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Abstract. Multivariate Time Series Classification (MTSC) has attracted
increasing research attention in the past years due to the wide range ap-
plications in e.g., action/activity recognition, EEG/ECG classification,
etc. In this paper, we open a novel path to tackle with MTSC: a re-
lational way. The multiple dimensions of MTS are represented in a re-
lational data scheme, then a propositionalisation technique (based on
classical aggregation/selection functions from the relational data field) is
applied to build interpretable features from secondary tables to “flatten”
the data. Finally, the MTS flattened data are classified using a selective
Näıve Bayes classifier. Experimental validation on various benchmark
data sets show the relevance of the suggested approach.
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1 Introduction

Multivariate Time Series Classification (MTSC) arise from many application ar-
eas [1], e.g., human activity recognition, motion/gesture classification, ECG/EEG
classification, audio spectra, handwriting, manufacturing classification, etc.

For an incoming d-dimensional MTS, τ =
〈
X1, X2, . . . , Xd

〉
where, for i =

1..d, Xi = 〈(t1i , x1i), (t2i , x2i), . . . , (tmi
, xmi

)〉 are univariate time series (with
xki ∈ R the value of the Xi series at time tki), the goal is to predict the value
of a categorical target variable, say label, given a training set of labeled MTS.

While the literature for univariate TSC is substantial [3], existing approaches
generally cannot be straightforwardly translated for MTSC problems. Besides
recent deep learning based approaches [13–15], various effective methods have
been suggested for MTSC: e.g., considering the reputation of Dynamic Time
Warping (DTW) Nearest Neighbor for the univariate case, two different general-
izations for MTS have been tried [21]. With SMTS [5], Baydogan et al. proceed
a two-step random forest approach for bag-of-words modeling then classifica-
tion; subsequently they suggest LPS [6] which builds a bag-of-words representa-
tion based on the leaves of regression trees trained on segments extracted from
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MTS; and thereafter, they also introduce AutoRegressive Forests (ARF [22])
for MTSC. Karlsson et al. [16] exploit tree ensembles over randomly selected
shapelets (gRSF). Furthermore, Schäfer & Leser suggest WEASEL+MUSE [20]
which extends WEASEL [19] to build discriminative features, based on symbolic
Fourier approximation and bag-of-patterns, to feed a logistic regression model.
They also led benchmark comparative experiments with the above representa-
tive contenders on a well-known repository of 20 MTS data sets [4]. In terms of
predictive performance, the results indicates that WEASEL+MUSE and a deep
learning architecture, MLSTM-FCN [15], take the lead of the benchmark even if
there is no statistically significant difference of performance with gRSF, SMTS,
LPS and ARF methods.

In this paper, in order to tackle with MTSC, we open and explore a new path
in which multivariate time series will be seen as multi-relational data.

v c1 c2 c3 c4
v ≤ −7.8 10 0 0 0

−7.8 < v ≤ −2.2 0 10 0 0
−2.2 < v ≤ −0.624 0 0 0 10

−0.624 < v 0 0 10 0

Table 1. Context: 4-class BasicMotions data
(40 series of length 100, over 6 dimensions – 3D
from accelerometer (x, y, z) and 3D from gy-
roscope (roll, pitch, yaw). Class-contingency ta-
ble for the discretization of the constructed vari-
able v = min(DerivativeV alue(pitch)), i.e.,
the minimum value of the derivative transform
of the pitch dimension.

As a motivating example, we con-
sider the 4-class BasicMotions MTSC
data set [1]. Basic Motions (stand-
ing, walking, running and playing bad-
minton) are the classes of the prob-
lem and are described by 6-dimensional
MTS collected through 3D accelerome-
ter data, i.e., (x, y, z), and 3D gyroscope
data, i.e., (roll, pitch, yaw). In this con-
text, considering the variable v =
min(DerivativeV alue(pitch)), i.e., the
minimum value the derivative trans-
form of the 5th dimension, and its dis-
cretization into four informative inter-
vals, the contingency table (see Table 1) indicates a perfect discrimination of
the four classes. A straightforward interpretation highlights that the minimum
value of the pitch speed is characteristic of the different class motions.

As far as we know, MTSC have not yet been approached from a relational
data classification point of view. Our approach, called KMTS, brings a method-
ological contribution to MTSC literature as it generalizes the underlying con-
cepts of the above intuitive example to efficiently extract simple and inter-
pretable features for MTSC, as follows: (i), firstly, we transform the original
MTS into multiple representations which are stored in secondary tables as in
relational data scheme; (ii), then, informative and robust descriptors are ex-
tracted from relational data, using a regularized Bayesian propositionalisation
method; (iii), thirdly, a selective Näıve Bayes classifier is trained on the obtained
flattened data.

The rest of the paper successively presents the main concepts of our KMTS
approach in Section 2, the experimental validation in Section 3 and opens future
perspectives after concluding in Section 4.
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2 MTSC via a relational way

Our approach, KMTS, is based on (i) the computation of multiple yet simple
representations of time series, and their storage in a relational data scheme, (ii)
a recently suggested approach for relational data classification [10] using feature
construction through propositionalisation and, supervised feature selection and
classification through a selective Näıve Bayes classifier [9]. In the following, we
describe these two steps with a particular attention to make the paper self-
contained.

2.1 Multiple representations of MTS in relational schemes

Since [2], a consensus has emerged from the TSC community that transforming
time series from the time domain to an alternative data space is one of the
best catalyst for accuracy improvement. As recent methods [18, 7] has proven
to achieve top accuracy results on transformed univariate time series, we also
generates six simple transformations of the dimensions of MTS commonly used
in the literature in addition to the original representation:

– Derivatives: We use derivatives (D) and double derivatives (DD) of the
original time series. These transformations allow us to represent the local
evolution of the series (i.e., increasing / decreasing, acceleration / decelera-
tion).

– Cumulative sums: We also use simple (S) and double (SS) cumulative
Sums of the series, computed using the trapeze method. These transforma-
tions allow us to represent the global cumulated evolution of the series.

– Auto-correlation: The (ACF) transformation describes the correlation be-
tween values of the signal at different times and thus allows us to represent
auto-correlation structures like repeating patterns in the time series. The
transformation by auto-correlation is:

τiρ =< (t1, ρ1), ..., (tm, ρm) > where ρk =

∑j=m−k
j=1 (xj − x̄).(xj+k − x̄)

m.s2

and where x̄ and s2 are the mean and variance of the original series.
– Power Spectrum: A time series can be decomposed in a linear combination

of sines and cosines with various amplitudes and frequencies. This decom-
position is known as the Fourier transform. The Power Spectrum (PS) is:
PS(τi) =< (f1, a1), ..., (fn, an) >, where fk represents the frequency do-
main, ak the power of the signal and n the number of considered frequency
values (by default n = m). This transformation is commonly used in signal
processing and encodes the original series into the frequency domain.

In order to keep the whole procedure time-efficient, among the numerous
representations existing in the literature, we picked some of thoses that can be
computed with at most sub-quadratic time complexity: e.g., the fast Fourier
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transform allows to produce ACF and PS representation in O(m logm), where
m stands for the series’ length.

To gather the various computed representations, we investigate two different
relational data schemes. In every case, the root table is made of two attributes
(columns), the series ID and the class value. Depending on the scheme, secondary
tables are designed as follows:

– one representation per secondary table (i.e. 7 tables). In this scheme, in Fig-
ure 1, each table is described by the following attributes: the series’ ID (linked
to the one from the primary table), the “x-axis” (i.e. time or frequency for
PS representation), plus one column for each dimension. We refer to this
scheme as 7rep 7T.

– all-in-one scheme: only one secondary table containing all representations of
all dimensions of the MTS, i.e., 7 × d attributes plus the series ID and the
x-axis. We refer to this scheme as 7rep 1T.

power spectrum

time series id
frequency

value dim 1

derivative

time series id
timestamp

double derivative

time series id
timestamp

double cum int

time series id
timestamp

cumulative integral

time series id
timestamp

auto-correlation

time series id
timestamp

root table

time series id

time values

time series id
timestamp

(TS)

(ACF)

(CUMSUM)

(DCUMSUM)

(PS)

(DD)(D)

class value

value dim 1

value dim 2 ... value dim 2 ...

value dim 1value dim 1value dim 1value dim 1

value dim 1

value dim 2 ... value dim 2 ...value dim 2 ...

value dim 2 ...

value dim 2 ...

Fig. 1. Relational scheme, 7rep 7T, where each of the seven secondary tables holds a
representation of the MTS.

2.2 KMTS: interpretable feature selection and classification

Feature construction through propositionalisation - In order to build
features from secondary tables, we use propositionalisation; that is the process
of adding columns containing information extracted from secondary tables to the
root table [17]. For the MTS case, propositionalisation may generate different
aggregate features from various representations of the multiple dimensions. The
introductive variable v, i.e., the minimum of the derived time series in the fifth
dimension is an example of such aggregate feature. To avoid untractable search
space, propositionalisation techniques usually exploit a restricted language for
feature generation, i.e., using a finite set of construction rules. In our approach,
a construction rule is similar to a function in a programming language. It is
defined by its name, the list of its operands and its return value. The operands
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and the return value are typed. The operands can be a column of a table, the
output of another rule (i.e. another generated feature), or a constant coming
from the training set.

Since the variables that define time series are numerical, and for interpretabil-
ity purposes, we use a combination of:

– (i) historical and interpretable aggregate functions from relational data base
domain dedicated to numerical variables, namely, min, max, sum, count (dis-
tinct), median, mean, stdev.

– (ii) a Selection function to allow restriction to intervals of timestamp/frequency
and value variables in secondary tables.

Thus, another example of aggregate feature using the selection operator could
be: Max(Selection(derivative, 14 < timestamp < 69),ValueDim5), i.e., the maximum
value of the derivative transform of dimension 5, in the time interval [14; 69].
Here, the Max function is applied on the output of another construction rule,
the Selection exploited to identify a particular time period.

In this context, the search space for the features that can be generated con-
sists of all possible function compositions, only limited by the type of operands
of each function. Thus, the number of function compositions is not limited and
the search space is infinite. Therefore, there are two important challenges to
overcome: i) the combinatorial explosion for the exploration of the search space;
ii) the risk of over-fitting due to the generation of arbitrarily complex features.

In order to avoid non-trivial parameter setting in the exploration of the search
space, we suggest to use a single parameter K, the number of aggregate features
to be sampled from the input relational data. The infinite search space can be
represented by a tree structure where each branch of the tree corresponds to an
aggregate feature that can be drawn. The sampling of the K features is done by
building this tree through sequential steps (denoted by 1, 2, 3, 4 in Figure 2).

Native attributes

Constructed

Native /

of the root table

Length

Duration

Choice of
rule

Construction

rule
Choice of

rules
Columns

tables
Secondary

Min

Max

Time

Time

Frequency

Frequency

domain

domain

domain

domain
Derivative
value

Double
derivative val

Cum integral
value

1 2 3 4

1/3

1/
3

1/3
1/
4

1/
2

1/2

1/2

1/
2

1/2

1/2

1/4

1/
4

1/4

Fig. 2. Feature construction tree example for one dimension.
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Due to space limitation, in Figure 2, we only consider one dimension and 3
out of 6 representations in the all-in-one schema. The sequential steps for feature
sampling are:

– (step 1) consists in choosing either a native feature belonging to the root
table, or the generation of an additional feature. Here, we assume that the
root table contains two native features that describe the length and the
duration of the time series. An additional choice to generate an additional
feature is represented by the node named “Choice of rule”.

– (step 2) consists in choosing the construction rule, here, the Min or Max
functions. The other steps correspond to the operand choice of these two
functions.

– (step 3) consists in choosing the secondary table
– (step 4) corresponds to the choice of the column on which to apply the

current function. Once again, there is an additional choice that allows the
algorithm to generate the input of the current function (Min or Max) by
applying another construction rule.

While the width of the feature construction tree is finite because the set of
the construction rules and the secondary tables are finite, by contrast, the depth
of the tree is infinite due to the potentially infinite function compositions. In
order to sample K features from such a tree, the drawing of features follows a
particular prior distribution which is a Hierarchy of Multinomial Distributions
with potentially Infinite Depth (HMDID) ([10]). This HMDID distribution is
represented in Figure 2 by the probabilities assigned to the edges between the
nodes of the tree. The algorithmic solution consists in iteratively moving a collec-
tion of tokens down the tree, according to the HMDID distribution. The number
of tokens that move forward is finite, which means that the tree is only partially
and progressively explored. Consequently, this algorithm can efficiently draw
aggregate features with restrictions to the available computer memory.

Feature selection through supervised discretisation and classification -
After propositionalisation, aggregate features of the main table are not guaran-

teed to be class-informative. As all generated features are numerical due to the
nature of aggregate functions, a supervised pre-processing step is led for filter-
ing uninformative features and partition them into intervals, that is univariate
discretisation.

In the Bayesian framework [8], supervised discretisation of a variable X is
seen as a model selection problem and solved in Bayesian way through optimiza-
tion algorithms. According the Maximum A Posteriori (MAP) approach, the best
discretisation model MX is the one that maximizes the probability of a discreti-
sation model given the input data D, i.e., P (MX | D) ∝ P (MX)× P (D |MX).
The prior P (MX) and the likelihood P (D | MX) are both computed with the
parameters of a specific discretization which is uniquely identified by the number
of intervals, the bound of the intervals and the class frequencies in each interval.
Therefore, the prior exploits the hierarchy of parameters and is uniform at each
stage of the hierarchy.
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Switching to negative logarithm refers to information theory and defines our
evaluation criterion, noted c (for cost in Eq. 1).

c(MX) = − log(P (MX))− log(P (D |MX)) = L(MX) + L(D|MX) (1)

The prior part of the optimization criterion favors simple models with few inter-
vals, and the likelihood part favors models that fit the data regardless of their
complexity. In terms of information theory, this criterion is interpreted as cod-
ing lengths: the term L(MX) represents the number of bits used to describe the
model and L(D|MX) represents the number of bits used to encode the target
variable with the model, given the model MX . Greedy bottom-up algorithms [8]
allows to find the most probable model given the input data in O(N logN) time
complexity, where N is the number of time series.

In order to avoid the construction of unnecessary complex features, we add a
construction cost (related to the propositionalisation procedure) to the prior part
of c, resulting in c∗(MX) (Eq. 2). Intuitively, the construction cost L(X) is even
more important when the considered aggregate feature X is complex. The added
construction cost modifies the balance between the prior and likelihood terms
by taking into count the complexity of the evaluated feature. The construction
cost L(X) is recursively defined due to the multiple function compositions. In
Equation 3, the term log(K + 1) describes the cost of choosing to generate a
new feature in addition to the K native features (if any) of the root table. The
term log(R) describes the cost of choosing a particular construction rule among
R possible rules. The recursive side appears with the term

∑
o∈R L(Xo) that

describes the cost of constructing a new feature for each operand of the current
construction rule R. A natural trade-off appears: the more complex the feature
is, the more it is penalized by the prior, and the higher the likelihood have to be
compensated L(X). Compression gain (CG) evaluates the map model M∗X by
comparing its coding length with the one of M∅X that includes a single interval
(Eq. 2). Features with a negative CG are considered as uninformative.

c∗(MX) = L(X) + L(MX) + L(D|MX) and CG = 1− c∗(M∗X)

c∗(M∅X)
(2)

where L(X) = log(K + 1) + log(R) +
∑
o∈R

L(Xo) (3)

Thus, the cost criterion c∗ is used to pre-process the informative aggregate
features by training discretisation models. Then, all these univariate prepro-
cessied models are gathered together and used to learn a Selective Näıve Bayes [9]
(SNB). The SNB classifier aims to select the most informative subset of features
by using a specifically designed compression-based criterion. This way, the whole
KMTS procedure is regularized to avoid unnecessary complex features and mod-
els, thus avoiding over-fitting.
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3 Experimental validation

The experimental evaluation of our approach KMTS are performed to discuss
the following questions:

Q1 Concerning KMTS, how does the predictive performance evolve w.r.t. the
number generated features and relational schemes? How many relevant fea-
tures are selected? Are there preferred dimensions/representations for feature
selection? And what about the time efficiency of the whole process?

Q2 Are the performance of KMTS comparable with state-of-the-art MTSC meth-
ods?

Experimental protocol & data sets - Most of the literature are based
on M. Baydogan 20 data sets [4]. Recently, in 2018, pursuing the success of
the largest univariate TSC repository, the UEA team also released a 30 MTSC
repository [1] with some overlapping with Baydogan repository. Both repositories
exhibit a large variety of MTSC application domains with various numbers of
dimensions, classes and series’ lengths. Predefined train/test sets are provided
and we used it per se.

3.1 Accuracy evolution w.r.t. the number of features

We study the evolution of accuracy w.r.t. K , the number of extracted features
on the 30 data sets of UEA repository [1]. In Table 2, we report accuracy re-
sults of KMTS for increasing K = 10, 100, 1000, 10000 on original MTS, i.e.,
without transformations (notice that similar behaviors are observed when us-
ing the 7 representations). As expected, accuracy increases with K. While we
can expect better accuracy from even more generated features (but with in-
creasing computational time), a few more training MTS seem to also improve
accuracy. This can be seen in the 10 − CV column (Table 2), where we report
10-folds cross-validation accuracy results. Indeed, when using 90% of available
data for training, KMTS achieves better average results on 23/30 data sets
(e.g., for Ering and Handwriting data). Another important observation is about
the “stable-with-K” but poor accuracy results (for AtrialFibrillation, FaceDe-
tection, FingerMovements, HandMovementDirection MotorImagery, SelfRegu-
lationSCP2 and StandWalkJump data). For these data, KMTS found no class-
informative attributes out of the 10000 generated, the major class is predicted,
therefore the bad accuracies. Since KMTS is a regularized approach based on
estimated per-class frequencies, data with (very) small training set size (Atrial-
Fibrillation, StandWalkJump, . . . ) are a difficult task. For FaceDetection data,
we may conjecture that KMTS has high bias, thus aggregate features are not the
good way to tackle with. Notice that generalizations of DTW-NN also obtain
poor accuracy results on these data sets [1].
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Table 2. Accuracy results for KMTS with K, incremental number of extracted features
on original data, all dimensions in a secondary table and using 7 representations in the
two suggested schemes (1 secondary table for all dimensions and their representations
vs 1 secondary table for each representation).
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3.2 About relational schemes

The two last columns of Table 2 reports accuracy results of KMTS for K =
10000 using the two suggested relational data schemes 7rep 1T and 7rep 7T.
Considering Win-Tie-Loss versus original MTS data with K = 10000, 7rep 1T
scores 11-6-13 and 7rep 7T scores 13-9-8. The scheme with seven representations
stored in seven secondary tables take the advantage in terms of accuracy results
and we focus on this scheme for the rest of the experiments. This also confirms
the benefit of using additional simple representations of original times series to
improve predictive performance.

3.3 Distribution of selected features, representations and
dimensions

As KMTS select informative features to build a Näıve Bayes classifier, we study
the distribution of informative and selected features for each data set in Figure 3.
For some data sets, no informative attribute is found and poor accuracy results
are obtained as explained earlier. For most of the other data sets, more than 100
informative features are found except for Ering, DuckDuckGeese which contains
a small number of training series. Furthermore, the number selected features
(that are embarked in the SNB classifier) are generally an order of magnitude
lesser than the number of informative ones.

Fig. 3. Distribution of informative and selected features among the K = 10000 gener-
ated features, for each data set.

In Figure 4, we study the relative distribution of the selected features into
the seven representations for each data set. In most cases, all the seven rep-
resentations are present in the selected features. A few exceptions stand: e.g.,
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Fig. 4. Relative distribution of the seven representations among selected features in
SNB for each data set.

there is no SS features for BasicMotions and EigenWorm data and relatively few
PS features for HeartBeat and UWave data. Concerning the distribution of the
selected features among the dimensions of MTS, we compute the percentage of
dimensions not used in selected attributes: for most the data sets, all dimensions
are present in the selected features, except for DuckDuckGeese (resp. Heartbeat
and PEMS-SF) for which 95% (resp. 54% and 81%) of the available dimensions
are unused.
These two studies also show that even if there is no “killing” representations
or dimensions, the relative importance of representations and dimensions in the
selected features is clearly different depending on the data set at hand and thus
has to be investigated further for possible accuracy improvement; we postpone
this idea for future work.

3.4 Running time

All experiments are run under Ubuntu 18.04 using an Intel Core i5-6400 CPU@
2.70GHz x4 and 16Go RAM. The overall time complexity of KMTS comes from
the relational data classification method [10] (discretisation plus feature selection
through selective Näıve Bayes) and is O(K.Nlog(K.N)), where K is the number
of generated features and N the number of training MTS. In practice, with a
small computational time overhead to compute the 7 representations, KMTS
is efficient as shown in Figure 5. For most of the UEA data sets, KMTS (with
K = 10000) runs in less than 100s. For InsectWingbeat, the biggest data set with
50000 MTS, about 3 hours are needed. In Figure 6, we report the evolution of
running time w.r.t. K for each data sets. As we observed earlier that increasing
K leads to better accuracy, it is good to notice that it also means additional
computational cost. For example, for InsectWingbeat, setting K = 105 to reach
better accuracy will demand about 105s of computation.
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Fig. 5. Average running time results (10-cross-validation) vs. data set size (number of
series) of KMTS on original representations for K = 10000 features on UEA repository
data sets.

Fig. 6. Average running time results (10-CV) of KMTS on original representations for
incremental K number of features on UEA repository data sets.
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3.5 Predictive performance comparison with state-of-the-art

In order to compare the predictive performance of KMTS with state-of-the-art
MTSC methods, we use the Baydogan repository [4] that is composed of 20
data sets (6 of which are also in the UEA repository). KMTS with K = 10000
using 7rep 7T is compared with 9 contenders: WEASEL [19], SMTS [5], LPS [6],
ARF [22], DTWi [21], ARK [11], gRSF [16], MLSTM-FCN [15] and MUSE. All
results are taken from Schäfer & Leser MUSE paper [20]. Full results are reported
in Table 3 and the critical difference diagram [12] stemming from Friedman test
with post-hoc Nemenyi test is shown in Figure 7.

1 2 3 4 5 6 7 8 9 10

WEASEL+MUSE
MLSTM-FCN

KMTS
gRSF
SMTS LPS

ARKernel
mv-ARF
WEASEL
DTWi

CD

Fig. 7. Critical difference diagram

KMTS rises to the third place in terms of mean rank, just after MUSE and
MLSTM-FCN. Since the critical difference diagram indicates that no significant
difference of performance is found on these benchmark data sets, KMTS is among
the best MTSC methods of the literature.

4 Conclusion & Perspectives

Our methodological contribution, KMTS, explores a relational way for multi-
variate time series classification (MTSC). Storing multiple representations of
MTS in relational data scheme and interpretable feature construction/selection
are the key ideas of KMTS, which end up with efficient and effective classifi-
cation of MTS. The whole process achieves very competitive accuracy results
compared with recent state-of-the-art contenders on benchmark data sets. In
addition, the suggested approach allows interpretable features to be extracted
from the dimensions of MTS and their alternative representations, resulting in
a very advantageous compromise between (i) computation time, (ii) accuracy
results and (iii) features interpretability.

To achieve better accuracy results, KMTS could be improved in many ways:
(i) the ending Bayesian classifier could be swapped for e.g., ensemble methods
like random forests or xgboost; (ii) a closer look at the data domain where KMTS
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Data sets WEASEL SMTS LPS ARF DTWi ARK gRSF MLSTM-FCN MUSE KMTS
ArabicDigits 0.9455 0.9640 0.9710 0.9520 0.9080 0.9880 0.9750 0.9900 0.9918 0.9836
AUSLAN 0.7586 0.9470 0.7540 0.9340 0.7270 0.9180 0.9550 0.9500 0.9909 0.9607
CharTraj 0.9738 0.9920 0.9650 0.9280 0.9484 0.9000 0.9940 0.9900 0.9734 0.9949
CMUsubject16 0.9655 0.9970 1.0000 1.0000 0.9300 1.0000 1.0000 1.0000 1.0000 0.9655
DigitShapes 1.0000 1.0000 1.0000 1.0000 0.9375 1.0000 1.0000 1.0000 1.0000 1.0000
ECG 0.8500 0.8180 0.8200 0.7850 0.7900 0.8200 0.8800 0.8700 0.8800 0.8300
JapVowels 0.7892 0.9690 0.9510 0.9590 0.9622 0.9840 0.8000 1.0000 0.9757 0.9730
KickvsPunch 0.8000 0.8200 0.9000 0.9760 0.6000 0.9270 1.0000 0.9000 1.0000 0.6000
Libras 0.7280 0.9090 0.9030 0.9450 0.8880 0.9520 0.9110 0.9700 0.8944 0.9487
LP1 0.8000 0.8560 0.8620 0.8240 0.7600 0.8600 0.8400 0.8000 0.9400 0.9600
LP2 0.6330 0.7600 0.7040 0.6260 0.7000 0.6340 0.6670 0.8000 0.7333 0.5000
LP3 0.6670 0.7600 0.7200 0.7700 0.5666 0.5670 0.6330 0.7300 0.9000 0.7667
LP4 0.8670 0.8950 0.9100 0.9060 0.8667 0.9600 0.8667 0.8900 0.9600 0.8933
LP5 0.5900 0.6500 0.6900 0.6800 0.5400 0.4700 0.4500 0.6500 0.6900 0.6300
NetFlow 0.9326 0.9770 0.9680 - 0.9756 - 0.9140 0.9500 0.9382 0.9869
PenDigits 0.8338 0.9170 0.9080 0.9230 0.9270 0.9520 0.9320 0.9700 0.9128 0.8915
Shapes 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
UWave 0.7627 0.9410 0.9800 0.9520 0.9158 0.9040 0.9290 0.9700 0.9159 0.9531
Wafer 0.9911 0.9650 0.9620 0.9310 0.9743 0.9680 0.9920 0.9900 0.9967 0.9900
WalkvsRun 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
mean rank 7.3250 5.2750 5.3750 6.0000 7.8500 5.5750 5.2250 3.8750 3.5500 4.8500

Table 3. Accuracy results comparison with state-of-the-art MTSC methods on Bay-
dogan repository [4]. Results are reported from [20].

fails to find informative features, could help in finding the adequate represen-
tations and aggregate functions commonly used by domain experts in their re-
spective domain; (iii) KMTS could also be wrapped in a feed forward/backward
selection procedure to focus on the most informative dimensions and represen-
tations as suggested in [7].
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