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Abstract. We suggest a simple yet effective and parameter-free fea-
ture construction process for time series classification. Our process is
decomposed in three steps: (i) we transform original data into several
simple representations; (ii) on each representation, we apply a coclus-
tering method; (iii) we use coclustering results to build new features
for time series. It results in a new transactional (i.e. object-attribute
oriented) data set, made of time series identifiers described by features
related to the various generated representations. We show that a Selec-
tive Naive Bayes classifier on this new data set is highly competitive
when compared with state-of-the-art times series classification methods
while highlighting interpretable and class relevant patterns.

1 Introduction

Time series classification (TSC) has been intensively studied in the past years.
The goal is to predict the class of an object (a time series or a curve) τi =
〈(t1, x1), (t2, x2), . . . , (tmi , xmi)〉 (where xk, (k = 1..mi) is the value of the series
at time tk), given a set of labeled training time series. TSC problems differ from
traditional classification problems since there is a time dependence between the
variables ; in other terms, the order of the variables is crucial in learning an accu-
rate predictive model. The increasing interest in TSC is certainly due to the wide
variety of applications: from e.g., medical diagnosis (like classification of patient
electrocardiograms) to the maintenance of industrial machinery. Other domains,
where data might be time series, are also concerned: finance, meteorology, signal
processing, computer network traffic, . . . The diversity of applications has given
rise to numerous approaches (see Section 2 for detailed related work). However,
most efforts of the community have been devoted to the following three-step
learning process: (i) choosing a new data representation, (ii) choosing a sim-
ilarity measure (or a distance) to compare two time series and (iii) using the
Nearest Neighbor (NN) algorithm as classifier on the chosen representation, using
the chosen measure. Ding et al. [10] offer a survey of the various data representa-
tions and distances found in the literature and an extensive experimental study
using the NN classifier. They conclude that NN classifier coupled with Euclidean
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distance (ED) or Dynamic Time Warping (DTW) show the highest predictive
performance for TSC problems using the original time domain. Recently, Bag-
nall et al. [1] experimentally show that the performance of classifiers significantly
increases when changing data representation (compared with original temporal
domain) ; thus, for a given classifier, there is a high variance of performance
depending on the data transformation at use. To alleviate this problem, an en-
semble method tsc-ensemble [1] based on three data representations (plus the
original data) and NN algorithm is suggested. The experimental results demon-
strate the importance of representations in TSC problems and show that a simple
ensemble method based on several data representations provides highly compet-
itive predictive performance. However, with the good performance of NN-based
approaches also come the drawbacks of lazy learners: i.e., there is no proper
training phase, therefore the training set has to be entirely stored and all the
computation time is postponed until deployment phase; these weaknesses do not
meet the requirements of deployment in resource-limited and/or real-time appli-
cations. Another weakness of the NN approaches is the lack of interpretability;
indeed NN only indicates the nearest series w.r.t. the used similarity measure.

The method we suggest takes the pros and leaves the cons of the methods
listed above: we come back to the eager1 paradigm, benefit from the combina-
tion of multiple representations, build and select valuable features from multiple
representations. More precisely, in this paper, we suggest a parameter-free pro-
cess for constructing valuable features over multiple representations for TSC
problems. Our contribution is thus essentially methodological. The next section
discuss further related work to give a wider view of existing solutions for TSC
problems. Section 3 motivates and describes the three steps of our unsupervised
process: (i) transformation of original data into several new data representa-
tions; (ii) coclustering on various data representations ; (iii) the exploitation of
coclustering results for the construction of new features for the data. The out-
put of the process is then a traditional data set (i.e. labeled objects described by
attributes) ready for supervised feature selection and classification. We report
the experimental validation of our approach in section 4 before concluding.

2 Related work

In TSC problems, dtw-nn is recognized by the community as a hard-to-beat
baseline and it is confirmed by our experiments (see Section 4). However, there
exist alternative approaches: besides the numerous similarity measures coupled
with Nearest Neighbor algorithm [10], very recent novel metric has been proposed
[25] as well as fusion of distance measures [7] and NN ensembles over multiple
representations [1]. Concerning the intra-class variance, to deal with the lack of
objects that cover sub-class pattern, Grabocka et al. [13] suggest to create virtual
transformed objects for the training set; it results in a significant improvement
of SVM predictive performance.

1 In contrast to lazy learning, eager learning has an explicit training phase and gen-
erally deploys faster.
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For the sake of interpretability, an extension of decision tree has been pro-
posed recently[15]. On the other hand, feature-based approaches have also been
intensively studied. Feature-based approaches for TSC aim at extracting class-
relevant characteristics of series so that a conventional classifier can used. A
wide variety of features has been studied: e.g., global, trends [16], symbolic, in-
tervals, distance-based [9], features coming from spectral transforms [20, 32] or
a combination of several types of features [11].

Shapelet-based approaches [12, 30], a subtopic of feature-based approaches,
have drawn much attention in recent years. Shapelets are time series subse-
quences that are representative of a class. First approaches have embedded ex-
tracted shapelets in a decision tree [12, 30, 31], others in a simple rule-based clas-
sifier [29], while very recently, Lines et al. [19] have designed a shapelet-based
transform.

Our approach generates similarity-based features and histogram features over
multiple representations (see next section); the former allows us to reach predic-
tive performance comparable to the best similarity-based NN classifiers, with the
latter we gain some insight in the data. The closest works are from the inspiring
works of Bagnall et al. [1] who establish competitive predictive performance by
combining multiple representations in an ensemble classifier.

3 Feature construction process

Notations. In TSC problems, we define a time serie as a pair (τi, yi) where τi
is a set of ordered observations τi = 〈(t1, x1), (t2, x2), . . . , (tmi

, xmi
)〉 of length

mi and yi a class value. A time series data set is defined as a set of pairs
D = {(τ1, y1), . . . , (τn, yn)}, where each time series may have a different number
of observations (i.e. with different length). Notice that the time series of a data
set may also have different values for tk, (k = 1..mi). The goal is to learn a
classifier from D to predict the class of new incoming time series τn+1, τn+2, . . .
To achieve this goal, we suggest the feature construction process summarized as
follows:

1. We transform original data into multiple data representations.
2. We process a coclustering technique on each representation.
3. We build a set of features from each coclustering result and obtain a new

data set gathering the various sets of features.

The new data set is thus object-attribute oriented and ready for supervised
classification phase. Since our main contribution is methodological, we will take
some time to motivate each step of the process, and when necessary, to make
the paper self-contained, we will recall the main principles of the tools used in
each step.

3.1 Transformations & Representations

Numerous data transformation methods for time series has been suggested in the
literature: e.g., polynomial, symbolic, spectral or wavelet transformations, (see
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[18, 10] for well-structured surveys on experienced data representations). The un-
derlying idea of using data transformation is that transformed data might contain
class-characteristic pattern that are easily detectable (i.e. patterns unreachable
in the original time domain). The following example illustrates and confirms the
relevance of using representations, and highlights simple interpretable features
that might arise from data representations.
Motivating example. Graphs from figure 1 confirm the relevance of changing
data representation: indeed, from original data (a) it is challenging to separate
the two classes (blue/red). It has been shown [1] that the accuracy of NN-based
classifiers on the original data is about 60%. On the other hand a simple trans-
formation, like double derivate (b) facilitate class discrimination. For example,
after computing the double derivate transformation, we see that curves with
some values above 6 (or below -6) are red whereas curves with most of its values
between -6 and 6 are blue. On this data example, a simple transformation and
two interpretable features are enough to characterize the two classes of curves.

(a) (b)

Fig. 1. ARSim 2-class data: original data versus double derivate transformation.

To illustrate and instantiate our process, we use the original representation and
we pick six representations among the numerous ones existing in the literature.
Derivatives : DV et DDV We use derivatives and double derivatives of orig-
inal time series (computed between time t et t − 1). These transformations
allow us to represent the local evolution (i.e., increasing/decreasing, accelera-
tion/deceleration) of the series.
Cumulative integrals : IV et IIV We also use simple and double cumulative
integrals of the series, computed using the trapeze method. These transforma-
tions allow us to represent the global (cumulated) evolution of the series.
Power Spectrum : PS. A time series can be decomposed in a linear combi-
nation of sines and cosines with various amplitudes and frequencies. This de-
composition is known as the Fourier transform. And, the Power Spectrum is
PS(τi) = 〈(f1, a1), . . . , (fmi

, ami
)〉, where fk represent the frequency domain

and ak the power of the signal (i.e. the sum of the Fourier coefficients squared).
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This transformation is commonly used in signal processing and plunges the orig-
inal series into the frequency domain.
Auto-correlation function : ACF The transformation by auto-correlation
(ACF) is : τiρ = 〈(t1, ρ1), . . . (tmi , ρmi)〉 where

ρk =

∑j=mi−k
j=1 (xj − x̄) · (xj+k − x̄)

m · s2

and where x̄ and s2 are the mean and variance of the original series. ACF
transformation describes the correlation between values of the signal at different
times and thus allow us to represent auto-correlation structures like repeating
patterns in the time series.

We do not pretend that the chosen representations are suitable for all TSC
problems; there are many other transformation techniques in the literature. De-
pending on the application, the domain expert remains the best to select po-
tentially suitable representations for the problem at hand. Let us just recall
that the time complexity for computing the chosen representations is at most
sub-quadratic w.r.t. the number of points.

Thus, for a given time series data set Dorig, we build six new data repre-
sentations: DDV , DDDV , DIV , DIIV , DPS and DACF depending on the trans-
formation used. In the following, for the sake of generality, an object from one
of these representations will be called “curve” instead of time series since DPS

does not use the time domain.

3.2 Coclustering

In classification problems (also in TSC), there might exist intra-class variance,
i.e. the variations between objects of the same class might be numerous and of
various aspects. Using clustering as a pre-processing step to supervised classifi-
cation is not new and is a solution to deal with intra-class variance. The idea is
to pre-process the data set by grouping together similar objects and to highlight
local patterns that might be class-discriminant: e.g., Vilalta et al. [26] suggest a
pre-processing step by supervised (per-class) clustering using Expectation Maxi-
mization to enhance the predictive performance of Naive Bayes classifier. In order
to be able to derive interesting features, we will use an unsupervised coclustering
technique as described in the following.

A curve can be seen as a set of points (X,Y ), described by their abscissa and
ordinate values. A set of curves is then also a set of points (Cid, X, Y ) where
Cid is the curve identifier. This tridimensional representation (one categorical
variable and two numerical variables) of a curve data set is needed to apply
coclustering methods. Indeed, the goal is to partition the categorical variable
and to discretize the numerical variables in order to obtain clusters of curves
and intervals for X and Y . The result is a tridimensional grid whose cells are
defined by a group of curves, an interval for X and an interval for Y .
For that purpose, we use the coclustering method khc [6] (Khiops Coclustering).
Originally designed for clustering functional data [23], it is also suitable for the
particular case of curve data as defined above and it is directly applicable for our
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pre-processing step. khc method is based on a piecewise constant non-parametric
density estimation and instantiates the generic modl approach [4] (Minimum
Optimized Description Length) – which is similar to a Bayesian Maximum A
Posteriori (MAP) approach. The optimal model M , i.e. the optimal grid, is
obtained by optimization of a Bayesian criterion, called cost. The cost criterion
bets on a trade-off between the accuracy and the robustness of the model and is
defined as follows:

cost(M) = − log(p(M | D)︸ ︷︷ ︸
posterior

) = − log(p(M)︸ ︷︷ ︸
prior

× p(D |M)︸ ︷︷ ︸
likelihood

)

Using a hierarchical prior (on the parameters of a data grid model) that is
uniform at each stage of the hierarchy, we obtain an analytic expression for the
cost criterion:

cost(M) = log n+ 2 logN + logB(n, kC) (1)

+ log

(
N + k − 1

k − 1

)
+

kC∑
iC=1

log

(
NiC + niC − 1

niC − 1

)
(2)

+ logN !−
kC∑
iC=1

kX∑
jX=1

kY∑
jY =1

logNiCjXjY ! (3)

+

kC∑
iC=1

logNiC !−
n∑
i=1

logNi! +

kX∑
jX=1

logNjX ! +

kY∑
jY =1

logNjY ! (4)

where n is the number of curves, N the number of points, kC (resp. kX , kY ) is
the number of clusters of curves (resp. the number of intervals for X and Y ),
k the number of cells of the data grid, niC the number of curves in cluster iC ,
Ni the number of points for curve i and NiC (resp. NjX , NjY , NiCjXjY ) is the
cumulated number of points for curves of cluster iC (resp. for interval jX of X,
interval jY of Y , for cell (iC , jX , jY ) of the data grid. Notice that B(n, kC) is the
number of divisions of n elements into k subsets. The two first lines stand for the
prior and the two last lines relates to the likelihood of the model. Intuitively, low
cost means high probability (p(M | D)) that the model M arises from the data
D. From an information theory point of view, according to [24], the negative
logarithms of probabilities may be interpreted as code length. Thus, the cost
criterion may also be interpreted as the code length of the grid model plus the
code length of data D given the model M , according to the Minimum Description
Length principle (mdl [14]). Here, low cost means high compression of the data
using the model M .

The cost criterion is optimized using a greedy bottom-up strategy, (i) start-
ing with the finest grained model, (ii) considering all merges between adjacent
clusters or intervals, for the curve and dimension variables, and (iii) performs
the best merge if the criterion decreases after the merge. The process loops until
no further merge improves the criterion. The obtained grid constitutes a non-
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parametric estimator of the joint density of the curves and the dimensions of
points.

khc is parameter-free, robust (avoids over-fitting), handles large curve data
sets with several millions of data points and its time complexity isΘ(N

√
N logN)

(sub-quadratic) where N is the number of data points: thus, khc meets our prob-
lem needs (for full details, see [6]).

An example of visualization of coclustering results. The figure 2 shows an
example of visualization of two clusters of curves of the optimal grid obtained on
ARSim data set (in DDV representation). Figure (a) (resp. (b)) shows a cluster
whose curves are essentially from class c1 (blue in figure 1 of the motivation
example), (resp. c2, red in the same example). The optimal grid obtained with
khc is made up of 43 clusters of curves, 13 intervals for X and 12 intervals
for Y (i.e. DDV values). The joint density estimation (i.e. the optimal grid) is
much finer than needed by the classification problem. Indeed, the ARSim data
set is a 2-class classification problem and we found 43 groups of curves. This
finer granularity gives us the potential for finer class characterization if the data
representation is relevant for the task.

(a) (b)

Fig. 2. Representation of the frequency of the cells for two clusters of curves obtained
with khc on ARSim data set (in DDV representation, DDV on y-axis and time on
x-axis): (a) a cluster whose curves are mostly of class c1 ; (b) a cluster whose curves
are mostly of class c2. For a given cell, stronger color indicates high point frequency.

3.3 Feature construction

Feature construction for TSC problems [21] aims at capturing class-relevant
properties for describing time series. The generated features goes from simple
ones like minimum, maximum, mean, standard deviation of time series to more
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complex ones like e.g., coefficients of spectral decompositions [20, 32] or local pat-
tern extracted from temporal abstractions of the series [2]. The main advantage
of feature-based approaches is the final transactional (or vector) representation
of the data which is suitable for conventional classifiers like Naive Bayes or de-
cision trees. In our process, we generate features from coclustering results as
follows.

For each coclustering result obtained with khc on a data representation
(Dorig, DDV , DDDV , DIV , DIIV , DPS , DACF ), we create a set of new features:
Forig, FDV , FDDV , FIV , FIIV , FPS , FACF . The new features are the descrip-
tive attributes of the new data set whose objects are curves.

Let Drep be one of the seven representations described above. Let Mrep =
KHC(Drep) be the tridimensional optimal grid obtained by coclustering with
khc on Drep. We denote kC the number of clusters of Mrep and kY the number
of intervals of Mrep for dimension Y . We then create similarity-based features
and histogram features.

Similarity-based features
Considering the good performance of (dis)similarity-based approaches (e.g., ed-
nn and dtw-nn), we define a dissimilarity index based on the cost criterion.

Definition 1 (Dissimilarity index). The dissimilarity between a curve τi and
a cluster cj of the optimal grid Mrep is defined as:

d(τi, cj) = cost(Mrep|τi∪cj )− cost(Mrep)

i.e., the difference of cost between the optimal model Mrep and the model Mrep|τi∪cj
(the optimal grid in which we add the curve τi to the cluster of curves cj).

Intuitively, d measures the perturbation brought by the integration of a curve
into a cluster of curves of the optimal grid (i.e. according to the cost criterion
used for grid optimization). In terms of code length, if a curve τi is similar to the
curves of cluster cj , the total code length of the data is not much different from
the total code length of the data plus τi. Thus, small values of d(τi, cj) indicate
that τi is similar to the curves of cj whereas high values of d (d(τi, cj) � 0)
mean that τi does not look like the curves of cj .
According to the dissimilarity index d, we generate the following features:

– kC numerical features (one for each cluster cj of curves of Mrep). The value
for a curve τi is the difference d(τi, cj). Thus, for a given curve τi, these
features tell how τi is similar to the clusters of curves of the optimal grid
(according to d).

– One categorical feature indicating the index j of the cluster of curves that is
the closest to a curve τi according to the dissimilarity d defined above (i.e.,
arg minj d(τi, cj)).

Histogram features
Taking up the idea of interpretable features (see motivating example and fig.1),
we also generate the following features:
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– kY numerical features (one for each interval iY of Y from Mrep) whose value
for a curve τi is the number of points of τi in interval iY .

These histogram features quantify the presence of a curve in intervals of Y ob-
tained in the coclustering step.

For a given curve τi, we now have the following informations provided by the
new features (for each representation): (i) the dissimilarity values between τi
and all the clusters of curves, (ii) the index of the closest cluster of curves and
(iii) the number of points of τi in each interval of Y .

3.4 Supervised classification algorithm

We saw that our feature construction process may generate hundreds of new
features for each representation. The whole set of features Ftot for our new data
set may contain thousands of attributes. Therefore, the classifier at the end of
our process has to be capable of handling a large number of attributes but also
selecting the relevant attributes for the classification task. At this stage, we could
use conventional classifiers like decision trees or SVM. However, we choose the
Selective Naive Bayes classifier (snb) that is parameter-free, performs efficient
feature selection and outperforms classical Naive Bayes [5]. Notice that snb ex-
ploits pre-processing techniques that discretize numerical variables, group values
of categorical variables, weight and select features w.r.t. class-relevance by using
robust conditional density estimators and following the modl approach (see [3],
[4]). Thus, the generated features benefit from these pre-processing techniques
and preserve a potential of interpretability; we lead specific experiments in the
next section to support this claim. Moreover, snb is parameter-free, so is the
whole feature construction process. Its time complexity is Θ(KM log(KM)),
where M is the number of objects and K the number of features.

4 Experimental validation

The implementation of the classification process is based on existing tools (khc
for coclustering and snb for supervised classification2). Connections between the
tools are scripted using MATLAB. The whole process is named modl-tsc. The
experiments are led to discuss the following questions:

Q1 Is modl-tsc comparable with competitive contenders of the state-of-the-art
in terms of accuracy?

Q2 modl-tsc employs and combines several representations. Are they all use-
ful? Do they all bring the same impact?

Q3 What kind of data insight do we gain using the coclustering-based features?

2 khc and snb are both available at http://www.khiops.com
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4.1 Protocol

We experiment our process on 51 time series data sets: 42 data sets are from
ucr [17] and 9 new data sets introduced in [1]. A brief description of the data
is given in table 1. The benchmark data sets offer a wide variety in terms of
application domains, number of series, length of series and number of class values.
We lead experiments in a predefined train-test setting for each data set (see
[17]). We compare the predictive performance of our process, called modl-tsc,
with a baseline, two of the most effective alternative approaches and a recently
introduced interpretable classifier:

– ed-nn: the Nearest Neighbor classifier using the Euclidean distance. This
approach is considered as a baseline.

– dtw-nn: the Nearest Neighbor classifier using the elastic distance Dynamic
Time Warping, considered as hard to beat in the literature (see [28])

– tsc-ensemble [1] exploits multiple representations via an ensemble method
and the NN algorithm. Its performance is comparable to dtw-nn

– fast-shapelets [22] mines shapelets (i.e., class relevant time series subse-
quences) that might be embedded in e.g., a decision tree

4.2 Results

For fair comparisons, we have rerun the experiments using implementations of
ed-nn, dtw-nn, fast-shapelets and tsc-ensemble provided by E. Keogh, A.
Bagnall and their teams. Performance results in terms of accuracy are reported
in table 1. The best result for each data set is written in bold. The last column
indicates how many features per representation modl-tsc has generated.

Comparisons with state-of-the-art. Firstly, global results (mean accuracy,
number of wins and mean rank) show that modl-tsc is very competitive com-
pared to state-of-the-art methods. Proceeding the Friedman test [8] (at signif-
icance level α = 0.05) and the Nemenyi post-hoc test lead us to the critical
difference diagram in figure 3. Two groups of approaches emerge and we observe
that modl-tsc, tsc-ens and dtw-nn perform significantly better than ed-nn
and fast-shapelets; and there is no significant difference of performance in-
side each group. We also run Wilcoxon’s sign rank test for pairwise comparisons
(also with α = 0.05) which confirms this result. This global view of performance
results confirms that modl-tsc is very competitive compared to two of the most
effective contenders of the state-of-the-art and performs better than the baseline
ed-nn and the very recent fast-shapelets approach.

Secondly, we observe the remarkable performance of modl-tsc on ARSim,
ElectricDevices, FordA and OSULeaf data. On these data, we outperform dtw-
nn and tsc-ensemble: the difference of test accuracy is at least 10. Here, the
added-value of the data representations (i.e., the new features) is at work. tsc-
ensemble (exploiting only three representations) and dtw-nn (working in time
domain) obtain only poor accuracy results. Conversely the performance of modl-
tsc is very low on Coffee, DiatomSizeReduction, ECGFiveDays and OliveOil
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DTW-NN 
MODL-TSC 

FastShapelets 
ED-NN 

Fig. 3. Representation of difference of performance by critical difference diagram be-
tween modl-tsc, ed-nn, dtw-nn, tsc-ens and fast-shapelets.

data. The difference of test accuracy (about 10 compared with dtw-nn and
tsc-ensemble) is now to our disadvantage. We think that this poor perfor-
mance might due to one reason: the training set size of these data sets is very
small (less than 30 of curves) and it could be insufficient for either learning rele-
vant coclusters or learning a predictive model without over-fitting. Indeed, e.g.,
for OliveOil data, there are only 30 training curves, no cluster of curves is found
by khc whatever the representation and most generated features from intervals
of the Y -axis are considered irrelevant by the pre-processing step of snb classifier.

Added-value of the representations. In table 1, we also report accuracy
results of single-modl-tsc using only one representation. We observe that us-
ing a single representation provide poor average accuracy results. Almost always,
modl-tsc using several representations outperforms single-modl-tsc on Forig
(resp. FDV , FDDV , FIV , FIIV , FPS , FACF ). In some cases (e.g., ItalyPowerDe-
mand, MALLAT or MedicalImages), the good performance of modl-tsc can
be attributed to the combination of several representations. Indeed, the gap of
test accuracy between any single-modl-tsc and modl-tsc is about 10; thus
the combination of features coming from different views of the data improves
accuracy results. In other cases (e.g., ARSim or wafer), the good performance
seems to be due to only one (or at most two) representation while the other
representations are ignored. As an example, for ARSim data, the DDV repre-
sentation is the most relevant. khc obtains 43 clusters of curves and 12 intervals
for YDDV . Most of the clusters are almost pure (only one class of curves per
cluster). Moreover, as we saw in figure 2(a) and (b), the number of points in
intervals generated by khc above 4.16 and below -4.25 are class-discriminant
since curves of class 1 almost never have points in these regions.

These experiments recall the very importance of representations in TSC prob-
lems and particularly in our feature construction process. Even the simple repre-
sentations we chose to illustrate our process show good predictive performance.
Depending on the application, we may still hope some improvement in perfor-
mance if we could rely on expert domain knowledge to select relevant represen-
tations to use in our generic process.

4.3 Running time results

Among the three steps of our process, the coclustering step is the most demand-
ing in terms of computational time. Moreover, for the largest data sets of our
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benchmark, other steps (building representations and features and learning the
snb classifier) are negligible compared with the coclustering step. For a better
understanding of how much time khc costs, we report in figure 4 the cumula-
tive running time of khc on the seven representations for each data set w.r.t.
the number of points N in the training data set. We also draw the theoreti-
cal complexity announced for khc in sectionsec:process: αN

√
N logN , where

α = 3.10−5. We observe that for the most difficult data sets (ARSim, FordA and
FordB, from 1 million to 1.8 million data points), khc runs during one day for
each representation to reach the optimal grid.
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Fig. 4. Cumulative running time results for khc on the seven studied representations
and comparison with the announced theoretical complexity.

4.4 Interpretation: an example

If we consider the cumulative integral (IV) representation of TwoPatterns data,
the optimal grid obtained by khc is made of 224 clusters of curves, 11 intervals
for X and 9 intervals for YIV . According to the modl pre-processing techniques,
among all the attributes generated from all representations, the two most rele-
vant attributes are from the IV representation:

1. v1, the number of points in interval IYIV
=]−∞;−3.9082]

2. v2, the index of the closest cluster

In the supervised learning step, the discretization for v1 and the value group-
ing for v2 provide the following contingency tables represented as histograms (see
figure 5 (a) and (b)): We observe (figure 5(a)) that the number of points p of a
curve in interval IYIV

(i.e. the number of points with value less than -3.9082) is
class relevant. Indeed, in the learning phase, curves such that p ≤ 7 are of class
c1; when p > 29 (about 23% of the points of the curve), curves are mostly of
class c4 and when 7 < p ≤ 12 they are mostly of class c3. This type of feature is
similar to the ones in the motivating example and figure 1: for a given represen-
tation, some regions of y-axis (delimited by intervals) will be class-discriminant
and the number of points of an incoming curve in this interval will also be
class-discriminant.
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Fig. 5. Histogram representation of class repartition for discretization of variable v1
and value grouping of variable v2.

In figure 5(b), we firstly see that, for variable v2 (“index of the closest clus-
ter”), modl pre-processing by supervised value grouping provide 4 groups: G1,
(resp. G2, G3 et G4) made of 56, (resp. 53, 53 et 62) indexes of clusters that
are mostly of class c4 (resp. c3, c2, c1). The attribute v2 is then class-relevant.
Indeed, for example, if j is the index of cluster, that is the closest to a curve τi,
and belongs to G2 (i.e. j ∈ G2), then τi is considered very similar to curves of
class c3. Moreover, the variable “index of the closest cluster” is an indicator of
the relevance of the representation in our process for the current TSC problem.
In this example, attribute v2 alone, is enough to characterize 95% of the data,
therefore, IV data representation is very relevant for characterizing the classes of
TwoPatterns data. Conversely, for the original representation (DV ), the optimal
grid obtained with khc is made of 255 clusters of curves but modl pre-processing
indicates that the variable “index of the closest cluster” is not relevant to charac-
terize the classes of TwoPatterns; as a consequence, single-modl-tsc on Forig
shows bad test accuracy results.

5 Conclusion & Perspectives

We have suggested modl-tsc, a simple yet effective and generic feature con-
struction process for time series classification problems (TSC). Our process is
parameter-free, easy to use and the generated features offer a high potential of
interpretation. The three main steps of the process are: (i) transforming data
for generating multiple data representations; (ii) coclustering on each represen-
tation; (iii) constructing new features from coclustering results. The new data
set is made of objects (time series identifiers) and descriptive attributes from
the various representations. To predict the class of new incoming time series,
we use the Selective Naive Bayes classifier (snb). The time complexity of our
process is sub-quadratic, thus time-efficient. Experimental results show that the
performance of modl-tsc is highly competitive and comparable with two of
the most accurate approaches of the state-of-the-art (namely, dtw-nn and tsc-
ens). In addition, modl-tsc embraces the eager paradigm and unlike the lazy
approaches (ed-nn, dtw-nn and tsc-ens), our approach has a proper learn-
ing phase and can deploy fast enough for real-world applications. Moreover, a
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qualitative study has shown that the generated features give some insight in the
data representations: we are able to qualify the adequacy of a representation for
solving the TSC problem at hand and to identify class-discriminating regions of
values from data representations embedded in our process.

The results of this work are promising and also confirm the importance of
representations in TSC problems. Indeed, depending on the application domain,
a particular transformation will facilitate the discovery of class relevant patterns.
Moreover, the combination of multiple representations with modl-tsc leads to
highly competitive predictive performance. We have used only a few simple rep-
resentations in the time, frequency and correlation domains to demonstrate that
our feature construction approach is well-founded. The literature offers plenty
of relevant data representations (see [27] for a wide view). Notice also that de-
signing new representations is still a hot topic (see e.g., [19]). It gives a large
potential of improvement for modl-tsc on data sets and applications where we
are less performant than dtw-nn and tsc-ensemble since our methodology
allows us to use a large spectrum of representations.

Acknowledgments. We wish to thank Anthony Bagnall and his team from Uni-
versity of East-Anglia for providing tsc-ensemble prototype, Eamonn Keogh
and his team from University of California Riverside for providing prototypes of
dtw-nn and fast-shapelets.
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3. Boullé, M.: A bayes optimal approach for partitioning the values of categorical
attributes. Journal of Machine Learning Research 6, 1431–1452 (2005)
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