Figure 8 shows that the performance
of our approach increases with the number of constructed variables, and signif-
icantly exceeds that of the SNB classifier obtained on the initial tabular rep-
resentation. Our rapproach reaches 89.8% with 1,144 relevant variables among
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Fig. 8. On the left, number of filtered variables and of relevant variables per number
of constructed variables; on the right, test accuracy obtained with Relaggs, SNB with
the initial tabular format, and SNB with increasing numbers of constructed variables

10,000 constructed variables, and 92.6% with only 3,476 relevant variables among
100,000 constructed variables.

6 Conclusion

In this paper, we have proposed an approach for constructing new variables and
assessing their relevance in the context of multi-relational supervised learning.
The method consists in defining an itemset in a secondary table, leading to
a new secondary variable that collects whether secondary records are covered
or not by the itemset. The relevance of this new variable is evaluated using a
bivariate supervised data grid model [11], which provides a regularized estimator
of the conditional probability of the target variable. To take into account the
risk of overfitting that increases with the number of constructed variables, we
have applied a Bayesian model selection approach for both the itemset-based
construction model and the conditional density evaluation model, and obtained
an exact analytical criterion for the posterior probability of any constructed
variable.

A greedy algorithm has been proposed in order to explore the itemset space.
We evaluated our approach on several real world multi-relational datasets. Ob-
tained classification performance are very promising. The experiments showed
also that our approach is able to deal with relatively large datasets and
generate an important number of itemsets while controlling the combinatorial
explosion. Furthermore, it is a robust approach. Even with a great number of con-
structed variables, it remains resistant to overfitting. Future works are envisaged
to provide improved search heuristics to better explore the space of constructed
variables.
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