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Abstract—In this paper, we deal with the segmentation of
towns using call detail records. The data can be viewed as a di-
rected bipartite graph wherein the source nodes correspond to
the towns, origins of the calls, and the target nodes that are the
towns, destinations of the calls. A nonparametric method based
on a Bayesian Approach is proposed to determine the finest
segmentation of these two sets. Instead of directly clustering
the nodes, we propose here to make a coclustering on the edges
defined as bidimensionnal items described by two features : the
source and target nodes. Once the finest clustering is obtained,
the clusters are successively merged on the two sets until only
one cluster remains, in such a way that the loss of information
is minimal. The initial segmentation is optimally coarsened
in order to enable a hierarchical exploratory analysis of the
data. Thus, it is possible to get insights either nationalwide or
locally. A study of the telephone areas of Belgium by exploring
the coclustering structure at different grain levels demonstrates
the interest of the method.
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I. INTRODUCTION

Graph partitioning has long been studied in the opera-
tional research field. One of the oldest approaches is the
minimum-cut method, where the graph is divided into a
predetermined number of disjoint subsets, usually of approx-
imately the same size, chosen such that the number of edges
between the clusters of nodes is minimized.

With the recent availability of many network data, such
as world wide web, social networks, phone call networks,
science collaboration graphs [1], there is a renewed interest
for the graph partitioning problem, especially for the auto-
matic discovery of community structures in large networks.
Many approaches have been studied for the problem of graph
clustering, including hierarchical clustering, divisive clus-
tering, spectral methods, random walk [2]. To evaluate the
quality of a clustering regardless of the cluster number, the
modularity criterion proposed in [3] is now widely accepted
in the literature, and has even been treated as an objective
function in clustering algorithms [4]. The modularity is a
measure ranging from -1 to 1, being all the more high that
the clusters have more internal edges than the expected edges
number if the connections were made randomly, with the
same nodes degrees.

In this paper, we present a way of analyzing and sum-
marizing the structure of large graphs, based on piecewise
constant edge density estimation. The approach extends the

stochastic block modeling approach [5] in that the modeling
method is fully non-parametric with the number of clusters
as a free parameter, and exploits a statistical model selection
technique and scalable optimization algorithms. Data grid
models [6] are applied to graph data, where each edge is
considered as a statistical unit with two variables, the source
and target nodes. The objective is to find a correlation model
between the two variables, owing to a data grid model, which
in this case turns to be a coclustering of both the source and
target nodes of the graph. The cells resulting from the cross-
product of the two clusterings summarize the edge density
in the graph. The best correlation model is selected using the
MODL (Minimum Optimized Description Length) approach
[6], and optimized by the means of combinatorial heuristics
with super-linear time complexity.

Then, a post processing technic is introduced consisting
in merging successively the clusters in the least costly way,
from the finest clustering model down to one single cluster
containing all the towns. It appears that the cost of the
merge of two clusters is a weighted sum of Kullback-Leibler
divergences from the merged clusters to the created cluster
which can be interpreted as a dissimilarity measure between
the two clusters that have been merged. Thus, the post-
processing technique can be considered as an agglomerative
hierarchical clustering [7].

The rest of the paper is organized as follows. In Section 2,
we present the MODL approach for data grid models applied
to the edge density estimation in graphs and the postpro-
cessing enabling the exploratory analysis. Then in Section
3, experiments on Belgian call detail records illustrate the
property of the method. Finally, Section 4 concludes the
paper and introduces the future works.

II. THE SEGMENTATION

A. Graph clustering using MODL

Unlike making clustering on a simple graph like the
modularity-based method do, the graph we deal with is
directed, bipartite and with multiple edges. The source nodes
are the towns, origins of the call, the target nodes the towns,
destinations of the calls and the edges the calls. Figure 1
illustrates the different data representations.

The towns are grouped if the distributions of the calls
are similar. This means that instead of making groups of
towns that frequently call each other, the method brings
together the towns that call the same towns and in the same
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Figure 1: Representation of the tabular data displayed in
Fig.(c) as a simple weighted graph (Fig.(a)) and as a directed
bipartite multigraph (Fig.(b))

ratio. The objective of the method is to estimate the density
of the edges owing to a coclustering of the sources and
target nodes. Figure 2 illustrates such a coclustering with
two source clusters and two target clusters. In this example,
the probability of edges from Brussels or Liège to Brussels
or Namur is 50%.

Figure 2: Example of coclustering

Formally, a model M of edge density estimation is defined
by :

• the number of source and target clusters
• the partition of source (resp. target) nodes into source

(resp. target) clusters.
• the edges distribution on the coclusters defined as the

cross-products of the source and target clusters.
• for each source (resp. target) cluster, the edges

distribution on the node of the cluster.

The coarsest model is based on one single cluster of
towns, whereas the finest one exploits one cluster per town.
Coarse grained models tend to be reliable, whereas fine
grained are more informative. The issue is to find a trade-off
between the informativeness of the edge density estimation
and its reliability, on the basis of the granularity of the
coclustering. Applying a Bayesian model selection approach,
the best model M∗ is defined as being the most probable

given the data D, obtained by maximizing a criterion built on
prior terms P (M) which give priority to simple models, i.e.
with a low number of clusters, and on the likelihood which
favours the informative models, i.e. fine grained models :

M∗ = argmax
M

P (M |D) = argmax
M

(
P (M)P (D|M)

P (D)

)
⇒M∗ = argmin

M
(− logP (M)− logP (D|M))

The detailed criterion is left out for brevity. The full criterion
is described in [8]. As for the optimization algorithm,
we have used the optimization heuristics detailed in [9],
which have practical scaling properties, with O(m) space
complexity and O(m

√
m logm) time complexity, with m

the number of edges. The main heuristic is a greedy bottom-
up heuristic, which starts with a fine grained model, con-
siders all the merges between clusters and performs the
best merge if the criterion decreases after the merge. The
process is reiterated until no further merge decreases the
criterion. This heuristic is enhanced with post-optimization
steps (moves of towns across clusters), and embedded into
the variable neighborhood search (VNS) meta-heuristic [10],
which mainly benefits from multiple runs of the algorithm
with different random initial solutions. The optimization al-
gorithms summarized above have been extensively evaluated
in [9], using a large variety of artificial datasets, where the
true data distribution is known.

B. Merging the clusters

In case of large datasets, i.e. with a huge number of edges,
the edge density converges to the true edge distribution.
This means that, for each town, the distribution of the
calls is fine enough to be differentiated. Thus the method
yields one town per cluster, that is too fine for an easy
interpretation. To overcome this issue, a post-processing
technique is proposed. It consists in merging successivly the
clusters so as to worsen the least the criterion. By studying
in detail the variation of the criterion due to the merge,
it appears that the merge of two clusters is all the more
likely that the distributions of their in/outcoming calls are
similar. Figure 3 illustrates two towns very likely to be
merged because of their similar distributions. Technically,
this variation is a sum of Kullback-Leibler divergences from
the merged clusters to the resulting one, weighted by the
size of each of them. In brief, this process is equivalent
to making a hierarchical agglomerative classification, whose
dissimilarity measure is based on probability divergences.

III. EXPERIMENTS

Experiments have been conducted on call detail records
of the Belgian telecommunications company Mobistar ag-
gregated on 6 months. There are 217 millions calls between
589 towns. Another approach has been applied on the same
dataset in [11], which results in 17 clusters. Like in this study
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Figure 3: Similar distributions of the calls of two german-
speaking Belgian towns.

our clusters are geographically connected. However our
clustering results enable a multiscale exploratory analysis
of the Belgian telephone areas.

A. The Finest Clustering

The finest clustering highlights 588 groups over Belgium.
Hence, each cluster is made up of one town, except one
cluster that groups two towns together. Given the huge
number of calls (217 millions for 589 cities), the finest
clustering on this dataset has reliably approximated the true
distribution. This is shown on Figure 4, the clustering is all
the more fine that there are edges.

Figure 4: Number of clusters retrieved by the method for a
given subset of randomly selected edges

B. Two linguistic communities

In this experiment, the clusters have been merged suc-
cessivly until obtaining two clusters. This segmentation
in two groups highlights the two linguistic communities
of Belgium: Flanders and Wallonia. This reveals that the
distribution of the calls of a town is denser in the areas with
the same linguistic characteristics. The case of Brussels is
particular, because the majority of the inhabitants of the city
are french-speakers despite it is included into the Flemish
territories. That is why the region of Brussels has been
clustered into Wallonia.

Figure 5: Segmentation of Belgium into two clusters

C. Eleven clusters that do not match with the provinces
boundaries

There are eleven provinces in Belgium, five in Flanders
and five in Wallonia, the eleventh being the province of
Brussels-Capital. In order to compare the delimitation of
the telephone areas and the boundaries of the provinces, we
have studied the clustering with eleven clusters. The clusters
are displayed on a map in Figure 6.

For Antwerp, East and West Flanders, the clusters fit well
the provinces territories.

The provinces of Hainaut and Liège are splitted into
three clusters. For the first one, it can be explained by the
presence of some major cities in the same province (Mons,
La Louvière and Charleroi). For the second one, we can
notice the sphere of influence of Liège while the area east of
the city corresponds to the arrondissement of Verviers where
more than 25% of the inhabitants are German-speakers.

There are also clusters that straddles some provinces, like
the cluster grouping the arrondissement of Leuven and the
province of Limburg or the one grouping the province of
Luxembourg and a part of the provinces of Namur and Liège.
These telephone areas are consequently vast, that is why a
finer and local study would yield enough clusters to make a
relevant exploratory analysis.

The case of Brussels highlights the correlation between
the calls and the sphere of influence of the city including
a little part of the Flemish Brabant and almost all the
Walloon Brabant. This can be explained by the current
trend of expansion of the suburbs to a southern direction,
towards Walloon-Brabant, the inhabitants of Brussels being
attracted by more peaceful areas with the same linguistic
characteristics [12].

D. A local study of Brussels Region

Brussels is a particular city. The capital of Belgium is
very cosmopolitan. In spite of the predominance of the
french-speaking community, it is included into the Flemish
territories. A study of the calls from the towns of the
province of Brussels-Capital to all the Belgian towns allows
the segmentation of Brussels and its suburb according to the



Figure 6: Segmentation of Belgium into eleven clusters

calls the users made all over Belgium. Merging until three
clusters (over 19 towns) highlights interesting groups. The
first group that is colored in pink in Figure 7 is located on
the West side of the downtown and globally corresponds
to the disadvantaged neighborhoods of Brussels while the
green group highlights the privileged south-east quadrant of
Brussels [12]. As for the two towns colored in Orange, Uccle
and Ixelles, the higher education institutions are relativly
concentrated there.

Figure 7: Segmentation of Brussels-Capital into three clus-
ters

IV. CONCLUSION

In this paper, we have focused on graph clustering applied
to a telephone dataset. The method allows the discovery
of structures in graphs. By clustering the source and target
nodes while selecting the best model according to a Bayesian
approach, the method behaves as a nonparametric estimator
of the edge density. In case of large graphs, the best
model tends to be too fine grained for an easy interpreta-
tion. To overcome this issue, a post-processing technique

is proposed. This technique aims at merging successivly
the clusters until obtaining a simplified clustering while
worsening the least the model.

Experimentations on a Belgian dataset show the variety
of the possible analysis. The finest study yields almost
one town per cluster. In order to make a global analysis,
the model is coarsened by merging the clusters. With two
clusters, the linguistic communities are well segmented
while the province boundaries do not match with the clusters
delimitations when the clusters are merged until eleven
groups. Local groupings based on the call made all over
Belgium are also possible and illustrated by the example of
Brussels and its suburbs.

Because the method is based on a density estimation, the
future works will be extended to the dynamic graphs by
adding a third temporal variable. This would enable a study
of the temporal evolution of social networks and yield the
optimal discretization into time slots.
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[8] M. Boullé, “Nonparametric edge density estimation in large
graphs,” Orange Labs, Tech. Rep., 2011.

[9] ——, Data grid models for preparation and modeling in
supervised learning. Microtome, 2010.

[10] P. Hansen and N. Mladenovic, “Variable neighborhood
search: principles and applications,” European Journal of
Operational Research, vol. 130, pp. 449–467, 2001.

[11] V. D. Blondel, G. Krings, and I. Thomas, “Regions and
borders of mobile telephony in belgium and in the brussels
metropolitan zone,” the e-journal for academic research on
Brussels, 2010.

[12] C. Kesteloot, C. Vandermotten, and B. Ippersiel, “Dynamic
analysis of troubled neighbourhoods in the belgian urban
regions,” 2007.


