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Abstract. We suggest a new framework for classification rule mining
in quantitative data sets founded on Bayes theory – without univariate
preprocessing of attributes. We introduce a space of rule models and a
prior distribution defined on this model space. As a result, we obtain the
definition of a parameter-free criterion for classification rules. We show
that the new criterion identifies interesting classification rules while being
highly resilient to spurious patterns. We develop a new parameter-free al-
gorithm to mine locally optimal classification rules efficiently. The mined
rules are directly used as new features in a classification process based
on a selective naive Bayes classifier. The resulting classifier demonstrates
higher inductive performance than state-of-the-art rule-based classifiers.

1 Introduction

The popularity of association rules [1] is probably due to their simple and inter-
pretable form. That is why they received a lot of attention in the recent decades.
E.g., when considering Boolean datasets, an association rule is an expression of
the form π : X → Y where the body X and the consequent Y are subsets of
Boolean attributes. It can be interpreted as: “when attributes of X are observed,
then attributes of Y are often observed”. The strength of a rule pattern lies in
its inductive inference power: from now on, if we observe the attributes of X
then we may rely on observing attributes of Y . When Y is a class attribute,
we talk about classification rules (like X → c) which seems to be helpful for
classification tasks – indeed, “if an object is described by attributes of X then
it probably belongs to class c”. A lot of efforts have been devoted to this area in
the past years and have given rise to several rule-based classifiers (see pioneer-
ing work: “Classification Based on Associations” (cba [22]). Nowadays, there
exist numerous cba-like classifiers which process may be roughly summarized in
two steps: (i) mining a rule set w.r.t. an interestingness measure, (ii) building
a classifier with a selected subset of the mined rules (see [8] for a recent well-
structured survey). Another research stream exploits a rule induction scheme:
each rule is greedily extended using various heuristics (like e.g. information gain)
and the rule set is built using a sequential database covering strategy. Following
this framework, several rule-induction-based classification algorithms have been
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proposed; e.g. [10, 24, 32]. Rule mining and rule-based classification are still on-
going research topics. To motivate our approach, we highlight some weaknesses
of existing methods.
Motivation. Real-world data sets are made of quantitative attributes (i.e.

numerical and/or categorical). Usually, each numerical
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Fig. 1. 2-class xor data

attribute is discretized using a supervised univariate
method and each resulting interval is then mapped to
a Boolean attribute (see section 5 for further related
work about mining quantitative data sets). The simple
xor example (see figure 1) shows the limit of such pre-
processing. Indeed, it seems there is no valuable uni-
variate discretization for attribute X (resp. Y ), thus
both attributes might be pruned during preprocessing. If X and Y are individ-
ually non-informative, their combination could be class-discriminant: e.g., the
rule (X < xb)∧ (Y < yb)→ c2 is clearly an interesting pattern. Notice that uni-
variate preprocessing of a categorical attribute, like supervised value grouping,
is subject to the same drawback.
Another weakness of cba-like classifiers is parameter tuning. Most of the meth-
ods works with parameters: e.g., an interestingness measure threshold for the
rules to be mined (sometimes coupled with a frequency threshold), the number
of mined rules to use for building the final rule set for classification, etc. The
performance of cba-like classifiers strongly depends on parameter tuning. The
choice of parameters is thus crucial but not trivial – each data set may require
its own parameter settings. If tuning one parameter could be difficult, a common
end-user could be quickly drowned into the tuning of several parameters.

These drawbacks suggest (i), processing quantitative and categorical at-
tributes directly (on the fly) in the mining process in order to catch multivariate
correlations that are unreachable with univariate preprocessing and (ii) design-
ing an interestingness measure with no need for any wise threshold tuning and
a parameter-free method.

Contributions & organization. In this paper, we suggest a new quantita-
tive classification rule mining framework founded on a Bayesian approach. Our
method draws its inspiration from the modl approach (Minimum Optimized
Description Length [6]) whose main concepts are recalled in the next section. In
section 2, we instantiate the generic modl approach for the case of classification
rules; then, step by step, we build a Bayesian criterion which plays the role of an
interestingness measure (with no need for thresholding) for classification rules
and we discuss some of its fair properties. In section 3, we also suggest a new
efficient parameter-free mining algorithm for the extraction of locally optimal
classification rules. A classifier is then built following a simple and intuitive fea-
ture construction process based on the mined rules. The resulting classifier shows
competitive results when compared with state-of-the-art rule-based classifiers on
both real-world and large-scale challenge data sets – showing the added-value of
the method (see section 4). Further related work is discussed in section 5 before
concluding.
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2 Towards MODL rules

MODL principle. The modl approach is based on a Bayesian approach. Let
us consider the univariate supervised discretization task as an example. From
the modl point of view, the problem of discretizing a numerical attribute is
formulated as a model selection problem.

Firstly, a space M of discretization models M is defined. In order to choose
the “best” discretization model M , a Bayesian “Maximum A Posteriori” ap-
proach (map) is used: the probability p(M |D) is to be maximized over M (i.e.,
the posterior probability of a given discretization model M given the data D).
Using Bayes rule and considering that p(D) is constant in the current optimiza-
tion problem, it consists in maximizing the expression p(M) × p(D|M). The
prior p(M) and the conditional probability p(D|M) called the likelihood are
both computed with the parameters of a specific discretization which is uniquely
identified by the number of intervals, the bound of the intervals and the class
frequencies in each interval. Notice that the prior exploits the hierarchy of pa-
rameters and is uniform at each stage of the hierarchy. The evaluation criterion
is based on the negative logarithm of p(M | D) and is called the cost of the
model M : c(M) = − log(p(M) × p(D | M)). The optimal model M is then the
one with the least cost c (see original work [6] for explicit expression of p(M)
and p(D|M) and for the optimization algorithm). The generic modl approach
has also already been successfully applied to supervised value grouping [5] and
decision tree construction [28]. In each instantiation, the modl method promotes
a trade-off between (1) the fineness of the predictive information provided by
the model and (2) the robustness in order to obtain a good generalization of the
model. Next, modl approach is instantiated for the case of classification rules.
Basic notations and definitions. Let r = {T , I, C} be a labeled transactional
data set, where T = {t1, . . . , tN} is the set of objects, I = {x1, . . . , xm} is
a set of attributes (numerical or categorical) and dom(xj) the domain of an
attribute xj (1 ≤ j ≤ m) and C = {c1, . . . , cJ} is the set of J mutually exclusive
classes of a class attribute y. An object t is a vector t = 〈v1, . . . , vm, c〉 where
vj ∈ dom(xj) (1 ≤ j ≤ m) and c ∈ C. An item for a numerical attribute x is
an interval of the form x[lx, ux] where lx, ux ∈ dom(x) and lx ≤ ux. We say
that an object t ∈ T satisfies an interval item x[lx, ux] when lx ≤ t(x) ≤ ux.
For a categorical attribute, an item is a value group of the form x{v1x, . . . , vsx}
where vjx ∈ dom(x) (1 ≤ j ≤ s). We say that an object t ∈ T satisfies a value
group item x{v1x, . . . , vsx} when t(x) ∈ {v1x, . . . , vsx}. An itemset X is just a set
of items and an object t supports X if t satisfies all items of X. A classification
rule π on r is an expression of the form π : X → c where c is a class value and
X is an itemset. Notice that a categorical attribute involved in the rule body
is partitioned into two value groups: the body item (or group) and the outside
item; whereas a numerical attribute, due to the intrinsic order of its values, is
discretized into either two or three intervals: the body item (or interval) and the
outside item(s) (see example below).

Let us recall that, from a modl point of view, the problem of mining a
classification rule π is formulated as a model selection problem. To choose the
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best rule from the rule space we use a Bayesian approach: we look for maximizing
p(π|r). As explained in previous section, it consists in minimizing the cost of the
rule defined as:

c(π) = − log(p(π)× p(r | π))

In order to compute the prior p(π), we suggest another definition of classification
rule based on hierarchy of parameters that uniquely identifies a given rule:

Definition 1 (Standard Classification Rule Model). A modl rule π, also
called standard classification rule model ( scrm), is defined by:

– the constituent attributes of the rule body
– the group involved in the rule body, for each categorical attribute of the rule body
– the interval involved in the rule body, for each numerical attribute of the rule body
– the class distribution inside and outside of the body

Notice that scrm definition slightly differs from classical classification rule. The
last key point meets the concept of distribution rule [17]. The consequent of a
scrm is an empirical distribution over the classes as illustrated in the following
example:
Example of a SCRM. Let us consider the scrm π : (x1 ∈ {v1x1

, v3x1
, v4x1
}) ∧

(1.2 < x2 ≤ 3.1) ∧ (x4 ≥ 100)→ (pc1 = 0.9, pc2 = 0.1) where x1 is a categorical
attribute and x2, x4 are numerical attributes. The value group {v1x1

, v3x1
, v4x1
}

and the intervals ]1.2; 3.1] and [100; +∞[ are those items involved in the rule
body. The complementary part (i.e. the negation of their conjunction) constitutes
the outside part of the rule body. (pc1 = 0.9, pc2 = 0.1) is the empirical class
distribution for the objects covered by the rule body (inside part) and the class
distribution for the outside part of the body may be deduced easily.

Our working model space is thus the space of all scrm rules. To apply the
Bayesian approach, we first need to define a prior distribution on the scrm space;
and we will need the following notations.
Notations. Let r be a data set with N objects, m attributes (categorical or
numerical) and J classes. For a SCRM, π : X → (Pc1 , Pc2 , . . . , PcJ ) such that
|X| = k ≤ m, we will use the following notations:
– X = {x1, . . . , xk}: the set of k constituent attributes of the rule body (k ≤ m)

– Xcat ∪Xnum = X: the sets of categorical and numerical attributes of the rule body

– Vx = |dom(x)|: the number of values of a categorical attribute x

– Ix: the number of intervals (resp. groups) of a numerical (resp. categorical) attribute

x

– {i(vx)}vx∈dom(x): the indexes of groups to which vx are affected (one index per value,

either 1 or 2 for inside or outside of the rule body)

– {Ni(x).}1≤i≤Ix : the number of objects in interval i of numerical attribute x

– ix1 , . . . , ixk : the indexes of groups of categorical attributes (or intervals of numerical

attributes) involved in the rule body

– NX = Nix1
...ixk

: the number of objects in the body ix1 . . . ixk

– N¬X = N¬ix1
...ixk

: the number of objects outside of the body ix1 . . . ixk

– NXj = Nix1
...ixk

j : the number of objects of class j in the body ix1 . . . ixk

– N¬Xj = N¬ix1 ...ixk
j : the number of objects of class j outside of the body ix1 . . . ixk
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MODL hierarchical prior. We use the following distribution prior on scrm
models, called the modl hierarchical prior. Notice that a uniform distribution
is used at each stage1 of the parameters hierarchy of the scrm models:

– (i) the number of attributes in the rule body is uniformly distributed between 0
and m

– (ii) for a given number k of attributes, every set of k constituent attributes of the
rule body is equiprobable

– (iii) for a given categorical attribute in the body, the number of groups is neces-
sarily 2

– (iv) for a given numerical attribute in the body, the number of intervals is either
2 or 3 (with equiprobability)

– (v) for a given categorical (or numerical) attribute, for a given number of groups (or
intervals), every partition of the attribute into groups (or intervals) is equiprobable

– (vi) for a given categorical attribute, for a value group of this attribute, belonging
to the body or not are equiprobable

– (vii) for a given numerical attribute with 2 intervals, for an interval of this attribute,
belonging to the body or not are equiprobable. When there are 3 intervals, the body
interval is necessarily the middle one.

– (viii) every distribution of the class values is equiprobable, in and outside of the
body

– (ix) the distributions of class values in and outside of the body are independent

Thanks to the definition of the model space and its prior distribution, we can
now express the prior probabilities of the model and the probability of the data
given the model (i.e., p(π) and p(r | π)).

Prior probability. The prior probability p(π) of the rule model is:
p(π) = p(X)

×
∏

x∈Xcat

p(Ix)× p({i(vx)}|Ix)× p(ix|{i(vx)}, Ix)

×
∏

x∈Xnum

p(Ix)× p({Ni(x).}|Ix)× p(ix|{Ni(x).}, Ix)

× p({NXj}{N¬Xj} | NX , N¬X)

Firstly, we consider p(X) (the probability of having the attributes ofX in the rule
body). The first hypothesis of the hierarchical prior is the uniform distribution
of the number of constituent attributes between 0 and m. Furthermore, the
second hypothesis says that every set of k constituent attributes of the rule
body is equiprobable. The number of combinations

(
m
k

)
could be a natural way to

compute this prior; however, it is symmetric. Beyond m/2, adding new attributes
makes the selection more probable. Thus, adding irrelevant variables is favored,
provided that this has an insignificant impact on the likelihood of the model. As
we prefer simpler models, we suggest to use the number of combinations with
replacement

(
m+k−1

k

)
. Using the two first hypothesis, we have:

1 It does not mean that the hierarchical prior is a uniform prior over the rule space,
which would be equivalent to a maximum likelihood approach.
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p(X) =
1

m+ 1
· 1(

m+k−1
k

)
For each categorical attribute x, the number of partitions of Vx values into 2
groups is S(Vx, 2) (where S stands for Stirling number of the second kind).
Considering hypotheses (iii), (v), (vi), we have:

p(Ix) = 1 ; p({i(vx)}|Ix) =
1

S(Vx, 2)
; p(ix|{i(vx)}, Ix) =

1

2

For each numerical attribute x, the number of intervals is either 2 or 3. Com-
puting the number of partitions of the (ranked) values into intervals turns into
a combinatorial problem. Notice that, when Ix = 3 the interval involved in the
rule body is necessarily the second one; when Ix = 2, it is either the first or the
second with equiprobability. Considering hypotheses (iv), (v), (vii), we get:

p(Ix) =
1

2
; p({Ni.}|Ix) =

1(
N−1
Ix−1

) ; p(ix|{Ni.}, Ix) =
1

1 + 1{2}(Ix)

where 1{2} is the indicator function of set {2} such that 1{2}(a) = 1 if a = 2, 0
otherwise.

Using the hypotheses (viii) and (ix), computing the probabilities of distribu-
tions of the J classes inside and outside of the rule body turns into a multinomial
problem. Therefore, we have:

p({NXj} | NX , N¬X) =
1(

NX+J−1
J−1

) ; p({N¬Xj} | NX , N¬X) =
1(

N¬X+J−1
J−1

)
The likelihood. Now, focusing on the likelihood term p(r | π), the probability of
the data given the rule model is the probability of observing the data inside and
outside of the rule body (w.r.t. to NX and N¬X objects) given the multinomial
distribution defined for NX and N¬X . Thus, we have:

p(r | π) =
1
NX !∏J

j=1NXj !

· 1
N¬X !∏J

j=1N¬Xj !

Cost of a SCRM. We now have a complete and exact definition of the cost of
a scrm π:

c(π) = log(m+ 1) + log

(
m+ k − 1

k

)
(1)

+
∑

x∈Xcat

logS(Vx, 2) + log 2 (2)

+
∑

x∈Xnum

log 2 + log

(
N − 1

Ix − 1

)
+ log(1 + 1{2}(Ix)) (3)

+ log

(
NX + J − 1

J − 1

)
+ log

(
N¬X + J − 1

J − 1

)
(4)

+

logNX !−
J∑
j=1

logNXj !

+

logN¬X !−
J∑
j=1

logN¬Xj !

 (5)
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The cost of a scrm is the negative logarithm of probabilities which is no other
than a coding length according to Shannon [25]. Here, c(π) may be interpreted
as the ability of a scrm π to encode the classes given the attributes. Line (1)
stands for the choice of the number of attributes and the attributes involved
in the rule body. Line (2) is related to the choice of the groups and the values
involved in the rule body for categorical attributes; line (3) is for the choice
of the number of intervals, their bounds and the one involved in the rule body
for numerical attributes. Line (4) corresponds to the class distribution in and
outside of the rule body. Finally, line (5) stands for the likelihood.

Since the magnitude of the cost depends on the size of the data set (N and
m), we defined a normalized criterion, called level and which plays the role of
interestingness measure to compare two scrm.

Definition 2 (Level: interestingness of SCRM). The level of a scrm is:

level(π) = 1− c(π)

c(π∅)

where c(π∅) is the cost of the null model (i.e. default rule with empty body). In-
tuitively, c(π∅) is the coding length of the classes when no predictive information
is used from the attributes. The cost of the default rule π∅ is formally:

c(π∅) = log(m+ 1) + log

(
N + J − 1

J − 1

)
+

logN !−
J∑
j=1

logNj !


The level naturally draws the frontier between the interesting patterns and the
irrelevant ones. Indeed, rules π such that level(π) ≤ 0, are not more probable
than the default rule π∅; then using them to explain the data is more costly than
using π∅ – such rules are considered irrelevant. Rules such that 0 < level(π) ≤ 1
highlight the interesting patterns π. Indeed, rules with lowest cost (highest level)
are the most probable and show correlations between the rule body and the
class attribute. In terms of coding length, the level may also be interpreted as a
compression rate. Notice also that c(π) is smaller for lower k values (cf. line (1)),
i.e. rules with shorter bodies are more probable thus preferable – which meets
the consensus: “Simpler models are more probable and preferable”. This idea is
translated in the following proposition (the proof is almost direct):

Proposition 1. Given two scrm π and π′ resp. with bodies X and X ′, such that
X ⊆ X ′ and sharing the same contingency table (i.e., NX = N ′X , N¬X = N¬X′ ,
NXj = NX′j, N¬Xj = N¬X′j), then we have: c(π) < c(π′) and π is preferable.

Asymptotic behavior. The predominant term of the cost function is the
likelihood term (eq.(5)) that indicates how accurate the model is. The others
terms behave as regularization terms, penalizing complex models (e.g., with too
many attributes involved in the rule body) and preventing from over-fitting.
The following two theorems show that the regularization terms are negligi-
ble when the number of objects N of the problem is very high and that the
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cost function is linked with Shannon class-entropy [11] (due to space limita-
tions, full proofs are not given, but the key relies on the Stirling approximation:
log n! = n(log n− 1) +O(log n)).

Theorem 1. The cost of the default rule π∅ for a data set made of N objects
is asymptotically N times the Shannon class-entropy of the whole data set when
N →∞, i.e. H(y) = −

∑J
j=1 p(cj) log p(cj).

lim
N→∞

c(π∅)

N
= −

J∑
j=1

Nj
N

log
Nj
N

Theorem 2. The cost of a rule π for a data set made of N objects is asymp-
totically N times the Shannon conditional class-entropy when N → ∞, i.e.
H(y|x) = −

∑
x∈{X,¬X} p(x)

∑J
j=1 p(cj |x) log p(cj |x).

lim
N→∞

c(π)

N
=
NX
N

 J∑
j=1

−NXj
NX

log
NXj
NX

+
N¬X
N

 J∑
j=1

−N¬Xj
N¬X

log
N¬Xj
N¬X


The asymptotic equivalence between the coding length of the default rule π∅

and the class-entropy of the data confirms that “rules such that level ≤ 0 identify
patterns that are not statistically significant” and links the modl approach with
the notion of incompressibility of Kolmogorov [21] – which defines randomness
as the impossibility of compressing the data shorter than its raw form.
The asymptotic behavior of the cost function (for a given rule π) confirms that
high level values highlight the most probable rules that characterize classes, since
high level value means high class-entropy ratio between π and the default rule.
In terms of compression, rules with level > 0 correspond to a coding with better
compression rate than the default rule; thus, they identify patterns that do not
arise from randomness. Here, we meet the adversarial notions of spurious and
significant patterns as mentioned and studied in [31]. Conjecture 1 illustrates
this idea and we bring some empirical proof to support it in Section 4:

Conjecture 1. Given a classification problem, for a random distribution of the
class values, there exist no scrm with level > 0 (asymptotically according to N ,
almost surely).

Problem formulation. Given the modl method framework instantiated for
classification rules, an ambitious problem formulation would have been: “Min-
ing the whole set of scrm with level > 0” (or the set of K-top level scrm).
However, the model space is huge, considering all possibilities of combinations
of attributes, attribute discretization and value grouping: the complexity of the
problem is O((2Vc)mc(N2)mn) where mc is the number of categorical attributes
with Vc values and mn the number of numerical attributes. Contrary to some
standard approaches for classification rule mining, exhaustive extraction is not
an option. Our objective is to sample the posterior distribution of rules using a
randomization strategy, starting from rules (randomly) initialized according to
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their prior. Therefore, we opt for a simpler formulation of the problem: “Mining
a set of locally optimal scrm with level > 0”. In the following, we describe our
mining algorithm and its sub-routines for answering the problem.

3 MODL rule mining

This section describes our strategy and algorithm for mining a set of locally
optimal scrm (see algorithm 1) and how we use it in a classification system.

Algorithm 1: macatia: The modl-rule miner
Input : r = {T , I, C} a labeled data set
Output: Γ a set of locally optimal scrm

1 Γ ← ∅;
2 while ¬ StoppingCondition do
3 t←chooseRandomObject(T );
4 X ←chooseRandomAttributes(I);
5 π ←initRandomBodyRule(X,t);
6 currentLevel ← computeRuleLevel(π,r);
7 repeat
8 minLevel ← currentLevel;
9 randomizeOrder(X);

10 for x ∈ X do
11 OptimizeAttribute(t, x,X);

12 deleteNonInformativeAttributes(X);
13 currentLevel ← computeRuleLevel(π,r);

14 until noMoreLevelImprovement;
15 if currentLevel > 0 then
16 Γ ← Γ ∪ {π};

17 return Γ

The MODL rule miner. We adopt an instance-based randomized strategy
for mining rules in given allowed time. The stopping condition (l.2) is the time
that the end-user grants to the mining process. At each iteration of the main
loop (l.2-16), a locally optimal scrm is built – when time is up, the process
ends and the current rule set is output. Firstly (l.3-5), a random object t and
a random set of k attributes are chosen from the data set; then, a scrm π
is randomly initialized such that the body of π is made of a random itemset
based on attributes X and t supports the rule body (to simplify notations, X
and the body itemset based on X own the same notation). The inner loop (l.7-
14) optimizes the current rule while preserving the constraint “t supports body
itemsetX”. We are looking for level improvement: a loop of optimization consists
in randomizing the order of the body attributes, optimizing each item (attribute)
sequentially – the intervals or groups of an attribute are optimized while the other
body attributes are fixed (see specific instantiations of OptimizeAttribute
in sub-routines algorithms 2 and 3), then removing non-informative attributes
from the rule body (i.e., attributes with only one interval or only one value
group). Optimization phase ends when there is no more improvement. Finally,
the optimized rule is added to the rule set if its level is positive.
Attribute optimization. Let us remind that, while optimizing a rule, each
rule attribute (item) is optimized sequentially while the others are fixed.
For a numerical attribute x (see algorithm 2), we are looking for the best bounds
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for its body interval containing t(x) (i.e. the bounds that provide the best level
value for the current scrm while other attributes are fixed). If there are two
intervals (l.3-4), only one bound is to be set and the best one is chosen among
all the possible ones. When there are three intervals (l.1-2), the lower bound
and the upper bound of the body interval are to be set. Each bound is set
sequentially and in random order (again, the best one is chosen while the other
is fixed). Since an interval might be empty at the end of this procedure, we
remove empty intervals (l.5) – the current attribute might be deleted from the
rule body by the main algorithm if only one interval is remaining.

Algorithm 2: OptimizeAttribute: Numerical attribute optimization
Input : r = {T , I, C} a transactional labeled data set, π : X → (pcJ , . . . , pcJ ) a scrm

covering an object t ∈ T , x ∈ X a numerical attribute of the rule body
Output: x an optimized numerical attribute

1 if x.IntervalsNumber == 3 then
2 (x.LB,x.UB) ← chooseBestBounds(t, x, π, r);

3 if x.IntervalsNumber == 2 then
4 x.B ← chooseBestBound(t, x, π, r);

5 cleanEmptyIntervals();
6 return x

Algorithm 3: OptimizeAttribute: Categorical attribute optimization
Input : r = {T , I, C} a transactional labeled data set, π : X → (pcJ , . . . , pcJ ) a scrm

covering an object t ∈ T , x ∈ X a categorical attribute of the rule body
Output: x an optimized categorical attribute

1 minLevel ← computeRuleLevel(π,r);
2 currentLevel ← computeRuleLevel(π,r);
3 Shuffle(x.allValues);
4 for value ∈ {x.allValues \{t(x)}} do
5 changeGroup(value);
6 currentLevel ← computeRuleLevel(π,r);
7 if currentLevel > minLevel then
8 minLevel ← currentLevel;

9 else
10 ChangeGroup(value);

11 cleanEmptyGroups();
12 return x

For a categorical attribute x (see algorithm 3), we are looking for a partition
of the value set into two value groups (i.e. the value groups that provide the best
level value for the current scrm while other attributes are fixed). First (l.3), the
values of the current categorical attribute are shuffled. Then (l.5-10), we try to
transfer each value (except for t(x) staying in the body group) from its origin
group to the other: the transfer is performed if the level is improved. Once again
we clean possible empty value group at the end of the procedure (necessarily the
out-body group) – the current attribute might be deleted from the rule body by
the main algorithm if only one group is remaining.
About local optimality. Our modl rule miner (and its sub-routines) bet on a
trade-off between optimality and efficiency. In the main algorithm, the strategy
of optimizing an attribute while the other are fixed leads us to a local optimum
(so do the strategies of optimizing interval and value group items). This trade-
off allows us to mine one rule in time complexity O(kN logN) using efficient
implementation structures and algorithms. Due to space limitation, we cannot
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give details about the implementation.
About mining with diversity. Randomization is present at each stage of our
algorithm. Notice that the randomization is processed according the defined and
motivated hierarchical prior (except for object choice). As said above, we are
not looking for an exhaustive extraction but we want to sample the posterior
distribution of scrm rules. This randomization facet of our method (plus the
optimization phase) allows us mine interesting rules (level > 0) with diversity.
Classification system. We adopt a simple and intuitive feature construction
process to build a classification system based on a set of locally optimal scrm.
For each mined rule π, a new Boolean attribute (feature) is created: the value of
this new feature for a training object t of the data set r is (1) true if t supports
the body of π, (0) false otherwise. This feature construction process is certainly
the most straightforward but has also shown good predictive performance in
several studies [9]. To provide predictions for new incoming (test) objects, we
use a Selective Naive Bayes classifier (snb) on the recoded data set. This choice
is motivated by the good performances of snb on benchmark data sets as well
as on large-scale challenge data sets (see [7]). Moreover, snb is Bayesian-based
and parameter-free, agreeing with the characteristics of our method.

4 Experimental validation

In this section, we present our empirical evaluation of the classification system
(noted krsnb). Our classification system has been developed in C++ and is
using a JAVA-based user interface and existing libraries from khiops 2. The
experiments are performed to discuss the following questions:
Q1 The main algorithm is controlled by a running time constraint. In a given

allowed time, a certain number of rules might be mined: how do the perfor-
mance of the classifier system evolve w.r.t. the number of rules? And, what
about the time-efficiency of the process?

Q2 Does our method suffer over-fitting? What about spurious patterns? We will
also bring an empirical validation of conjecture 1.

Q3 Does the new feature space (made of locally optimal rules) improve the
predictive performance of snb?

Q4 Are the performance of the classification system comparable with state-of-
the-art CBA-like classifiers?

For our experiments, we use 29 uci data sets commonly used in the literature
(australian, breast, crx, german, glass, heart, hepatitis, horsecolic, hypothyroid
ionosphere, iris, LED, LED17, letter, mushroom, pendigits, pima, satimage, seg-
mentation, sickeuthyroid, sonar, spam, thyroid, tictactoe, vehicle, waveform and
its noisy version, wine and yeast) and which show a wide variety in number of
objects, attributes and classes, in the type of attributes and the class distribution
(see [2] for a full description). All performance results reported in the following
are obtained with stratified 10-fold cross validation. Notice that, the feature con-
struction step is performed only on the training set and the new learned features
are reported on the test set for each fold of the validation.

2 http://www.khiops.com
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Evolution of performance w.r.t. the number of rules. In figure 2, we
plot the performance in terms of accuracy and AUC of krsnb based on ρ rules
(ρ = 2n, n ∈ [0, 10]). The details per data set is not as important as the general
behavior: we see that, generally, the predictive performance (accuracy and AUC)
increases with the number of rules. Then, the performance reaches a plateau for
most of the data sets: with about a few hundreds of rules for accuracy and a few
rules for AUC.
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Fig. 2. Accuracy and AUC results (per data set) w.r.t. number of rules mined.

Running time report. Due to our mining strategy, running time grows

linearly with the number of rules to be mined.
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Fig. 3. Running time for mining
1024 rules w.r.t. the size of the
data set (N ×m).

For most of the data sets, mining a thousand
rules is managed in less than 500s. In fig. 3, for
each of the 29 data sets, we report the process-
ing time of krsnb based on 1024 rules w.r.t. the
size of the data set – plotted with logarithmic
scales. It appears that the MODL-rule miner
roughly runs in linear time according to N ×m.
The analysis of performance evolution and run-
ning time w.r.t. the number of rules shows that
krsnb reaches its top performance in reasonable time using a few hundreds of
rules. In the following, to facilitate the presentation, we will experiment our clas-
sifier with 512 rules.

About spurious patterns and robustness of our method. As mentioned
in [31], “Empirical studies demonstrate that standard pattern discovery tech-
niques can discover numerous spurious patterns when applied to random data
and when applied to real-world data result in large numbers of patterns that are
rejected when subjected to sound statistical validation”. Proposition 1 states that
in a data set with random class distribution, there should not exist any scrm
with level > 0 (i.e. no interesting rule). To support this proposition, we lead
the following empirical study: (i) for each of the 29 benchmark data sets, we
randomly assign a class label c ∈ C to the objects; (ii) we run krsnb on the
data sets with random labels. The result is strong: all rule optimizations dur-
ing the process end with a default rule with level ≤ 0. This study shows that
our method is robust, discovers no spurious patterns and thus avoids over-fitting.
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Added-value of the new feature space. We process a comparative study of
the performance of snb and krsnb to demonstrate the added-value of the new
feature space. Due to space limitations, we skip results on individual data sets
and only Area Under ROC Curve (AUC) and accuracy average results of each
method are reported in table 1. We are aware of the problems arising from aver-
aging results over various data sets, therefore Win-Tie-Loss (wtl) and average
rank results are also reported. A raw analysis of the results gives advantage to
krsnb (in all dimensions: average accuracy and AUC, rank and wtl results).
Concerning the Win-Tie-Loss results (wtl) at significance level α = 0.05, the
critical value for the two-tailed sign test is 20 (for 29 data sets). Thus, even if
we cannot assert a significant difference of AUC performance between the two
approaches, wtl AUC results of krsnb vs snb is close to the critical value
(17 < 20) – which is a promising result. Moreover, the new feature space made
of locally optimal scrm is clearly a plus when considering wtl accuracy results.

Accuracy AUC
Algorithms avg rank avg rank
snb 83.58 1.72 92.43 1.60
krsnb 84.80 1.28 93.48 1.39

wtl kr vs. snb 21/0/8 17/2/10

Table 1. Comparison of snb and krsnb
performance results.

Algorithms avg.acc avg.rank kr-wtl
krsnb 84.80 2.17 -
harmony 83.31 3.53 19/1/9
krimp 83.31 3.64 23/1/5
ripper 84.38 2.83 19/1/9
part 84.19 2.83 18/1/10

Table 2. Comparison of krsnb with
state-of-the-art methods.

Comparisons with state-of-the-art
Let us first notice that, for the tiny xor case shown
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Fig. 4. Critical difference
of performance between
krsnb and state-of-the-art
rule-based classifiers.

in introduction, krsnb easily finds the four obvious
2-dimensional patterns characterizing the classes –
this finding is unreachable for cba-like methods us-
ing univariate pre-processing. We now compare the
performance of krsnb with four state-of-the-art com-
petitive rule-based classifiers: two recent pattern-based
classifiers: harmony [29] an instance-based classifier
and krimp [20] a compression-based method; and
two induction-rule-based approaches ripper [10] and
part [13] available from the weka platform [16] with default parameters. The
choice of accuracy for performance comparisons is mainly motivated by the fact
that competitors (harmony and krimp) provide only accuracy results. Since
harmony and krimp are restricted to Boolean (or categorical) data sets, we
preprocess the data using a mdl-based univariate supervised discretization [16]
for these methods. We also run experiments with parameters as indicated in the
original papers. Once again, only average results are reported in table 2. A first
analysis of the raw results shows that krsnb is highly competitive. Again, aver-
age accuracy, Win-Tie-Loss and average rank results give advantage to krsnb.
We also applied the Friedman test coupled with a post-hoc Nemenyi test as sug-
gested by [12] for multiple comparisons (at significance level α = 0.05 for both
tests). The null-hypothesis was rejected, which indicates that the compared clas-
sifiers are not equivalent in terms of accuracy. The result of the Nemenyi test is
represented by the critical difference chart shown in figure 4 with CD ' 1.133.
First of all, we observe that there is no critical difference of performance between
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the four competitors of krsnb. Secondly, even if krsnb is not statistically sin-
gled out, it gets a significant advantage on harmony and krimp – whereas part
and ripper do not get this advantage.
Results on challenge data sets
We also experiment krsnb on recent neurotech-pakdd orange-kdd’09

2009 2010 appet. churn upsell.
krsnb 66.31 62.27 82.02 70.59 86.46
ripper 51.90 50.70 50.00 50.00 71.80
part 59.40 59.20 76.40 64.70 83.50

Table 3. Comparison of auc results for
challenge data sets.

large-scale challenge data sets (Neu-
rotech challenges at pakdd’09-10 and
Orange small challenge at kdd’09)3.
Each data set involves 50K instances,
from tens to hundreds quantitative at-
tributes, and two highly imbalanced
classes – recognized as a difficult task. We experiment krsnb and its competi-
tors in a 70%train-30%test setting and report auc results in table 3. As univari-
ate pre-processing of quantitative attributes generate thousands of variables, we
were not able to obtain any results with krimp and harmony. Thus, a first
victory for krsnb is its ability to mine rules from large-scale data. Secondly, it
appears that the class-imbalance facet of the tasks severely harms the predictive
performance of ripper and part; there, krsnb outperforms its competitors.

5 Discussion & Related Work

As mentioned in sec. 2, the modl method and its extension to classification rules
are at the crossroads of Bayes theory and Kolmogorov complexity [21]. Our ap-
proach is also related to Minimum Description Length principle (mdl [15]) since
the cost of a rule is similar to a coding length.
About MDL, information theory and related. Some traditional rule learn-
ing methods integrate mdl principle in their mining algorithms (i) as a stopping
criterion when growing a rule and/or (ii) as a selection criterion for choosing
the final rule set (see e.g. [10, 23]).
The modl method is similar to practical mdl (also called crude mdl) which
aims at coding the parameters of models M and data D given the models by
minimizing the total coding length l(M) + l(D|M). In [20], authors develop a
mdl-based pattern mining approach (krimp) and its extension for classification
purpose. The main divergences with our work are: (i) the modl hierarchical
prior induces a different way of coding information; (ii) krimp is designed for
Boolean data sets and works with parameters when modl is parameter-free and
handles quantitative data sets. Also related to information theory, based on re-
cently introduced maximum entropy models, [19] suggest the ratio of Shannon
information content over the description length of a tile (i.e. an itemset coupled
with its support) as an interestingness measure for binary tiles in an exploratory
framework.
About mining quantitative data sets. The need for handling quantitative
attributes in pattern mining tasks is not new. Srikant & Agrawal [26] develop a
method for mining association rule in quantitative data sets: they start from a
fine partitioning of the values of quantitative attributes, then combine adjacent
partitions when interesting. After pioneering work, the literature became abun-

3 http://sede.neurotech.com.br/PAKDD2009/ ; http://sede.neurotech.com.br/

PAKDD2010/ ; http://www.kddcup-orange.com/
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dant; see e.g., [30, 18]. The main differences with our work come from (i) the
way of dealing with numerical attributes (ii) the mining strategy. Many meth-
ods start from a fine-granularity partition of the values and then try to merge
or combine them – we design on-the-fly optimized intervals and groups when
mining rules. Moreover, they inherit from classical association rule framework in
which parameters are to be set.
About mining strategy and sampling methods. Exhaustive search might
be inefficient on large-scale binary data (with many attributes). When fac-
ing quantitative attributes, the task is much more complicated. Separate-and-
conquer (or covering) strategies [14] greedily extend one rule at once and follows
a sequential data coverage scheme to produce the rule set; these strategies can
tackle with large data with quantitative attributes. Our randomized strategy
promotes diversity by sampling the posterior distribution of scrms. However,
we are aware of very recent pattern mining algorithms for binary data using ad-
vanced sampling methods like Markov chains Monte Carlo methods (see e.g. [3, 4,
27]). Notice that our method, coupling randomized sampling with instance-based
strategy, may generate similar rules. As snb is quasi-insensitive to redundant
features [7], it does not echo in the predictive performance of the classification
system. We did not focus on the redundancy and sampling issues in this first
study, but they are planned for future work.

6 Conclusion

We have suggested a novel framework for classification rule mining in quantita-
tive data sets. Our method stems from the generic modl approach. The present
instantiation has lead us to several significant contributions to the field: (i) we
have designed a new interestingness measure (level) that allows us to naturally
mark out interesting and robust classification rules; (ii) we have developed a
randomized algorithm that efficiently mines interesting and robust rules with
diversity; (iii) the resulting classification system is parameter-free, deals with
quantitative attributes without pre-processing and demonstrates highly compet-
itive inductive performance compared with state-of-the-art rule-based classifiers
while being highly resilient to spurious patterns. The genericity of the modl
approach and its present successful instantiation to classification rules call for
other intuitive extensions, e.g., for regression rules or for other pattern type in
an exploratory framework (such as descriptive rule or sequence mining).
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