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Abstract Classification rules play an important role in prediction tasks. Their pop-
ularity is mainly due to their simple and interpretable form. Classification methods
combining classification rules that are interesting (w.r.t. a defined interestingness
measure) generally lead to good predictions. However, the performance of rule-
based classifiers is strongly dependent on the interestingness measure used (e.g.
confidence, growth rate, . . . ) and on the measure threshold to be set for differentiat-
ing interesting from non-interesting rules ; threshold setting is a non-trivial problem.
Furthermore, it can be easily shown that the mined rules are individually non-robust:
an interesting (e.g. frequent and confident) rule mined from the training set could be
no more confident in a test phase. In this paper, we suggest a new criterion for the
evaluation of the robustness of classification rules in binary labeled data sets. Our
criterion arises from a Bayesian approach : we propose an expression of the prob-
ability of a rule given the data. The most probable rules are thus the rules that are
robust. Our Bayesian criterion is derived from this defined expression and allows us
to mark out the robust rules from a given set of rules without parameter tuning.

1 Introduction

Among the main data mining tasks, pattern mining has been extensively studied.
Association rules [Agrawal et al., 1993] are one of the most popular patterns. In bi-
nary data sets, an association rule is an expression of the form π : X → Y , where
X (the body) and Y (the consequent) are subsets of Boolean attributes. Intuitively,
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the rule π means that “when attributes of X are observed, then attributes of Y

are often observed”. The main interest of a rule pattern is its inductive inference
power: from now on, if we observe the attributes of X then we will also proba-
bly observe attributes of Y . When Y is a class attribute we talk about classification
rules. In this paper, we focus on such rules X → c (concluding on a class attribute
c). Classification rules seem to be favorable for classification tasks (if an object is

described by attributes of X then it is probably of class c). Recent advances in rule
mining have given rise to many rule-based classification algorithms (see, e.g., pio-
neering work [Liu et al., 1998] or [Bringmann et al., 2009] for a survey). Existing
rule-based methods are known for their interpretable form and also to perform quite
well in classification tasks. However, we may point out at least two weaknesses:

The Curse of Parameters. The choice of parameter values is crucial but not
trivial. The dilemma is well-known: a high frequency threshold may lead to less
rules, but also lesser coverage rate and less discriminating power. A low frequency
threshold may lead to a huge amount of rules, among which some rules (with low
frequency) may be spurious. The same dilemma stands when thresholding interest-
ingness measures like confidence (i.e. an estimation of the probability P(c | X))
or growth rate (which highlights the so-called emerging patterns, i.e. those pat-
terns that frequent in a class of the data set and barely infrequent in the rest of
the data [Dong and Li, 1999]): indeed, high confidence (or growth rate) threshold
values lead to strong (pure) class association rules which may be rare in real-world
data or even wrong when combined with a low frequency threshold whereas “low”
thresholds generate a lot of rules with limited interest. Thus, finding a trade-off be-
tween frequency and interestingness measure values is not trivial.

Instability of interestingness measures. Even if subsets of extracted rules have
shown to be quite effective for predictions, it can be easily shown that highly confi-
dent or emerging rules are not individually robust. In figure 1, we compare the confi-
dence (resp. growth rate) train values with the confidence (resp. growth rate) test val-
ues of rules extracted from UCI breast-w data set [Asuncion and Newman, 2007].
We observe that confidence and growth rate values of extracted rules are clearly un-
stable from train to test data. The same observation arises when considering lift
values: when li f t ≥ 2, then there is a positive correlation between the body of the
rule and the class attribute. However, this correlation is not always confirmed in test
phase. Thus, confidence, growth rate and lift do not allow us to determine whether a
rule is robust: a “good” rule w.r.t. confidence (or growth rate) in training phase may
turn out to be weak in test phase.

In this paper, we suggest a Bayesian criterion which allows us to mark out
the extracted rules that are robust. Our approach benefits from the MODL frame-
work [Boullé, 2006], provides a parameter-free criterion and does not need any wise
thresholding. Notice that this paper is the extended English version of the French pa-
per [Gay and Boullé, 2011] presented at EGC 2011 [Khenchaf and Poncelet, 2011].

The rest of the paper is organized as follows: section 2 briefly recalls some
needed definitions and the main concepts of the MODL approach. Then, we describe
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Fig. 1 Comparison of confidence (resp. growth rate and lift) values for classification rules in a
train-test experiment: 50% train / 50% test for breast-w data set.

our extension of the MODL approach for classification rules and a Bayesian criterion
for evaluating the robustness of rules. Section 3 reports the experiments we led to
validate the proposed criterion. We, then discuss further related work in section 4.
Finally, section 5 briefly concludes and opens several perspectives for future work.

2 From classification rules to MODL rules

Definitions. Let r = {T ,I ,C ,R} be a binary labeled data set, where T is a set of
objects, I a set of Boolean attributes, C a set of classes and R : T ×I 7→ {0,1} a
binary relation such that R(t,a)= 1 means object t contains attribute a. Every object
t ∈ T is labeled by a unique class attribute c ∈ C . A classification rule π in r is an
expression of the form π : X → c where X ⊆I is an itemset (i.e., a set of attributes),
and c ∈ C a class attribute. The frequency of itemset (i.e. a set of attributes) X in r

is f req(X ,r) = |{t ∈ T | ∀a ∈ X : R(t,a)}| and the frequency of π is f req(π,r) =
f req(X ∪{c}). The confidence of π in r is con f (π,r) = f req(π,r)/ f req(X ,r). The
growth rate of π is GR(π,r) = f reqr(X ,rc)/ f reqr(X ,r \ rc) where rc is the data set
r restricted to objects of class c (Tc) and f reqr stands for relative frequency (i.e.
f reqr(X ,rc) = f req(X ,rc)/|Tc|).

The pioneering works in classification based on association rules (i.e. the CBA-
like methods, e.g., [Dong et al., 1999, Li et al., 2001, Liu et al., 1998]) state that a
rule is interesting for classification if its frequency and confidence (or growth rate)
exceed user-defined thresholds. Setting good thresholds may be a hard task for an
end-user, therefore low thresholds are arbitrarily set – generating a huge number of
rules. Then, a subset of extracted rules is selected in a post-processing phase w.r.t.
coverage, redundancy, correlation (e.g. by choosing the k best rules or using the χ2

test). Therefore, other non-trivial parameter tuning skills are needed.
In this paper, we suggest to follow the MODL approach to evaluate classifica-

tion rules. The MODL approach, already used for values grouping [Boullé, 2005],
discretization [Boullé, 2006], regression [Hue and Boullé, 2007] or decision trees
[Voisine et al., 2010], bets on a trade-off between, (i) the fineness of the predictive
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information provided by the model and (ii) the robustness, in order to obtain a good
generalization of the model. In our context, from a MODL point of view, a model is
classification rule. To choose the best rule model, we use a Bayesian approach: we
look for maximizing p(π | r) the posterior probability of a rule model π given the
data r. Applying the Bayes theorem and considering the fact that the probability p(r)
is constant for a given classification problem, then the expression p(π)× p(r | π)
is to be maximized ; where p(π) is the prior probability of a rule and p(r | π), the
likelihood, is the conditional probability of the data given the rule model π . Thus,
the rule π maximizing this expression, is the most probable rule arising from the
data. Our evaluation criterion is based on the negative logarithm of p(π | r), which
we call the cost of the rule:

c(π) =− log(p(π)× p(r | π))

In order to compute the prior probability p(Rule) of the MODL criterion, we propose
a definition of a classification rule based on a hierarchy of parameters that uniquely
identifies a given rule.

Standard Classification Rule Model. A MODL rule (also called standard classifi-

cation rule model (SCRM)) is defined by:

• the constituent attributes of the rule body
• for each attribute of the rule body, the value (0 or 1) that belongs to the body
• the distribution of classes inside and outside of the body

The two last key points of the SCRM definition lead us to a notion of rule that
extend the “classical” association and classification rule. Indeed, for a given binary
attribute a, the values 0 and 1 are two possible values belonging to the body. This
may be related to the notion of rules with negations of attributes in their body (see
[Antonie and Zaïane, 2004]). SCRM is also related to the recently introduced dis-

tribution rule [Jorge et al., 2006]. The consequent of such a rule is a probabilistic
distribution over the classes (instead of being a class value). The following example
illustrates these two differences.

Example of SCRM. Let us consider the rule π : (A1 = 0)∧ (A2 = 1)∧ (A4 = 1)→
(Pc1 = 0.9,Pc2 = 0.1). Describing the body of such a rule consists in choosing the
attributes involved in the body, then choosing the values (0 or 1) of the involved
attributes. Notice that a classification rule with negations might be trivially derived
from a SCRM using the class with maximum probability as the consequent. For ex-
ample, π : (A1 = 0)∧ (A2 = 1)∧ (A4 = 1)→ c1.

To formally define our evaluation criterion we will use the following additional
notations:

Notations. Let r be a binary labeled data set with N objects, m binary attributes and
J classes. For a SCRM, π : X → (Pc1 ,Pc2 , . . . ,PcJ

) such that |X | = k ≤ m, we will
use the following notations:
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• X = {x1, . . . ,xk} : the constituent attributes of the rule body (k ≤ m)
• ix1 , . . . , ixk

: the indexes of binary values involved in the rule body
• NX = Nix1 ...ixk

: the number of objects in the body ix1 . . . ixk

• N¬X = N¬ix1 ...ixk
: the number of objects outside of the body ix1 . . . ixk

• NX j = Nix1 ...ixk
j : the number of objects of class j in the body ix1 . . . ixk

• N¬X j = N¬ix1 ...ixk
j : the number of objects of class j outside of the body ix1 . . . ixk

MODL hierarchical prior. We use the following distribution prior on SCRM models,
called the MODL hierarchical prior, to define the prior p(π).

• (i) the number of attributes in the rule body is uniformly distributed between 0
and m

• (ii) for a given number k of attributes, every set of k constituent attributes of the
rule body is equiprobable

• (iii) for a given attribute value, belonging to the body or not are equiprobable
• (iv) the distributions of class values in and outside of the body are equiprobable
• (v) the distributions of class values in and outside of the body are independent

Thanks to the definition of the model space and its prior distribution, we now
apply the Bayes theorem to express the prior probabilities of the model and the
probability of the data given the model (i.e. p(π) and p(r | π)).
The prior probability p(π) of the rule model is:

p(π) = p(X)× ∏
1≤l≤k

p(ixl
)× ∏

i∈{X ,¬X}
p({Ni j} | NX ,N¬X )

Firstly, we consider p(X) (the probability of having to the attributes of X in the rule
body). The first hypothesis of the hierarchical prior is the uniform distribution of the
number of constituent attributes between 0 and m. Furthermore, the second hypoth-
esis says that every set of k constituent attributes of the rule body is equiprobable.
The number of combinations

(

m
k

)

could be a natural way to compute this prior; how-
ever, it is symmetric. Beyond m/2, adding new attributes make the selection more
probable. Thus, adding irrelevant variables is favored, provided that this has an in-
significant impact on the likelihood of the model. As we prefer simpler models, we
suggest to use the number of combinations with replacement

(

m+k−1
k

)

. Using the
two first hypothesis, we have:

p(X) =
1

m+1
· 1
(

m+k−1
k

)

For each attribute x part of the body of the rule, the value involved in the body has
to be chosen from {0,1}. Thus we have p(ix) = 1/2 (considering hypothesis (iii)).
Now considering hypothesis (iv) and (v), enumerating the distributions of the J

classes in and outside of the body turns into a combinatorial problem:

p({NX j} | NX ,N¬X ) =
1

(

NX+J−1
J−1

)
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p({N¬X j} | NX ,N¬X ) =
1

(

N¬X+J−1
J−1

)

Concerning the likelihood term, the probability of the data given the model is the
probability of observing the data inside and outside of the rule body (with resp. NX

and N¬X objects) given the multinomial distribution defined for NX and N¬X . We
have:

p(r | π) = 1
NX !

∏
j=J
j=1 NX , j!

· 1
N¬X !

∏
j=J
j=1 N¬X , j!

We now have a complete definition of the cost a MODL rule (SCRM) π:

c(π) = log(m+1)+ log

(

m+ k−1
k

)

+ k log(2) (1)

+ log

(

NX + J−1
J−1

)

+ log

(

N¬X + J−1
J−1

)

(2)

+

(

logNX !−
j=J

∑
j=1

logNX , j!

)

+

(

logN¬X !−
j=J

∑
j=1

logN¬X , j!

)

(3)

The cost of the rule is made of negative logarithms of probabilities ; according
to [Shannon, 1948], this transformation links probabilities with code length. Thus,
c(π) might be seen as the ability of a MODL rule to encode the classes given the at-
tributes. The first line stands for the choice of the number of attributes, the attributes
and the values involved in the rule body. The second line corresponds to the class
distribution in and outside of the body. The two last lines stand for the likelihood
(the probability of observing the data given the rule).

Intuitively, rules with low MODL cost are the most probable and thus the best
ones. Notice that c(π) is smaller for lower k values (cf eq. 1), i.e. rules with shorter
bodies are more probable thus preferable. Consequently, frequent rules are more
probable than non-frequent ones – that meets the obvious fact. From c(π) expression
again (two last lines), the notion of pureness (fineness) arises: the stronger rules are
cheaper w.r.t. c, thus are the best ones. Since the magnitude of the MODL cost of rules
depends on the size of the data set (i.e. the number of objects N and the number of
attributes m), we define a normalized criterion (noted level1) to compare two MODL
rules:

level(π) = 1− c(π)

c(π /0)

where c(π /0) is the MODL cost for the default rule (i.e. with empty body). Intuitively,
c(π /0) is the coding length of the classes when no information is used from the
attributes. The cost of the default rule π /0 is formally:

1 The level may also be seen as a compression rate.
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c(π /0) = log(m+1)+ log

(

N + J−1
J−1

)

+ logN!−
j=J

∑
j=1

logN j!

That way, for a given rule π , if level(π) = 0 then π has the same cost as π /0; thus π is
not more probable than the default rule. When level(π)< 0, then using π to explain
the data is more costly than using the empty rule. In other words, π is less probable
than π /0 and will not be considered as interesting. The cases where 0 < level(π)≤ 1
highlight the interesting classification rules π . Indeed, rules with lowest cost (and
high level) are the most probable and show correlations between the rule body and
the class attribute. Notice that level(π) = 1 is the particular case where π (on its
own) is sufficient to exactly characterize the class distribution.

We argue that the level allows us to identify the robust and interesting classifi-
cation rules. In the following, we lead several experiments to support our point of
view.

3 Experimentations

In this section, we lead several experiments to show (i) that confidence and growth
rate are generally unstable from train to test phase and thus are not good candidates
to capture the robustness of classification rules ; (ii) that, conversely, the level is sta-
ble in the same experimental conditions and (iii) that the level allows us to naturally
identify robust and interesting rules.

3.1 Experimental protocol

In our experiments, we use seven UCI data sets [Asuncion and Newman, 2007] and
a real-world data set (meningite) [François et al., 1992]. A brief description of these
data sets is given in table 1.

Data set #Objects #Attributes #classes and distribution
breast-w 699 9 458/241
credit-a 690 15 307/383
credit-g 1000 21 700/300
diabetes 768 8 500/268

meningite 329 23 245/84
sonar 208 60 97/111

tic-tac-toe 958 9 626/332
vote 435 17 267/168

Table 1 Experimental data sets description
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The train-test experiments consist in dividing a data set in two (almost) equal
class-stratified parts. One part is for training and mining frequent-confident (or
emerging) rules, the other part is for evaluating the evolution of confidence and
growth rate values on the test set. Since we do not provide an extractor of MODL
rules in this preliminary work, we compute the value of our MODL criterion for the
extracted confident (or emerging) rules on the training and test set for compari-
son. We use AClike prototype [Boulicaut et al., 2003] to mine frequent-confident
classification rules: in fact, AClike mines γ-frequent δ -free itemsets that are bod-
ies of rules π with con f (π,r) ≥ 1− δ/γ . We also use consepminer prototype
[Dong and Li, 1999, Zhang et al., 2000] to mine γ-frequent ρ-emerging patterns.

3.2 Experimental results

Original data sets. In figures 2 and 3, we report scatter plots for the study of the
evolution (from train set to test set) of confidence values of extracted rules. We
also compare the values of the MODL criterion. As expected, for all data sets, we
observe that confidence is unstable from train to test: indeed, a highly confident rule
in train may have low confidence in test (see the points far from the identity line).
Conversely, the MODL level values of extracted rules are rather stable in the train-
test experiments (see the points close to the identity line). A similar experimentation
is reported in figures 4, 5 and the same conclusions stand: growth rate values are
unstable in a train-test experiment whereas MODL level values of extracted emerging
pattern remain stable.

These experiments show that it could be risky to rely on confidence or growth rate
values to make predictions since they do not capture the notion of robustness. The
stability of the MODL level is a sign of robustness; in the following experiments, we
show that patterns with negative level values are non-significant and the ones with
positive level values are patterns of interest.

Noisy data sets. In order to simulate the presence of class-noise in the breast-w
data set, we add uniform noise in the class attribute using the AddNoise function of
WEKA [Witten and Frank, 2005] – with various ratio: 20% and 50% amount of noisy
class labels. We then proceed the train-test experiments on each artificially noisy
data set. For each amount of noise (see in figure 6), classical extractors (frequent-
confident rules and emerging patterns miners) succeed in outputing a set of “poten-
tially” interesting patterns – notice that less rules arise from the most noisy contexts.
However, once again the train-test experiments show the instability of classical mea-
sures. Moreover, the instability is emphasized in noisy contexts; indeed, most of the
points (rules) in the scatter plots (and all rules for 50% of noise) are under the iden-
tity line, which means confidence and growth rate are wrongly optimistic and may
lead to bad predictions. As an example, several rules confidence fall under 0.5 in the
test set – which is contradictory.
The level criterion of extracted patterns is still stable in noisy contexts. Notice that
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most of the confident or emerging rules in noisy contexts has a negative level. As we
mentioned above, a rule with a negative level is less probable than the default rule
and thus is not statistically significant, i.e. not interesting. In the last experiments,
we show that a positive level indicates that a rule is interesting.

Patterns with positive level. In figures 7 and 8, we report the train and test values
of a class-entropy-based measure µ (defined below) for the extracted rules π:

µ(π) = N× (Ent(π /0)−Ent(π))

µ measures the difference between the conditional entropies of the null rule model
(default rule) and a given rule π . The higher µ , the more interesting π is. µ may
be seen as the number of bits saved when compressing the data using π instead of
using π /0. In figures 7 and 8, we highlight the rules with a positive MODL level (red
’o’). As expected, rules with a positive level are generally the most interesting, i.e.
with higher µ values. Consequently, rules with a negative level (blue ’+’) value are
located in the southwest of the graphs, with low µ values.

4 Related Work & discussions

The MODL approach [Boullé, 2005, Boullé, 2006] and the level criterion are at the
crossroads of Bayes theory, Minimum Description Length principle (MDL [Grünwald, 2007])
and Kolmogorov complexity [Li and Vitányi, 2008].

About MDL. In [Siebes et al., 2006], the authors develop a MDL-based pattern min-
ing approach. The authors look for itemsets that provides a good compression
of the data. The link between probability and codes allow them to rewrite the
code length of an item set I as −log(P(I)). Thus, the best item sets have short-
est codes. In [van Leeuwen et al., 2006], an extension for classification purpose is
suggested. The two main differences with the MODL approach are : (i) the use of
the MODL hierarchical prior implies a different way of coding information ; (ii)

in [van Leeuwen et al., 2006], authors look for a set of patterns to compress the data
whereas our MODL criterion is defined for one rule.
Notice that another recent work embraces the MDL principle for classification rule
discovery: in [Suzuki, 2009], the author suggests an extended version of MDL to
integrate user knowledge (in the form of a partial decision list). The code length
cl of the partial decision list L to be discovered from data D is extended with
the user knowledge K and serves as a subjective interestingness measure: cl(L) ≡
− logP(L)− logP(D | L)− logP(K | L).

About robustness. The level criterion has shown to be stable. Thus, we may rely on
classification rules with positive level values since the interestingness of the rules
will be confirmed in a test phase. The notion of robustness has been studied recently:
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X → c c ¬c ∑

X f req(Xc,r) f req(X¬c,r) f req(X ,r)
¬X f req(¬Xc,r) f req(¬X¬c,r) f req(¬X ,r)

∑ |c| |¬c| N

Table 2 Contingency table for a classification rule X → c

in [Le Bras et al., 2010], the authors suggest a new notion of robustness dependent
on an interestingness measure µ and a threshold µmin. Starting from the observation
that a rule can be characterized by a R

3-vector of three values of its contingency
table (e.g. the frequency of the body, the frequency of the target and the number
of counterexamples; see figure 2), the authors define the robustness of rule π as
the normalized Euclidean distance rob(π,µmin) = ||π−π∗||2/

√
3 between π and a

limit rule π∗ (i.e. a rule minimizing g(π ′) = ||π ′−πmin||2 where πmin is such that
µ(πmin) = µmin). In such framework, comparing two rules in terms of robustness
does not need any thresholding, however for filtering purpose (e.g., selection of a
subset of robust rules) another non-trivial parameter (rob) has to be set (in addition
with frequency and the current measure thresholds).

About redundancy. A classification rule π2 : Y → ci is said to be redundant w.r.t.
π1 : X → c j if ci = c j, X ⊆ Y and π1 and π2 brings (almost) the same class-
discriminating power (w.r.t. an interestingness measure) – a redundant rule should
be pruned. Consider two itemsets X and Y such that X ⊆ Y and f req(X ,r) =
f req(Y,r), then for a given interestingness measure m based on frequency, we have
m(X) = m(Y ) thus some redundancy. It is common to consider support equiva-
lence class to group itemsets having the same support (and frequency). The unique
longest itemset (w.r.t. set inclusion) is the closed itemset [Pasquier et al., 1999] and
the smallest ones are called the free itemsets [Boulicaut et al., 2003]. In state-of-
the-art pattern-based methods for classification purpose, the intuition tells that free
itemsets should be preferred [Baralis and Chiusano, 2004]. This intuition is con-
firmed by our level criterion. Indeed, if Y is a closed itemset and X a free itemset
from the same support equivalence class, then c(π2 : Y → ci)≥ c(π1 : Y → ci) since
the number of attributes favors π1 (line 1-2); and π1 should be preferred. The main
idea is translated in the following proposition (the proof is almost direct when one
observes that only the terms of the cost expression that involve parameter k imply a
difference of level between X and Y ):

Proposition 1. Let X and Y be two itemsets such that X ⊂ Y and f req(X ,r) =
f req(Y,r). X is preferable to Y according to the level criterion; i.e., level(X) >
level(Y ).
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5 Conclusion & perspectives

In this paper, we have presented a new Bayesian criterion for the evaluation of clas-
sification rules in binary data sets. Based on the MODL approach (and the MDL princi-
ple), the new criterion overcomes two well-known drawbacks of existing approaches
(using a frequency-confidence or growth rate framework): the non-trivial tuning of
interestingness measure threshold and the non-stability of interestingness measure
values from train to test phase. Our new criterion, the MODL level, promotes a trade-
off between fineness and reliability and allows us to easily distinguish interesting
rules (with a positive level value) from non-significant rules (with a negative level
value) without parameter tuning. Furthermore, the criterion is shown to be robust
and gives a true idea of the prediction power of extracted patterns. The experiments
we led on UCI data sets confirm both the relevancy and robustness of the criterion.
In this preliminary work, we use the MODL criterion in a post-processing step to
select interesting and robust rules from a large set of confident or emerging rules.
The next step is a constructive approach for mining classification rules with positive
MODL level values. Since the MODL approach is also suitable for continuous and
nominal attributes as well, another step will be the extension towards quantitative
association rules by considering discretization and values grouping.
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Fig. 2 Comparison of con f idence and level: train values vs test values. Confidence is unstable
from train to test phase while level values are clearly stable (points close to the identity line) –
ensuring the robustness of the criterion.
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Fig. 3 Comparison of con f idence and level: train values vs test values
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Fig. 4 Comparison of GR and level: train values vs test values. Growth rate shows instability in
train-test experiments while level still remains stable.
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Fig. 5 Comparison of GR and level: train values vs test values
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Fig. 6 Comparison GR, con f idence and level in artificially noisy breast-w data set: train val-
ues vs test values. Potentially interesting rules w.r.t. confidence (or growth rate), that are actually
’wrong’ in highly noisy environment, have a negative level value.
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Fig. 7 Comparison µ : train values vs test values of emerging rules. The best rules (i.e. the most
probable ones with a positive level value, red ’o’) are generally located at the north-east of the
graph whereas non-robust one (with negative level value, blue ’+’) are close to the origin.
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Fig. 8 Comparison µ : train values vs test values of confident rules


