
Chapter 1

Online learning of a weighted selective
naive Bayes classi�er with non-convex
optimization

Carine Hue, Marc Boullé and Vincent Lemaire

Abstract We study supervised classi�cation for data streams with a high
number of input variables. The basic naïve Bayes classi�er is attractive
for its simplicity and performance when the strong assumption of condi-
tional independence is valid. Variable selection and model averaging are
two common ways to improve this model. This process leads to manipu-
late a weighted naïve Bayes classi�er. We focus here on direct estimation of
weighted naïve Bayes classi�ers. We propose a sparse regularization of the
model log-likelihood which takes into account knowledge relative to each in-
put variable. The sparse regularized likelihood being non convex, we propose
an online gradient algorithm using mini-batches and random perturbation ac-
cording to a metaheuristic to avoid local minima. In our experiments, we �rst
study the optimization quality, then the classi�er performance under varying
its parameterization. The results con�rm the e�ectiveness of our approach.

Key words: supervised classi�cation, naïve Bayes classi�er, non-convex op-
timization, stochastic optimization, variables selection, sparse regularization

1.1 Introduction

Due to a continuous increase of storage capacities, data acquisition and pro-
cessing have deeply evolved during the last decades. Henceforth, it is common
to process data including a very large number of variables. Data amounts are
so massive that it hardly seems possible to fully load them: online process-
ing is then applied and data are seen only once. In this context, we consider
the supervised classi�cation problem where Y is a categorical target variable
with J values C1, . . . , CJ and X = (X1, . . . , XK) is the set of K explanatory
variables, numerical or categorical.
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Among the solutions to the problems of learning on data streams, the
incremental learning algorithms are one of the most used techniques. These
algorithms are able to update their model using just the new examples.

In this article we focus on one of the most used classi�er in the literature
i.e. the naïve Bayes classi�er. A naive Bayes classi�er is a simple probabilistic
classi�er based on applying Bayes' theorem with naive conditional indepen-
dence assumption. The explanatory variables (Xk)k=1,...,K are assumed to be
independent given the target variable Y . Despite this strong assumption this
classi�er has proved to be very e�ective [Hand and Yu, 2001] on many real
applications and is often used on data stream for supervised classi�cation
[Gama, 2010].

This "naïve" assumption allows us to compute the model directly from
the univariate conditional estimates P (Xk|C). For an instance denoted n,
the probability of the target modality C conditionally to the value of the
explanatory variables is computed according to the formulae 1:

Pw(Y = C|X = xn) =
P (Y = C)

∏K
k=1 p(x

n
k |C)∑J

j=1 P (Cj)
∏K
k=1 p(x

n
k |Cj)

(1.1)

The literature shows that variable selection [Koller and Sahami, 1996],
[Langley et al., 1992] or model averaging [Hoeting et al., 1999] can improve
the classi�cation results for batch learning. These two processes can be mixed
iteratively. Moreover Boullé in [Boullé, 2006] shows the close relation between
weighting variables and averaging naive Bayes classi�ers in the sense that, in
the end, the two processes produce a similar single model where a weight is
given to each explanatory variable. Equation 1.1 is just turned to the follow-
ing equation :

Pw(Y = C|X = xn) =
P (Y = C)

∏K
k=1 p(x

n
k |C)wk∑J

j=1 P (Cj)
∏K
k=1 p(x

n
k |Cj)wk

(1.2)

In this paper, we particularly focus on weighing variables for data streams.
We are not interested by learning ensemble of models which are then com-
bined by fusion or selection [Kuncheva and Rodríguez, 2007] or ensemble of
models where individual classi�ers do not share the same subset of used vari-
ables [Godec et al., 2010]. One of the advantages of the classi�er described
by Equation (1.2) in the context of data stream is its low complexity for
deployment, which only depends on the number of explanatory variables : a
weighted naïve Bayes classi�er is completely described by its weight vector
w = (w1, w2, . . . , wK). The interpretation of the results is also simpler that
in case of ensemble of models.

1 We consider in this paper that estimates of prior probabilities P (Y = Cj) and of con-
ditional probabilities p(xk|Cj) are available. In our experiments, these probabilities are
estimated using univariate discretization or grouping according to the MODL method (see
[Boullé, 2007b])
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Within the 'weighted naive Bayes classi�er' family, we can distinguish:

- classi�ers with weights equal to 1. It corresponds to the standard naïve
Bayes classi�er that uses all the explanatory variables.

- classi�ers with boolean weights. It corresponds to the selective naïve Bayes
classi�ers which selects a subset of explanatory variables. The selection is
generally done by optimizing a criteria over {0, 1}K . However, when the
variables number is high, such a browsing is infeasible and only a sub-
optimal browsing of the space {0, 1}K can be completed.

- classi�ers with continuous weights in [0, 1]K . Such classi�ers can be ob-
tained by averaging classi�ers with boolean weights with a weighting pro-
portional to the posterior probability of the model [Hoeting et al., 1999]
or proportionally to their compression rate [Boullé, 2007a]. However, for
datasets with a very high number of variables, we observe that the models
issued from averaging keep a lot of variables, which make the obtained
classi�ers both costly to deploy and di�cult to interpret.

In the work presented in this paper, we are interested in direct estimation of
the weight vector by optimization of the regularized log-likelihood in [0, 1]K .
Our main expectation is to obtain parcimonious robust models with less vari-
ables and equivalent performance. Preliminary works [Guigourès and Boullé, 2011]
have shown the interest of such a direct estimation of the weights.

Moreover, the purpose of this work has been also to focus on (i) a propo-
sition of a sparse regularization of the log-likelihood in Section 1.2 consistent
with previous o�ine approach [Boullé, 2007a] (ii) the setup of an online and
anytime algorithm with limited budget dedicated to the optimization of the
regularized criterion in Section 1.3 (iii) an evaluation of the obtained models
in terms of parcimony, predictive performance and robustness. Experiments
are presented in Section 1.4, before the conclusion and future work statement.

1.2 Construction of a regularized criterion

Given a dataset DN = (xn, yn)
N
n=1, we are looking for the minimization of

the negative log-likelihood, which is given by:

ll(w,DN ) = −
N∑

n=1

logP (Y = yn) +

K∑
k=1

log p(xnk |y
n)wk − log

 J∑
j=1

P (Cj)

K∏
k=1

p(xnk |Cj)
wk


(1.3)

Considered as a classical optimization problem, the regularization of the
log-likelihood is performed by the addition of a regularization term, also
called prior term, which expresses constraints on the weight vector w. The
regularized criterion is :
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CRDN (w) = −
N∑
n=1

ll(w, (xn, yn)) + λf(w,X1, . . . , XK) (1.4)

where ll refers to the log-likelihood, f is the regularization function, and λ
the regularization weight.
Several objectives have guided our choice of the regularization function:

1. Its sparsity, i.e. it favors the weight vectors composed of as much null
components as possible. The Lp norm functions are usually employed
with the addition of a regularization term of the form

∑K
k=1 |wk|p. All

these functions are increasing and hence favor the weight vectors with
low components. For p >= 1, the norm function Lp is convex, which
makes the optimization easier and renders this function attractive. This
explain the success of L2 regularization in many contexts. For ill-posed
linear problems, the ridge regression also called Tikhonov regularization
[Hoerl and Kennard, 1970] uses the L2 norm. However, the minimization
of the regularization terms for p > 1 does not necessarily lead to variables
elimination whereas the choice p ≤ 1 favors sparse weight vectors. The
Lasso method and its variants [Trevor et al., 2015] exploit the advantages
of the value p = 1, which enables sparsity and convex optimization. For
p < 1, the Lp regularization more exploits the sparsity e�ect of the norm
but conducts to non convex optimization.

2. Its ability to take into account a Bk coe�cient associated to each explana-
tory variable so that, for equivalent likelihoods, the "simple" variables are
preferred to "complex" ones. By weighting the term with Lp norm by such
a coe�cient, we obtain a penalization term of the form:

∑K
k=1Bk ∗ |wk|p.

This coe�cient is supposed to be known before the optimization. If no
knowledge is available, this coe�cient is �xed to 1. It can be used to include
expert knowledge. In our case, this coe�cient translates the preparation
cost of the variable, i.e. the discretization cost for a numerical variable,
resp. the grouping cost for a categorical variable described in equations
(2.4), resp. (2.7), of [Boullé, 2007b].

3. Its consistency with the regularized criterion of the MODL naïve Bayes
classi�er with binary selection of variables [Boullé, 2007a]. In order that
the two criteria coincide for λ = 1 and wk with boolean values, we �nally
use the regularization term:

f(w,X1, . . . , XK) =

K∑
k=1

(logK − 1 +Bk) ∗ wpk
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1.3 Optimization algorithm: gradient descent with

mini-batches and variable neighborhood search

Let pn = P (Y = yn), pj = P (Y = Cj), ak,n = p(xnk |yn), ak,j = p(xnk |Cj) be
all constant quantities in this optimization problem.
The regularized criterion to minimize can be written:

CRDN (w) = −
N∑
n=1

log pn +

K∑
k=1

(wk ∗ log ak,n)− log

 J∑
j=1

pj

K∏
k=1

(ak,j)
wk


+ λ

K∑
k=1

(logK − 1 +Bk) ∗ wkp

(1.5)

Let us note that for w = {0}K , i.e. without using explanatory variables, the
criterion value is equal to

CRDN ({0}K) = −
N∑
n=1

log pn = −N
J∑
j=1

pj log pj (1.6)

that is to say N times the Shannon entropy. For each n there is actually a
jn such that yn = Cjn . If we denote by Nj the number of instances among n
such that yn = Cj , then

−
N∑
n=1

log pn = −
J∑
j=1

Nj log pj = −
J∑
j=1

N ∗ Nj
N

log pj = −N
J∑
j=1

pj log pj

(1.7)

We want to optimize the criterion CRDN (w) subject to the constraint that
w takes its values in [0, 1]K in order to obtain interpretable models. Our
objective function consists of two terms. The �rst term is a convex function
of w. In order to see this, let us represent its partial term LLn(w) in the
following form :

LLn(w) = αn+ < cn, w > + log

 J∑
j=1

exp−<bn,j ,w>−βj

 , (1.8)

where αn = − log pn, c
(k)
n = − log ak,n, k = 1, . . . ,K, vectors bn,j ∈ RK have

components b
(k)
n,j = − log ank,j , k = 1, . . . ,K, and βj = − logP (Cj). The �rst

and second term of LLn are resp. constant and linear in w and then are both
convex. The third term is convex because of the log-convexity of exp(x) (see
for instance [Lange, 2004] for de�nition and property of log-convexity). The
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second term (regularization term) is more complicated : it is not convex for
p < 1 and its partial derivative are unbounded at the points with zero compo-
nents. This makes impossible to establish theoritical guarantees even for con-
vergence to a local solution. E�cient approaches have recently been proposed,
which exploit sparsity and stochastic algorithms [Bach and Moulines, 2013],
[Pilanci et al., 2015]. However, these approaches rely on convex optimization
criteria. In our case of a non convex optimization problem, the main available
approach is the simplest gradient method [Nesterov, 2004]. This criterion is
not convex but di�erentiable at each weight vector with partial derivative:

∂CRDN (w)

∂wγ
= −

N∑
n=1

{
log aγ,n −

∑J
j=1 pj log aγ,j

∏K
k=1 (ak,j)

wk∑J
j=1 pj

∏K
k=1 (ak,j)

wk

}
+ λ(logK − 1 +Bk) ∗ p ∗ wγp−1

(1.9)

The gradient∇CRDN (wt) is the vector of partial derivatives for γ = 1, . . . ,K.
To respect the constraint that w takes its values in [0, 1]K , we have been inter-
ested in projected gradient descent algorithm [Bertsekas, 1976] i.e. a gradient
descent algorithm for which, at each iteration, the obtained w vector is pro-
jected on [0, 1]K .
Several objectives have guided our choice for the algorithmic structure:

1. online algorithm: the algorithm structure is adapted to data stream pro-
cessing and it does not need the processing of the entire dataset;

2. anytime algorithm: the algorithm is interruptible and is able to return the
best optimization given a budgeted computational time.

Within a classical batch gradient descent algorithm, the weight vector is
updated at each iteration t according to the gradient computed on all the
instances. If the weight vector obtained at iteration t is denoted by wt, the
projected update at t+ 1 iteration is performed according to the equation:

wt+1 = P[0,1]K [wt − ηt∇CRDN (wt)] (1.10)

where the η step may, according to the variants, be a scalar constant or vary
across the iterations and/or vary according to the weight vector components.
We have chosen to compute η according to the Rprop method detailed later
in this section. The projection P[0,1]K on [0, 1]K just consists in bounding
obtained values in interval [0, 1]. This batch approach assumes that the entire
dataset is available to start the optimization.
In its stochastic version, the update is done using the gradient computed on
one single instance. The gradient descent may turn out to be chaotic if the
variance of the gradient from one instance to another one is high.
Aiming for an online approach, we have retained a variant mixing batch and
stochastic, namely mini-batch approach [Dekel et al., 2012] which consists in
directing the descent according to gradients computed on successive data
batches of length L. To be able to compare descent paths when the size of
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Inputs : D : data stream
N : historical depth to evaluate the criterion
L : batch size used for weights update with L << N

w0 : initial weight vector
η0 : initial step vector
Max : maximal number of iterations
Tol : tolerated number of successive degradations

Outputs: w∗ = argminCRD(w)

ttotal = performed iterations number
Initialization:

Iteration index : t = 0;
Number of successive criterion degradations : Ndeg = 0 ;
while (Criterion improvement or Ndeg < Tol) and t < Max do

Dt,L=t-th batch of size L
Dt,N=data historical of size N ending at the end of Dt,L

wt+1 = P[0,1]K
(
wt − ηt 1

L
∇CRDt,L (wt)

)
Compute ηt+1

Compute the criterion value on data historical of size N : CRDt,N (wt+1)

if CRDt,N (wt+1) < CRDt−1,N (wt) (i.e. criterion improvement) then
Best value storage: w∗ = wt+1

else
Increment the counter of successive degradations : Ndeg = Ndeg + 1

end

t = t+ 1;

end

Algorithm 1: Projected gradient descent with mini-batches (PGDMB)

mini-batches varies, we used a gradient standardized by the size of the mini-
batches. The projected gradient descent with mini-batches is summarized in
Algorithm 1.

The optimal value for step ηt has been the subject of several studies
leading to more or less costly algorithms. We turned to the Rprop method
[Riedmiller and Braun, 1993]: the step computation is speci�c for each vector
component i.e. η is a step vector of dimension K, and each vector component
is multiplied by a factor which is bigger, resp. smaller than 1, if the partial
derivative sign change, resp. doesn't change from one iteration to another.
As far as the computational complexity is concerned, each iteration needs a
criterion evaluation on a sample of size N that is to say a O(K ∗N) complex-
ity. The classical batch algorithm is obtained for L = N and the stochastic
one for L = 1.

As the criterion to be optimized is non convex, it often shows many local
minima. It is then common to start several gradient descents with distinct
random initializations (multi-start approach) hoping that one of these de-
scent paths converges to a lower minimum. In order to make the optimization
e�cient and not to waste computational time at the beginning of each de-
scent, it is also possible to modify the solution obtained after a given number
of iterations in order to get out of a potential local minimum. We propose
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Inputs : T : total maximal number of iterations
NeighSize: initial neighborhood size

Inputs : (PGDMB): D : data stream
N : historical depth to evaluate the criterion
L : batch size used for weights update
η0 : initial step vector
Max : maximal number of iterations for one PGDMB optimization
Tol: tolerated number of successive degradations

Outputs: w∗ = argminCRD(w)

Initialization :

Initial weight vector for the �rst projected gradient descent with mini-batches
(PGDMB) : w0

1 = {0.5}K ;
Initial optimal weight vector : w∗ = w0

1 ;
Initial iterations sum SumT = 0;
while SumT < T do

Compute (w∗
m, t

m
total) = PGDMB(D,N,L,w0

m, η0,Max,Tol)
SumT = SumT + tmtotal
if Improvement on w∗ then

Storage of w∗ = w∗
m

else
NeighSize = min(2 ∗NeighSize, 1)

end

w0
m+1 = P[0,1]K (w∗

m +Random([−NeighSize,NeighSize]))
end

Algorithm 2: Projected gradient descent with variable neighbor search
(PGDMB-VNS)

to use a metaheuristic so that the current solution is regularly randomized
within a neighborhood of variable size. This randomization is inspired from
the Variable Neighborhood Search [Hansen and Mladenovic, 2001]. Our ap-
proach denoted PGDMB-VNS is described in Algorithm 2. The projected
gradient descent with mini-batches is runned several times with di�erent ini-
tialization for the weight vector w. The initial weight vectors are generated
in a neighborhood of the current optimal weight vector. If the last projected
gradient descent improves the optimal weight vector, then the size of the
neighborhood is reduced. Otherwise it is increased. This neighborhood vari-
ation enables either to exploit promising areas or to explore new areas of the
weight vector space.
It can be noticed that, for a neighborhood that completely covers [0, 1]K ,
the PGDMB-VNS algorithm is equivalent to a multi-start algorithm with
random initializations. Besides, we stress that the random perturbations can
lead to a non-null component for a weight set to zero after a precedent run.
One variable can re-appear during the data stream reading.
The PGDMB-VNS algorithm is anytime in the sense that an estimation of
the criterion argmin is available at the end of the �rst gradient descent and
that it is improved afterwards according to the available budget and inter-
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ruptible at any time. Its entire complexity is O(T ∗ K ∗ N) where T is the
total number of budgeted iterations.

1.4 Experiments

The purpose of the �rst experiments is to evaluate the optimization quality
obtained with PGDMB-VNS according to the size L of the mini-batches and
to the total number of iterations T . To study the intrinsic quality regardless of
the associated classi�er predictive performance, we have set the λ weight value
to 0, which means that we directly optimize the non regularized likelihood.
The second part of the experiments deals with predictive performance of the
classi�er obtained by optimization of regularized criterion (λ 6= 0).
For the whole experiments, the parameters for PGDMB algorithm are set to
the following values:

• w0 = {0.5}K
• η0 = {10−2}K with a multiplication by 0.5, resp. 1.2, in case of sign change,

resp. no sign change, between two succesive gradients
• Max = 100 the iteration maximal number (i.e. the number of treated mini-

batches). We have checked that this threshold had never been reached for
the 36 tested datasets.

• Tol = 5 the number of authorized successive degradations

Improvement of the criterion is considered for a decreasing of at least ε = 10−4

with regard to the precedent criterion value. The weights smaller than 10−3

are set to 0.
When a VNS metaheuristic is applied, the initial neighborhood size is set to
1/16.

The whole experiments have been done in 10-fold-cross-validation on the
36 UCI datasets described in Table 1.1. According to the values of L and N ,
it can be necessary to use the instances in several mini-batches. In this case,
the datasets are randomly shu�ed between two mini-batches.
In the results, 'SNB' stands for the performance of a selective naïve Bayes
classi�er with model averaging [Boullé, 2007a].

1.4.1 Experiments on optimization quality

First of all, we have studied the PGDMB algorithm performance, that is to
say, the performance of the projected gradient descent algorithm according
to the mini-batch size denoted L, without using MS or VNS metaheuristic.
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Dataset Ni Nv Nc Dataset Ni Nv Nc

Abalone 4177 8 28 Mushroom 8416 22 2
Adult 48842 15 2 PenDigits 10992 16 10
Australian 690 14 2 Phoneme 2254 256 5
Breast 699 10 2 Pima 768 8 2
Bupa 345 6 2 Satimage 768 8 6
Crx 690 15 2 Segmentation 2310 19 7
Flag 194 29 8 Shuttle 58000 9 7
German 1000 24 2 SickEuthyroid 3163 25 2
Glass 214 10 6 Sonar 208 60 2
Heart 270 13 2 Soybean 376 35 19
Hepatitis 155 19 2 Spam 4307 57 2
Horsecolic 368 27 2 Thyroid 7200 21 3
Hypothyroid 3163 25 2 Tictactoe 958 9 2
Ionospehre 351 34 2 Vehicle 846 18 4
Iris 150 4 3 Waveform 5000 21 3
LED 1000 7 10 WaveformNoise 5000 40 3
LED17 10000 24 10 Wine 178 13 3
Letter 20000 16 26 Yeast 1484 9 10

Table 1.1 Description of the 36 UCI datasets: Ni=instances number, Nv=initial number
of variables, Nc=class number.
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We have chosen the compression rate as optimization quality indicator. It
measures the complement to 1 of the negative logarithm of the model like-
lihood normalized by the Shannon entropy. As noticed in Section 1.3, for
the "random" classi�er with only null weights, the negative logarithm of the
likelihood is equal to the Shannon entropy, which leads to a compression rate
equal to 0. The closer the rate is to 1, the higher is the model likelihood. For
model less competitive than the random model, compression rate is negative.
The value of the compression rate on train data is then a good indicator of
the optimization quality as the non regularized criterion is reduced to the
negative log-likelihood.
Figure 1.1 presents the train and test compression rate averaged on 36 UCI
datasets for various mini-batches sizes L = 100, 1000, N . In the last case, the
choice L = N corresponds to a batch algorithm. The train and test compres-
sion rates obtained with SNB classi�er [Boullé, 2007a] serve as a baseline. The
obtained results indicate that, the larger the mini-batches size is, the better
is the optimization quality. Moreover, the results obtained for L = 1000 and
L = N are very similar. The train compression rate is signi�cantly better for
batch mode than for L = 1000 for 8 of the 16 datasets with N > 1000.
Figure 1.2 presents as an example the serie of the criterion values obtained
during optimization according to the mini-batches size L = 100, 1000, N for
the Phoneme dataset. For all the 36 datasets, when the mini-batches size
decreases, the convergence is faster but more chaotic .

We have compared the optimization quality for the PGDMB algorithm
without and with metaheuristic. Two metaheuristics have been tested: multi-
start (PGDMB-MS) and variable neighborhood search (PGDMB-VNS).
To get computational complexity equivalent to that of the univariate MODL
pretreatment, that is to say O(K ∗N ∗ log (K ∗N)), we have �xed the total
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number of authorized iterations T proportional to log (K ∗N). More pre-
cisely, we have chosen T = log (K ∗N) ∗ 2OptiLevel where OptiLevel is an
integer which enables us to tune the desired optimization level.
For each of the two metaheuristics, we have studied the in�uence of the op-
timization level OptiLevel = 3, 4, 5. Since the obtained algorithm stores the
best solution each time it is encountered, the metaheuristic can only improve
the train compression rate. We have measured in a �rst step if the improve-
ment was signi�cant or not. For a MS metaheuristic, the train compression
rate is signi�cantly improved for resp. 7, 16, 18 of the 36 datasets with an op-
timization level equal resp. to 3, 4, 5. For a VNS metaheuristic, the train com-
pression rate is signi�cantly improved for resp. 18, 19, 23 of the 36 datasets
with an optimization level equal resp. to 3, 4, 5. The VNS metaheuristic seems
then better than the MS metaheuristic: the guided exploration within a vari-
able sized neighborhood from the best minimum encountered enables a more
fruitful exploration than a purely random exploration.
Figure 1.3 illustrates this iterations "waste" phenomenon with multi-start
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Fig. 1.3 Criterion convergence paths according to the metaheuristic used for the Phoneme
dataset and an optimization level equal to 5.

at the beginning of each start.
Experiments presented in this section have illustrated the e�ect of the

mini-batches size on the optimization quality. They have also illustrated that
the higher the size, the better the optimization quality, and that the VNS
metaheuristic works better than the MS metaheuristic. For the rest of the
experiments, we then retain a PGDMB-VNS algorithm with mini-batches
size �xed to L = 1000 and an optimization level set to OptiLevel = 5.
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1.4.2 Regularized classi�er performance

We present the classi�er performance according to the setting of the reg-
ularization weight λ and to the p exponent of the regularization function
|wk|p. Three values have been tested for λ, 0.01, 0.1, 0.5 and three values
for p, 0.5, 1, 2. The AUC performance for the nine regularized classi�ers are
presented in Figure 1.4. The performance of the non-regularized classi�er ob-
tained with λ = 0 and of the SNB classi�er have been added as a baseline.
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Fig. 1.4 Train and test AUC averaged for 36 UCI datasets according to the weight and
the type of regularization.

For the highest regularization weight, λ = 0.5 (in purple in the Figure),
the AUC performance are deteriorated with regards to the performance ob-
tained without regularization (red circles in the Figure) whatever the p value.
For the other weight values λ = 0.01 and λ = 0.1, the performance are sim-
ilar for all p values and slightly greater or equal on average to those of the
non-regularized classi�er. These two regularization weights lead to statistical
performance equivalent to those of non regularized classi�er.

Figure 1.5 presents a study on the sparsity of the obtained classi�ers. In
this Figure, the number of kept variables and their weights sum are presented
according to the weight and type of regularization. First, it shows that the
smaller p, the smaller the non-null weights number. The quadratic regular-
ization (p = 2) leads to non sparse classi�ers. Among the regularization with
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Fig. 1.5 Kept variable number and weight sum averaged for 36 UCI datasets according
to the weight and the type of regularization
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absolute value (p = 1) and the squared root one (p = 0.5), the second one
enables the most important reduction of the number of kept variables.
As far as the weights sum is concerned, all the p regularization exponents
enable to reduce the weights sum on average. Moreover, given a λ weight, the
quadratic regularization has a less important impact on the weights sum re-
duction than the two other regularizations whose performance are very close
for this indicator.
Considering both aspects of statistical performance and classi�er sparsity, the
compromise p = 1 and λ = 0.1 seems the most favorable. Without deteriorat-
ing the performance of the non regularized classi�er, it enables a signi�cant
reduction of the number of selected variables. This reduction makes the clas-
si�er more interpretable and less complex to deploy.

1.5 Conclusion

We have proposed a sparse regularization of the log-likelihood for a weighted
naïve Bayes classi�er. We described and experimented a gradient descent
algorithm, which treats online mini-batches data and optimizes the weights
classi�er through a more or less extensive exploration according to the itera-
tions budget. The experiments have shown the interest of using mini-batches
and a metaheuristic for deeper optimization. Moreover, a parameterization
study of the regularization points out that the optimal choice was a reg-
ularization term with the L1 norm and a weight λ = 0.1. Experiments on
substantially larger datasets are necessary to evaluate the performance of our
approach on real data streams and will be the subject of future work. Further-
more, we will also consider the possibility of solving our optimization problem
in two steps : a �rst convex optimization step using convex approximation of
the complete criterion and a second non convex optimization step that could
be solved by the method of Composite Minimization [Nesterov, 2013].
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