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Abstract In Multi-Relational Data Mining (MRDM), data are represented in a rela-
tional form where the individuals of the target table are potentially related to several
records in secondary tables in one-to-many relationship. Variable pre-processing
(including discretization and feature selection) within this multiple table setting
differs from the attribute-value case. Besides the target variable information, one
should take into account the relational structure of the database. In this paper, we
focus on numerical variables located in a non target table. We propose a criterion
that evaluates a given discretization of such variables. The idea is to summarize for
each individual the information contained in the secondary variable by a feature
tuple (one feature per interval of the considered discretization). Each feature repre-
sents the number of values of the secondary variable ranging in the corresponding
interval. These count features are jointly partitioned by means of data grid models
in order to obtain the best separation of the class values. We describe a simple op-
timization algorithm to find the best equal frequency discretization with respect to
the proposed criterion. Experiments on a real and artificial data sets reveal that the
discretization approach helps one to discover relevant secondary variables.
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1 Introduction

Most of existing data mining algorithms are based on an attribute-value representa-
tion. In this flat format, each record represents an individual and the columns rep-
resent variables describing these individuals. In real life applications, data usually
present an intrinsic structure which is hard to express in a tabular format. This struc-
ture may be naturally described using the relational formalism where each object
(target table record) refers to one or more records in other tables (secondary tables)
through a foreign key.

Example 1. In the context of the Customer Relationship Management (CRM) prob-
lem, Figure 1 shows an extract of a virtual CRM relational database schema. In
this schema, the table Customer is the target table, whereas Order and Service are
secondary tables related to Customer through the foreign key CID. In this context,
the problem may be, for instance, to identify the customers likely to be interested
in a certain product or service. This problem turns into a classification problem for
which the target variable is the Status attribute, which denotes whether the customer
has already ordered a particular product.

Learning from relational data has recently received increasing attention in the liter-
ature. The term Multi-Relational Data Mining (MRDM) was initially introduced by
[Knobbe et al., 1999] to address novel knowledge discovery techniques from multi-
ple relational tables. The common point between these techniques is that they need
to transform the relational representation. In Inductive Logic Programming ILP
[Džeroski, 1996], data is recoded as logic formulas. This causes scalability prob-
lems especially with large-scale data. Other methods called by Propositionalisa-
tion [Kramer et al., 2001] try to flatten the relational data by creating new variables.
These variables aggregate the information contained in non target tables in order to
obtain a classical attribute-value format. Consequently, not only the naturally com-
pact initial representation is lost but there is a risk of introducing statistical bias
because of potential dependencies between the newly added variables.

Although variable pre-processing is at the core of the majority of propositional
(single table) Data Mining systems, it has received much less attention in MRDM.
Pre-processing, including variable selection and discretization of numerical values,
is of great importance particularly in Multi-Relational context. This step is justified
not only to improve the accuracy but also to reduce the very large hypothesis spaces
in MRDM. The difficulty when dealing with multiple table data arises from the
presence of one-to-many associations. In the attribute-value mono table case, each
individual has a single value per variable. While in multiple table setting, for a
non target table variable, an individual may have a value list (eventually empty)
of varying size.

Example 2. Referring back to Example 1, predicting whether the customer would
be interested in a given product does not only depend on the information of that
customer. Indeed, the other products ordered by this customer might be relavant,
because, for instance, variables such as the product Weight or Price may present
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Fig. 1 Relational schema of a CRM database

correlations with the target variable. Assessing the relevance of these variables is
not straightforward, since each customer may have made many orders. The same
difficulty arises when trying to discretize accurately these numerical variables, es-
pecially when taking the class label into account.

To the best of our knowledge, only few studies in the literature have treated the
numeric variable discretization in multi-relational data. Discretizing numerical at-
tributes in multiple tables is different from handling attributes from a single table,
due the presence of one-to-many associations. Under the multi-relational setting, the
state of the art discretization approaches of a secondary numerical attribute differ
along 2 axes: (i) whether they make use of the class label and (ii) whether they con-
sider one-to-many relationships when computing cut points. The simplest methods
that can be applied are the equal-width and equal-frequency interval binning. Both,
are unsupervised and they compute boundaries regardless of any multi-relational
structure. Whereas, the former divides the range of observed values into k equal
sized bins, the latter discretizes the variable in such a way that each bin will have
approximately the same number of values. To take into account the one-to-many
association problem, [Knobbe and Ho, 2005] proposed an Equal-weight discretiza-
tion method which involves an idea proposed by [Van Laer et al., 1997]: individuals
with large number of related records in the non target table have a bigger influence
on the choice of boundaries since they have more contributing numeric values. In
order to compensate this impact, numeric values are weighted with the inverse of
the size of the bags of records they belong to. Instead of producing ranges of equal
size like in the equal frequency method, cut points are computed so that bins of
equal weight can be obtained. All the above methods are class-blind since they do
not use class labels. In order to take into account both the target variable information
and the one-to-many association between records stored in the target and non-target
tables, [Alfred, 2009] proposes a modification of the entropy-based multi-interval
discretization method introduced by Fayyad and Irani [Fayyad and Irani, 1993]. Be-
sides the class information entropy, another measure that uses individual informa-
tion entropy is added to select multi-interval boundaries for the numerical secondary
variable. The drawback of this approach is that it is relatively expensive and may
lead to statistical skews since the entropy measures are computed by propagating the
class labels to the non target tables. When performing such transformations, vari-
ables in the secondary table are not independent and identically distributed (i.i.d.).
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In fact, individuals with a large number of related records in a secondary table will
be overestimated thereby causing overfitting.

In this paper, we are interested in pre-processing a variable located in a secondary
table having a one-to-many relation with the target one1. We propose to discretize
the set of related values of a variable A and use an optimization criterion to find the
best partitioning of the set such that the class Y is maximally differentiated. The idea
is to use multi-variate data grids to estimate the conditional probability P(Y | A).
This univariate pre-processing extended to the relational context is of a great interest
for filter feature selection [Guyon and Elisseeff, 2003] or as pre-processing step for
classifiers such as Naive Bayes or Decision Tree.

The remainder of this paper is organized as follows. Section 2 describes our
approach in the case of a secondary numerical variable. In Section 3 we evaluate
the approach on artificial and real data sets. Finally, Section 4 gives a summary and
discusses future work.

2 Secondary Variables Pre-processing

In this section, we describe how a numerical variable belonging to a non-target table
can be discretized in a class-dependent way.

2.1 Illustration of the Approach

Let us take the simplest case: a binary variable with two values v1 and v2. In this
case, each individual is described by a bag of values among v1 and v2

2. Given an
individual, all that we need to know about the secondary variable are the number of
v1 and the number of v2 in the bag of records related to that individual (we denote
them respectively n1 and n2). Thus, the whole information about the initial variable
can be captured by considering jointly the pair (n1,n2). With such a representation,
the conditional probability P(Y | A) is then equivalent to P(Y | n1,n2).

This approach can be generalized to a numerical secondary variable. In that case,
the variable needs to be discretized into K intervals. The idea is to create in the
target table K new variables nk (1 ≤ k ≤ K). For each individual, nk stands for the
number of related records in the secondary table which have a value of A located
in the kth interval. As in the bivariate case, P(Y | A) is approximated by evaluating
P(Y | (n1,n2, · · · ,nK)).

Multivariate data grid models have been shown to be good estimators for the
probability of a class, given a set of input variables [Boullé, 2011]. The idea is to

1 The one-to-one relationship is equivalent to the single table case. For simplification reasons, we
limit the relationship to the first level: tables directly related to the target one.
2 This is different from the attribute-value setting, where for a given variable, an individual can
only have a single value.
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Fig. 2 Illustration of the Approach

jointly discretize in an optimal way the numeric variables nk into intervals. This joint
partitioning defines a distribution of the instances in a K-dimensional input data grid
whose cells are defined by interval tuples. Therefore, our goal is to find the optimal
multivariate discretization which maximizes the class distribution. In other words,
we look for the optimal grid with homogeneous cells according to the class values.

Example 3. In the context of Example 1, consider, for instance, the secondary vari-
able “PRICE” in the database of figure 1. Assume that we discretize this variable
into two intervals : ]in f ;20] and ]20;sup[. Then PRICE is equivalent to the pair
of variables

(
n]in f ;20],n]20;sup[

)
where n]in f ;20] (respectively n]20;sup[) stands for the

number of orders whose prices are less than 20 (respectively greater than 20). If we
assume that the price is correlated with the target variable and that the discretization
in two intervals is relevant, the target classes can be separated easily, using a grid
similar to that of Figure 2.

The correlation between the cells of the data grid and the target values allows to
quantify the joint classificatory information. The conditional probability distribution
P(Y | A) is evaluated locally in each cell. Consequently, classifiers like Naive Bayes
or Decision Trees can easily be used. Moreover, it is important to note that the data
grid provides an interpretable representation, since it shows the distribution of the
individuals while jointly varying the count variables nk. Each cell can be interpreted
as a classification rule in the multi-relational context.

For example, the top-left cell of the data grid of Figure 2 is interpreted by: if “the
number of orders with a price less than 20 is less than 5” and “the number of orders
with a price greater than 20 is more than 2” then the class is C1.

Given that we use an equivalent representation, with the suitable discretization,
we expect that the optimal related data grid will be able to detect the pattern con-
tained in the secondary variable. Thus the problem is twofold: how to find the best
discretization and how to optimize the related data grid. We address these two prob-
lems simultaneously by applying a model selection approach. To do so, we follow
the MODL (Minimum Optimized Description Length) approach [Boullé, 2006].
The best model is chosen according to a Maximum A Posteriori (MAP) approach by
maximizing the probability p(Model|Data) of the model given the data. By apply-
ing the Bayes rule, this is equivalent to maximizing P(Model)p(Data|Model) since
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the probability P(Data) is constant under varying the model. The considered models
include the discretization of the secondary variable A and the joint partitioning of
the generated count variables nk. In the remainder of this section, we describe the
criterion used to evaluate these models and we propose optimization algorithms.

2.2 Evaluation criterion

A model is completely defined by the discretization of the secondary variable (num-
ber and bounds of the intervals), the partitioning of the count variables nk and the
target distribution in each cell of the resulting data grid. To describe such a model,
we use the following notation.

Notation 1

• N : number of individuals (number of target table records)
• J : number of target values
• Ns : number of records in the non target table
• K : number of discretization intervals for the secondary variable A
• nk : number of non target table records having a value of the secondary variable

A in the kth interval (1≤ k ≤ K)
• Ik : number of discretization intervals for the count variable nk (1≤ k ≤ K)
• Nik : number of individuals in the interval ik for variable nk (1≤ k ≤ K)
• Ni1i2...iK : number of individuals in the cell (i1, i2, . . . , iK)
• Ni1i2...iK j : number of individuals in the cell (i1, i2, . . . , iK) for the target value j

Using the notation above, a model is completely defined by the parameters
{K,{nk},{Ik} ,

{
Nik

}
,
{

Ni1i2...iK j
}
}. In order to compute the criterion, we introduce

in Definition 1 a prior distribution p(Model) on this model space. This prior makes
explicitly the independence assumptions and exploits the hierarchy of the parame-
ters. The number of discretization intervals of the secondary variable A is first cho-
sen, then their bounds. After computing the count variables nk, a K-dimensional data
grid is built by choosing for each nk the number of intervals, their bounds and finally
the frequencies of the target values in each cell. At each stage of this hierarchy the
choice is assumed to be uniform.

Definition 1 The hierarchical prior of the parameters of discretization models is
defined as follows:

• the numbers of intervals for the secondary variable discretization are indepen-
dent from each other, and uniformly distributed between 1 and Ns,

• for a given number of intervals, every discretization of the secondary variable
into intervals is equiprobable,

• for the discretization of the count variable nk, the numbers of intervals are inde-
pendent from each other, and uniformly distributed between 1 and N,

• for each count variable nk and for a given number of intervals, every partition
into intervals is equiprobable,
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• for each cell of the data grid, all the parameters of the multinomial distribution
of the target classes are equiprobable,

• the parameters of the multinomial distributions of the target classes in each cell
are independent from each other.

The first hypothesis of the above prior is that, for the secondary variable being
discretized, the number of intervals is uniformly distributed between 1 and Ns. Thus
we get

p(K) =
1
Ns

(1)

The second hypothesis is that all discretizations of the secondary variable into K
intervals are equiprobable for a given K. If Ns is the number of the secondary table

records, there is
(

Ns +K−1
K−1

)
ways to discretize Ns values into K intervals. Thus

we obtain

p({nk} | K) = 1(
Ns +K−1

K−1

)
(2)

For each count variable nk, the number of discretization intervals is uniformly
distributed between 1 and N. Thus, we get

p(Ik | nk,K) =
1
N

(3)

For each count variable nk, all the divisions of N instances into Ik intervals are
equiprobable.

p
({

Nik

}
| Ik,nk,K

)
=

1(
N + Ik−1

Ik−1

) (4)

Given K univariate discretizations of the count variables nk, the frequency
Ni1i2...iK j of each cell (i1, i2, . . . , iK) of the data grid can be derived from the in-
put data sample. According to the fifth hypothesis of the prior distribution, in each
cell (i1, i2, . . . , iK), all the parameters of the multinomial distributions of the Ni1i2...iK .
instances of the cell on the J target classes are equiprobable. Calculating the prob-
ability of a such set of multinomial parameters is a combinatorial problem, which
turns into computing the number of ways of decomposing a natural number Ni1i2...iK
as a sum of J terms. Since each set of multinomial parameters is equiprobable, we
obtain

p
({

Ni1i2...iK j
}
|
{

Nik

}
,{Ik} ,nk,K

)
=

1(
Ni1i2...iK + J−1

J−1

) (5)
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For the likelihood term p(Data|Model), we assume further that the multinomial
distributions of the target values in each cell are independent from each other. This
term is evaluated locally in each cell by considering the probability of observing
the target values (classes) of the cell given the parameters of the multinomial distri-
bution in this cell. The number of ways of observing Ni1i2...iK instances distributed
according to a multinomial distribution is given by the multinomial coefficient:

Ni1i2...iK !
J

∏
j=1

Ni1i2...iK j!

.

The conditional likelihood per cell is thus

1
Ni1i2 ...iK !

J

∏
j=1

Ni1i2 ...iK j!

(6)

Taking the negative log of P(Model)p(Data|Model), the generalized optimiza-
tion criterion is given below.

logNs + log
(

Ns +K−1
K−1

)
+

K

∑
k=1

logN +
K

∑
k=1

log
(

N + Ik−1
Ik−1

)
+

I1

∑
i1=1

I2

∑
i2=1
· · ·

IK

∑
iK=1

log
(

Ni1i2...iK + J−1
J−1

)
+

I1

∑
i1=1

I2

∑
i2=1
· · ·

IK

∑
iK=1

(
logNi1i2...iK !−

J

∑
j=1

logNi1i2...iK j!

)
(7)

In formula 7, the first line stands for the choice of the discretization of the secondary
variable: The first and second terms represent respectively the choices of the num-
ber of intervals, and the bounds of the intervals. The second and the third lines stand
for the choice of the discretization of each variable nk and the multinomial distribu-
tion parameters for the target values in each grid cell. The last term represents the
conditional likelihood of the data given the model.

The criterion given in the above formula is related to the probability that the final
data grid (obtained after the discretization of the secondary variable, as described
before) explains the target variable given the secondary one. It can also be inter-
preted as the ability of a data grid to encode the target classes given the secondary
variable, since negative log of probabilities is none other than a description length
[Shannon, 1948].

Based on this cost, we can define a normalized compression gain g(M) by con-
sidering the null model, denoted by M/0, where the secondary variable is discretized
into one interval.
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Algorithm 1: Optimization Algorithm
input K : initial number of quantiles,

Kmax : max number of evaluated ranges
output D∗ : best secondary variable discretization,

G∗ best Data Grid
require Kmax�K
Compute secondary variable quantiles bounds (K -way equal frequency discretization) ;1
Compute initial count variables (νk)1≤k≤K ;2
/* Init solution (c∗: best cost) */
c∗← ∞, D∗← One interval, G∗← One cell;3
for K← 2 to Kmax do4

D← discretize into K intervals;5

Estimate count variables (nk)1≤k≤K nk =
[K k

K ]

∑
i=1+[K k−1

K ]

νi;
6

Initialize GK (data grid with nk as input variables);7
/* Optimize the data grid GK */

G
′
K ← OptimizeDataGrid(GK);8

if cost(G
′
K)< c∗ then // if improved cost9

/* save improved solution */

c∗← cost(G
′
K), G∗← G

′
K , D∗← D;10

endif11
endfor12

g(M) = 1− cost (M)

cost (M/0)
(8)

This relevance level can be used as a filter criterion for ranking secondary vari-
ables [Guyon and Elisseeff, 2003].

2.3 Optimization Algorithm

The choice of the secondary variable discretization is determined by the minimiza-
tion of the criterion seen in Section 2.2, which is a combinatorial problem with
2Ns possible discretizations for the secondary variable. Then, for each discretization
into K intervals, there are

(
2N
)K possible data grids, which represent the number of

the multivariate partitioning of the count variables n1, . . . ,nK . An exhaustive search
through the whole space of models is unrealistic.

Algorithm 1 provides a simple procedure to optimize the discretization of the
secondary variable. The method starts by making a fine K -way equal frequency
discretization of the secondary variable, which produces K initial count variables
ν1, . . . ,νK . Then we iterate merging these initial ranges in order to simulate dif-
ferent equal frequency binnings. Each candidate discretization Dk is evaluated by
optimizing the corresponding data grid GK . This is done using the multivariate data
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# tables # Numerical
Sec. var.

# non target
records

#
Individuals

# target
values

Mutagenesis-atoms3 2 2 1618 188 2
Mutagenesis-bonds3 2 4 3995 188 2
Mutagenesis-chains3 2 6 5349 188 2
Diterpenses4 2 1 30060 1503 23
Miml5 2 15 18000 2000 2
Stulong6 2 29 10572 1417 2
Xor 2D 2 1 987762 10000 2
Xor 3D 2 1 1843282 10000 2

Table 1 Description of the used data sets

grid optimization heuristics detailed in [Boullé, 2011], which have practical scal-
ing properties, with O(N) space complexity and O(N

√
N logN) time complexity.

At the end of Algorithm 1, we select the secondary discretization with the minimum
evaluation cost (see criterion 7).

Although this simple algorithm clearly partially exploits the richness of the con-
sidered models, it is a good validation of the overall approach. As a priority for
future work, we plan to extend this optimization procedure in order to better explore
the search space and discover more complex discretization patterns.

3 Experiments

Our approach has been evaluated through its impact as a pre-processing step to
a Naive Bayes (NB) classifier. In this multi-relational NB, for a given one-to-many
numerical variable Xi, the optimal data grid gives an estimation of the corresponding
univariate conditional density P(Xi | Y ), which is computed by considering the class
frequencies in each cell. To show the contribution of our pre-processing approach
over aggregation based methods, for each secondary attribute, the average value has
been computed and a usual NB has been applied on the resulting flat table. Other
aggregates were tested, namely Max, Min and the Number of records in secondary
table. Results similar to those described below were obtained, and are omitted due
to lack of space.

In our experiments, we have considered different classification tasks based on
synthetic and real world data sets, whose characteristics are shown in Table 1.

3 http://sourceforge.net/projects/proper/files/datasets/0.1.0/
4 http://cui.unige.ch/˜woznica/rel_weka/
5 http://lamda.nju.edu.cn/data_MIMLimage.ashx
6 The study (STULONG) was realized at the 2nd Department of Medicine, 1st Faculty of Medicine
of Charles University and Charles University Hospital, U nemocnice 2, Prague 2 (head. Prof. M.
Aschermann, MD, SDr, FESC), under the supervision of Prof. F. Boudı́k, MD, ScD, with collabo-
ration of M. Tomečková, MD, PhD and Ass. Prof. J. Bultas, MD, PhD. The data were transferred
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Fig. 3 Scatter plots of synthetic data sets. Colors (black and gray) refer to the class labels
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Fig. 4 Experimental results obtained on synthetic data sets

Regarding synthetic data sets, the ideal binning pattern is known in advance,
and the target label is generated according to an Xor function between the count
variables ni. Figure 3 depicts the scatter plots of the 2D and 3D Xor datasets. For
instance, in the 3D Xor pattern (Figure 3(b)), the secondary variable is supposed to
be discretized into three intervals: [0;0.33[, [0.33;0.66[ and [0.66;1[. In this rather
complex pattern, data points located, for example, at the corner near the origin (in
gray) refer to individuals which have less than 50 values in the non target table,
respectively, in the intervals [0;0.63[, [0.33;0.66[ and [0.66;1[.

To compare results, we recorded the Area Under the ROC Curve (AUC) us-
ing ten-fold cross-validation. The AUC criterion (see [Fawcett, 2003]) evaluates the
ranking of the class conditional probabilities. In a two-class problem, the AUC is

to the electronic form by the European Centre of Medical Informatics, Statistics and Epidemiology
of Charles University and Academy of Sciences (head. Prof. RNDr. J. Zvárová, DrSc). The data re-
source is on the web pages http://euromise.vse.cz/challenge2004. At present time
the data analysis is supported by the grant of the Ministry of Education CR Nr LN 00B 107.
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Fig. 5 Results of empirical data experiments obtained on artificial and real world data sets

equivalent to the probability that the classifier will rank a randomly chosen posi-
tive instance higher than a randomly chosen negative instance. In our experiments,
we use the approach of [Provost and Domingos, 2001] to calculate the multi-class
AUC, by computing each one-against-the-others two-classes AUC and weighting
them by the class prior probabilities P(Yj).

In all experiment, only secondary numerical variables have been considered in
the data sets and we have chosen K = 100 and Kmax = 10 as parameter for the opti-
mization algorithm (cf. Algorithm 1). Obviously, it is not enough that only 10 equal
frequency discretization are evaluated among o

(
2Ns
)

candidate discretization of the
secondary variable. The objective of these experimentations is mainly to evaluate
the potential of the approach, and investigate whether working on more sophisti-
cated optimization algorithms is worth it.

Figure 5 shows the generalization performance (test AUC) obtained with a NB
using our discretization approach (denoted MT) compared to the same classifier
based on aggregated variables (denoted Avg). A two-tailed Student test at the 5%
confidence level is performed in order to evaluate the significant wins or losses of
our method versus the AVG method.

On synthetic data sets (Xor 2D and Xor 3D) our method widely outperforms the
NB approach using the average value. Not surprisingly, this is explained by the fact
that aggregation implies loss of information. On the other hand, our approach is able
to recognize the pattern in the secondary variable and thus to discretize it correctly.
This is confirmed by Figure 4, which summarizes the classification results obtained
by varying the number of individuals in the artificial data sets. It can be seen that,
with enough individuals, our approach reaches the theoretical performance. On the
other hand, other experiments on a totally random pattern show that our method is
robust, in the sense that it can detect the absence of predictive information in the
secondary variable (which is materialized by a single interval discretization and an
AUC near 50%).

On real world data sets, neither of the two methods dominates the other. Indeed,
Figure 5 shows that: (i) our approach might perform better than the aggregation
approach (Mutagenesis (atoms, bonds, chains) and Diterpenses), (ii) the two ap-
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proaches might perform equivalently (Miml), and (iii) on Stulong data set, the ag-
gregation approach might perform better than ours. This can be explained by the fact
that our criterion needs a large number of individuals to recognize existing patterns
(this has been shown in [Boullé, 2011], for a similar criterion in the case of a sin-
gle table), whereas, as shown in Table 1, the used real world data sets are relatively
small. Furthermore, we recall that Algorithm 1 is fairly simple and does not exploit
the whole potential of the discretization criterion. Indeed, Algorithm 1 simulates an
equal frequency discretization, meaning that many improvements can be brought
to it. These results reported above are confirmed by the student’s test in terms of
significant wins, draws and loses of our method compared to the AVG method. The
test showed 4 significant wins of our method on the Mutagenesis data set (atoms,
bonds and chains) and Diterpenses, 4 draws on the Miml dataset (desert, mountains,
sunset and trees) and six loses on Stulong (CHOLRISK, HTRISK, KOURRISK,
OBEZRISK and RARISK) as well as Miml (sea).

We would like to emphasize that, although our approach does not always perform
better than the average approach, this could be explained by insufficient exploration
of the model space. Moreover, the approach is able to detect complex patterns (cf.
Figure 3) that any aggregate approach can not discover. The obtained discretization
yields rules that can be of interest to the user. On the other hand, it should be clear
that aggregate methods can not produce such rules.

To see an example of how we can interpret the resulting discretization of a sec-
ondary variable, let us consider the Stulong data set (consisting of a target table
Patient in a one-to-many relationship with a table Exam), along with the secondary
numerical variable CHLSTMG that describes for each exam the cholesterol level
(mg). It turns out that this variable is relevant to predict the value of the target
variable CHOLRISK, which indicates whether the patient has high cholesterol risk
according to the two target values: Normal and Risky. Applying Algorithm 1 in this
case leads to a discretization of CHLSTMG into two intervals, namely ]in f ,228.5[
and [228.5,sup[, and Figure 6 depicts the optimal data grid corresponding to this
binning (histograms show the distribution of the target values in each cell). This
table can be interpreted as a set of four classification rules, one for each cell.

For example the top-left cell is equivalent to the rule: If there are at least 3 ex-
aminations with a cholesterol level less than 228.5 mg and there is no examination
with a cholesterol level higher than 228.5 mg then the class is Normal (meaning no
cholesterol risk).

4 Conclusion

In this paper, we have presented a novel approach to discretize numerical variables
in a multi-relational setting. Specifically, we propose to project numerical data in
secondary tables on the target one by means of binning, and then for each indi-
vidual, to count records in each interval. Additionally, we have seen how candi-
date discretizations can be evaluated in a class-dependent way. A criterion has been
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Fig. 6 Contingency table corresponding to the discretization of variable CHLSTMG

proposed to evaluate to what extent a given discretization of a secondary numeri-
cal variable preserves the correlation with the target variable. Finally, an optimiza-
tion algorithm has been provided for computing the optimal discretization. We have
shown that the criterion is robust and is able to evaluate a given discretization in a
reliable way.

An algorithm has been given for computing an estimation of equal-frequency
interval binning. This procedure, however, does not take full advantage from the
potential of the criterion. We are currently investigating how to extend our algo-
rithm in order to better explore the search space, so as to discover more accurate
discretization patterns.

This study has shown, through experiments on artificial data sets, that the cri-
terion and the discretization procedure may help in discovering relevant secondary
variables and achieving high accuracy. However, in the case of real world data sets,
we need to look for larger data sets, in order to better assess our approach and to
compare it to other multi-relational data mining techniques.
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[Boullé, 2006] Boullé, M. (2006). MODL: A Bayes optimal discretization method for continuous
attributes. Machine learning, 65(1):131–165.
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