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Abstract—We suggest a novel method of clustering and
exploratory analysis of temporal event sequences data (also
known as categorical time series) based on three-dimensional
data grid models. A data set of temporal event sequences can
be represented as a data set of three-dimensional points, each
point is defined by three variables: a sequence identifier, a
time value and an event value. Instantiating data grid models
to the 3D-points turns the problem into 3D-coclustering. The
sequences are partitioned into clusters, the time variable is
discretized into intervals and the events are partitioned into
clusters. The cross-product of the univariate partitions forms a
multivariate partition of the representation space, i.e., a grid of
cells and it also represents a nonparametric estimator of the joint
distribution of the sequences, time and events dimensions. Thus,
the sequences are grouped together because they have similar
joint distribution of time and events, i.e., similar distribution of
events along the time dimension. The best data grid is computed
using a parameter-free Bayesian model selection approach. We
also suggest several criteria for exploiting the resulting grid
through agglomerative hierarchies, for interpreting the clusters of
sequences and characterizing their components through insightful
visualizations. Extensive experiments on both synthetic and real-
world data sets demonstrate that our approach is efficient,
effective and discover meaningful underlying patterns in sets of
temporal event sequences.

I. INTRODUCTION

Mining data with temporal information is a key challenge
in the Knowledge Discovery process. Temporal data is com-
plex given that an object is described by one or more sequences
of time-ordered elements or events. Depending on the nature of
the temporal events (categorical or numerical, time-points or
time intervals), classical data mining techniques like pattern
mining, clustering, classification have been instantiated for
temporal data [1].
Here, we focus on time-points event sequences data, i.e., cate-
gorical times series (cats) data , where each event of a sequence
is annotated by a time value t. Mining cats data is useful in
many application domains, e.g., [2] explore Electronic Medical
Records data to find frequent temporal pattern of ICD codes
across patients; [3] look for frequent user behaviors in unex-
pected time periods from web logs; in social science domain,
[4] group individuals with similar life courses. In the literature,
a lot of the efforts have been dedicated to pattern mining in
cats data, (e.g., frequent temporally-annotated sequence mining
in [5]) whereas summarizing through clustering such data
has received less attention (see further related work discussed
in section V). Indeed, most of the clustering techniques for
sequential data are dedicated to sequences without time anno-
tations, i.e., only the placement or the sequentiality of events
is relevant – like in biological data, one of the most popular
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applications of sequence clustering.
In this paper, we suggest a methodology for clustering and
exploratory analysis of cats data. From a domain expert point
of view, a clustering of cats data should hold the following
features:

1) Global picture: the clustering technique should pro-
pose a global picture/summary of the underlying data
structure and show the evolution of clusters of cats
along the time dimension.

2) Local pattern detection: the clustering technique
should highlight local patterns, e.g., combination of
groups of events and time segments that characterize
a particular cluster of cats w.r.t. the whole cats data.

3) Parameter-free: To facilitate the task of the analyst,
computing the clustering should not involve parame-
ter tuning.

4) Exploration abilities: The whole methodology should
take into account the expert needs and allow him
to explore the resulting clustering w.r.t. each data
dimension and at various granularities.

To the best our knowledge, there exists no clustering
technique for cats having all these properties. The methodology
we suggest fulfills all the above requirements. The originality
of our approach is that the cats data clustering problem is
seen as a three-dimensional co-clustering problem. The three
dimensions (or variables) are sequence identifiers, time and
event. The following example illustrates the main intuition
behind our suggested approach.

Example 1 (From cats to data grid models): Let us con-
sider a toy example of cats data, made of 4 cats S =
{S1, S2, S3, S4}, 5 events {A,B,C,D,E} and a T = [0; 100]
timeline. A 3D point of such data set is e.g., (S1, 3.2, A).
Figure 1 shows the input cats data and the resulting 3D-
coclustering which we split into two 2D (Time × Event)
coclustering, following the two clusters of cats we found.

Cats S1 and S2 are grouped together because they
have similar joint distribution of time and events; in other
words, they have similar distribution of events along the
time dimension. Cats S3 and S4 also have similar event
distribution along the time, but their time-event distribution is
clearly different from the distribution of S1 and S2, therefore
they belong to a different cluster. Three time segments are
found, T1 = [0; 40], T2 =]40; 60], and T3 =]60; 100] which
correspond to the three different regimes of events: for S1,2,
A,B on time segment T1, then E on T2 and finally C,D on
T3; and the opposite behavior for S3,4. We can observe the
local characteristics of each of the two underlying patterns in
red, and what is common to both in green.
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Fig. 1. Visualization of results of KHC on a toy sample data of 4 cats
{S1, S2, S3, S4}, using 5 events {A,B,C,D,E} over a [0; 100] timeline.
The clustering highlight two clusters of cats: the first one composed of cats,
with events A and B in time interval [0; 40], E in ]40; 60] and C and D in
]60; 100]; the second cluster shows an opposite behavior.

Roadmap: In section II, we suggest Khiops Co-clustering
(KHC), a 3D co-clustering method for temporal event se-
quences based on data grid models [6]. KHC aims at simul-
taneously partitioning the sequence identifiers into clusters,
discretizing the time into intervals and partitioning the events
into clusters by optimizing a Bayesian criterion that bets on a
trade-off between the accuracy and robustness of the data grid
model. The optimal grid is reached using an user parameter-
free Bayesian selection method. In section III, we show how
to exploit the resulting grid at various granularities by means
of several criteria derived from the optimization criterion
and information-theoretic measures. Section IV reports the
experimental validation of our contributions on both synthetic
and real-world data sets. We discussed further related work in
section V before concluding.

II. TEMPORAL EVENT SEQUENCES & DATA GRID
MODELS

Context and notations. A temporal event sequence si (or a
categorical time series, say cats) of length ki > 0 is a time-
ordered finite set of observations:

si = 〈(ti1 , ei1), (ti2 , ei2), . . . , (tiki
, eiki

)〉

such that ∀j, 1 ≤ j ≤ iki , tj ∈ R+, ej ∈ E and E is a non-
ordered set of categorical events. A cats data set is simply a
set of such defined cats D = {s1, . . . , sn}. We represent D
as a three-dimensional data set, i.e., with three variables (two
categorical and one numerical variable): S for the sequence
(cats) id variable, T for the time variable and E for the event
variable. In the following, an object (s, t, e) ∈ D is called a
point of the data set and N is the total number of points in D.

This general definition of cats data allows different size of cats,
multiple events at a same time stamp and does not force the
time stamps to be “aligned” or equally spaced for all the cats.

A. Data grid models

This 3D representation is suitable for co-clustering through
data grid models [6]. To make the paper self-contained, we re-
call the main features of the generic data grid model approach
and describe its instantiation to cats data.

A data grid provides a piecewise constant joint density
estimation of the input variables. Instantiating data grid models
to the cats data, the goal is to simultaneously partition the
categorical variables (sequence ids and events) into clusters
and to discretize the numerical variable (time). The result
is a 3D grid whose cells (say coclusters) are defined by a
group of sequence ids, a group of events and a time interval.
Notice that in all rigor, we are working only with partitions of
variable value sets. However, to simplify the discussion we will
sometime use a slightly incorrect formulation by mentioning
a “partition of a variable” and a “partitioned variable”.

In order to choose the “best” data grid model M∗ (given the
data) from the model space M, we use a Bayesian Maximum
A Posteriori (MAP) approach. We explore the model space
while minimizing a Bayesian criterion, called cost. The cost
criterion bets on a trade-off between the accuracy and the
robustness of the model and is defined as follows:

cost(M) = − log(p(M | D)︸ ︷︷ ︸
posterior

) = − log(p(M)︸ ︷︷ ︸
prior

× p(D |M)︸ ︷︷ ︸
likelihood

)

We now define the model space M which consists of a
family of cats data co-clustering models, based on clusters of
cats ids, time intervals, clusters of events and a multinomial
distribution of all the points on the cells of the resulting data
grid.

Definition 1 (Cats data grid models): A cats data grid co-
clustering model is defined by:

• a number of clusters of cats ids,

• a number of intervals for the time variable,

• a number of clusters of events,

• the repartition of the cats ids into the clusters of cats,

• the repartition of the events into the clusters of events,

• the distribution of the points of the cats data on the
cells of the data grid,

• for each cluster of cats (resp. of events), the distribu-
tion of the points that belongs to the cluster on the
cats (resp. events) of the cluster.

Boullé [6] has shown that one can obtain an exact analytic ex-
pression of the cost criterion if one consider a data-dependent
hierarchical prior (on the parameters of a data grid model, see
definition 1) that is uniform at each stage of the hierarchy.
Notice that it does not mean that the prior is uniform, thus
in our case, the MAP approach is different from a simple
likelihood maximization. The cost criterion is then defined as
follows:



TABLE I. NOTATIONS AND DEFINITIONS

Notations Defintions
S, T,E,D cats identifiers variable, time and event variables of data D
n number of sequences
a number of events in E
N number of points in D
kS (resp. kE ) number of clusters of sequences (resp. clusters of events)
kT number of time intervals
k = kSkEkT the number of cells of the grid
NiS

cumulated number of points of cluster iS of sequences
NjT

cumulated number of points in time interval jT
NiE

cumulated number of points of cluster iE of events
NiSjT iE

cumulated number of points of the grid cell (iS , jT , iE))
niS

(resp. niE
) the number of sequences in cluster iS

niE
the number of event values in cluster iE

nS
i (resp. nE

i ) number of points in sequence i (resp. with event value i)

Definition 2 (cost: data grid evaluation): A data grid
model for cats co-clustering is optimal if the value of the
following cost criterion is minimal:

cost(M) =

log n+ log a+ logN + logB(n, kS) + logB(a, kE)
(1)

+ log

(
N + k − 1

k − 1

)
(2)

+

kS∑
iS=1

log

(
NiS + niS − 1

niS − 1

)
(3)

+

kE∑
iE=1

log

(
NiE + niE − 1

niE − 1

)
(4)

+ logN !−
kS∑
iS=1

kT∑
jT=1

kE∑
iE=1

logNiSjT iE ! (5)

+

kS∑
iS=1

logNiS !−
n∑
i=1

log nSi ! (6)

+

kE∑
iE=1

logNiE !−
a∑
i=1

log nEi ! (7)

+

kT∑
jT=1

logNjT ! (8)

where B(n, kS) is the number of partitions of n elements into
kS subsets and B(a, kE) is defined in a similar way.

The first four lines stand for the a priori probability of
the grid model and constitute the regularization term of the
model: the first line corresponds to the a priori term for the
choice of the number of clusters for S and E, the number of
intervals for T and the choice of partition of S and E into
value groups. The second line represents the specification of
the distribution of the N points on the k cells of the grid. The
third line corresponds to the specification of the distribution
of the points of each cluster of cats on the cats ids. The fourth
line specifies the similar distribution for the events.
The last four lines stand for the likelihood of data given
the model: the fifth line corresponds the likelihood of the
distribution of the points in the cells using a multinomial term.
The sixth (resp. seventh) line is the likelihood of cats ids (resp.
event values) locally to each cluster of cats (resp. events). The
last line stands for the likelihood of ranks locally to each time

interval.

The intuition behind the trade-off between the a priori
(regularization) terms and the likelihood terms is as follows:
complex models (with many clusters of cats and/or events
and/or many time intervals) are penalized whereas models that
are closest to the data are preferred. The extreme case where
we have at most one point per cell will maximize the likelihood
but we will get a very low a priori probability of the grid
model, thus a high cost value. The other side case, i.e., the
null model, is when we have only one cell: we have high prior
probability but very low likelihood, thus high cost value. Grids
with low cost value indicate a high a posteriori probability
p(M | D) and are those of interest because they achieve a
balanced trade-off between accuracy and generality. In terms of
information theory, negative logarithm of probabilities can also
be interpreted as code length. Here, according to the Minimum
Description Length principle (MDL), the cost criterion can be
interpreted as the code length L of the grid model M (the
first four lines) plus the code length of the data given the grid
model (the last four lines): cost(M) = L(M) + L(D | M).
And a low cost value also means a high compression of the
data using grid model.

B. Data grid optimization

Optimization algorithm. The optimization of data grid is a
combinatorial problem: the number of possible partitions of n
cats is equal to the Bell number B(n) = 1

e

∑∞
k=1

kn

k! (we have
a similar number for the event dimension E) and the number
of discretizations of N values is 2N . Obviously, an exhaustive
search is unfeasible and as far as we know, there is no tractable
optimal algorithm. Therefore the cost criterion is optimized
using a greedy bottom-up strategy whose main principle is
described in pseudo-code Algorithm 1. We start with the finest
grained data grid, that is made of the finest possible univariate
partitions (of S, T and E), i.e., based on single value intervals
or clusters. Then, we evaluate all merges between clusters of
sequence ids, clusters of events and adjacent time intervals and
perform the best merge if the cost criterion decreases after the
merge. We iterate until there is no more improvement of the
cost criterion.

Algorithm 1: KHC: Cats data grid
Input : M Initial data grid solution
Output: M∗, cost(M∗) ≤ cost(M) final data grid solution with improved

cost
1 M∗ ←M ;
2 while improved data grid solution do
3 M ′ ←M∗;
4 forall the Merge m between two clusters of S or E or

two intervals of T do
5 M+ ←M∗ +m ; //consider merge m for grid M∗

6 if cost(M+) < cost(M ′) then
7 M ′ ←M+;

8 if cost(M ′) < cost(M∗) then
9 M∗ ←M ′ ; // Improved grid solution

10 return M∗

A straightforward implementation of the greedy heuristic
remains a hard problem since each evaluation of the cost
criterion for a grid M requires O(naN) time, given that the
initial finest grid is made of up to n × a × N cells (where



n is the number of cats ids, a the number of events (|E|)
and N the number of points in D). Furthermore, each step of
algorithm 1 requires O(n2) (resp. O(a2), O(N)) evaluations
of merges of clusters of cats ids (resp. clusters of events, time
intervals); and there are at most O(n + a + N) steps from
the finest grained model to the null model. The overall time
complexity is bounded by O(naN(n2 +a2 +N)(n+a+N)).
In [6], it has been shown that further optimizations allow
to reduce the time complexity to O(N

√
N logN). Advanced

optimizations combined with sophisticated algorithmic data
structures mainly exploits (i) the sparseness of the grid, (ii)
the additivity property of the cost criterion and (iii) starts
from non-maximal grained grid models using pre and post-
optimization heuristics:

(i) Cats data sets represented by 3D points are sparse.
Among the O(naN) cells of the grid, at most N
cells are non-empty. The contribution of empty cells
to the cost criterion in definition 2 is null, thus each
evaluation of a data grid may be performed in O(N)
time through advanced algorithmic data structures.

(ii) The additivity of the cost criterion stems from the
data-dependent hierarchical prior of criterion. It means
that it can be split in a hierarchy of components of
the grid model: the variables (S, T and E), then
the parts (clusters or intervals) and finally cells. The
additivity property allows to evaluate all merges be-
tween intervals or clusters in O(N) time. Moreover,
the sparseness of the data set ensures that the number
of revaluations (after the best merge is performed) is
small on average.

(iii) Instead of starting from the finest grained grid, for
tractability concern, the algorithm starts from grids
with at most O(

√
N) clusters or intervals. Dedicated

preprocessing and postprocessing heuristics are em-
ployed to locally improve the initial and final solutions
produced by algorithm 1. In these heuristics, the
cost criterion is post-optimized alternatively for each
variable while the partitions of the others are fixed,
by moving values across clusters and moving interval
boundaries for the time variable.

The optimized version of algorithm 1 is now time-efficient but
may lead to a local optimum. To alleviate this concern, we use
the Variable Neighborhood Search (VNS) meta-heuristic [7].
The main principle consists of multiple runs of the algorithms
using various random initial solutions (we consider 10 rounds
of initialization): it allows anytime optimization – the more
you optimize, the better the solution – while not growing the
overall time complexity of algorithm 1.

III. EXPLOITING THE GRID

In some real-world large-scale case studies, the optimal
grid M∗ resulting from the optimization algorithm KHC is
made of several hundreds of clusters of cats ids (or intervals
and/or clusters of events), i.e. millions of cells, which is
difficult to exploit and interpret. To alleviate this issue, we
suggest a grid simplification method together with several
criteria that allow us to choose the granularity of the grid for
further analysis, to rank values in clusters and to gain insights
in the data through meaningful visualizations.

A. Data grid simplification

Dissimilarity index and grid structure simplification. We
suggest a simplification method of the grid structure that
iteratively merge clusters or adjacent intervals – choosing the
merge generating the least degradation of the grid quality. To
this end, we introduce a dissimilarity index between clusters
or intervals which characterize the impact of the merge on the
cost criterion.

Definition 3 (Dissimilarity index): Let c.1 and c.2 be two
parts of a dimension partition of a grid model M (i.e. two
clusters of sequence ids or events or two adjacent intervals).
Let Mc.1∪c.2 be the grid after merging c.1 and c.2. The
dissimilarity ∆(c.1, c.2) between the two parts c.1 and c.2 is
defined as the difference of cost before and after the merge:

∆(c.1, c.2) = cost(Mc.1∪c.2)− cost(M)

When merging clusters that minimize ∆, we obtain the
sub-optimal grid M ′ (with a coarser grain, i.e. simplified) with
minimal cost degradation, thus with minimal information loss
w.r.t. the grid M before merging.
Performing the best merges w.r.t. ∆ iteratively over the three
partitioned variables without distinction, starting from M∗

until M∅, three agglomerative hierarchies are built and the end-
user can stop at the chosen granularity that is necessary for the
analysis while controlling either the number of clusters/cells
or the information ratio kept in the model. The information
ratio of the grid M ′ is defined as follows:

IR(M ′) = (cost(M ′)− cost(M∅))/(cost(M∗)− cost(M∅))

where M∅ is the null model (the grid where no dimension
is partitioned).
Building the hierarchies from M∗ to M∅ for the partitioned
variables S, T and E shows a quadratic time complexity w.r.t.
the total number of parts of the partitioned variables of M∗.
However, generally, KHC has already done the hard work: the
number of parts is small. In practice, the computational time
for building the hierarchies is negligible compared with the
optimization phase.

B. Ranking cats and events

Typicality for ranking categorical values in a cluster.
When the chosen granularity is reached through agglomerative
hierarchy, the number of clusters per categorical dimension
(cats ids or events) decreases and mechanically the number
of values per cluster increases. It could be useful to focus
on the most representative values (cats ids or events) among
thousands of values of a cluster. In order to rank values in a
cluster, we define the typicality of a value as follows:

Definition 4 (Typicality of a value in a cluster): For a
value v in a cluster c of the partition XM of dimension X
given the grid model M , the typicality of v is defined as:

τ(v, c) =
1

1−PXM (c)×∑
cj∈XM

cj 6=c

PXM (cj)(cost(M |c \ v, cj ∪ v)− cost(M))



where PXM (c) is the probability of having a point with its
value in cluster c, c \ v is the cluster c from which we have
removed value v, cj∪v is the cluster cj to which we add value
v and M |c\v, cj∪v the grid model M after the aforementioned
modifications.

Intuitively, the typicality evaluates the average impact in terms
of cost on the grid model quality of removing a value v from
its cluster c and reassigning it to another cluster cj 6= c. Thus,
a value v is representative (say typical) of a cluster c if v is
“close” to c and “different in average” from other clusters
cj 6= c.

C. Insightful visualizations

Insightful visualizations with Mutual Information and
Contrast. It is common to visualize 2D coclustering results
using 2D frequency matrix or heat map. For 3D coclustering,
it is useful to select a dimension of interest (in our case,
sequence ids S) and then we are able to visualize the frequency
matrix of the two other dimensions (T and E) given a cluster
c of S. We also suggest two other insightful measures for
coclusters to be visualized, namely, the Contribution to Mutual
Information (CMI) and the Contrast – providing additional
valuable visual information inaccessible with only frequency
representation. Notice that the contributed visualizations are
also valid whatever the dimension of interest.

Definition 5 (Mutual Information and Contribution): For
a cluster of cats ids ciS , the mutual information between two
partitioned variables TπM and EπM (from the partition πM
of time and event variables induced by the grid model M ) is
defined as:

MI(TπM ;EπM ) =

i1=kT∑
i1=1

i2=kE∑
i2=1

MIi1i2

where MIi1i2 = p(ci1i2) log
p(ci1i2)

p(ci1)p(ci2)

where MIi1i2 represent the contribution of cell ci1i2 to the
mutual information.

Thus, if MIi1i2 > 0 then p(ci1i2) > p(ci1)p(ci2) and we
observe an excess of interaction between ci1 and ci2 located
in cell ci1i2 defined by time interval Ti1 and group of events
Ei2 . Conversely, if MIi1i2 < 0, then p(ci1i2) < p(ci1)p(ci2),
and we observe a deficit of interactions in cell ci1i2 . Finally,
if MIi1i2 = 0, then either p(ci1i2) = 0 in which case the
contribution to MI is null and there is no interaction or
p(ci1i2) = p(ci1)p(ci2) and the quantity of interactions in
ci1i2 is that expected in case of independence between the
partitioned variables.

Definition 6 (Contrast): The contrast between the two par-
titioned variables to be visualized (TπM , EπM ) considered
jointly and SπM is defined as:

Contrast((TπM , EπM ), SπM ) =

iS=kS∑
iS=1

i1=kT∑
i1=1

i2=kE∑
i2=1

MIiSi1i2

where MIiSi1i2 = p(ciSi1i2) log
p(ciSi1i2)

p(ci1i2)p(ciS )

Again, the sign of MIiSi1i2 values explains what is contrast-
ing in ciS w.r.t. the set of all sequence ids from the view
(TπM , EπM ). Positive and negative values both highlight the
cells that characterize ciS w.r.t. the set of all sequence ids;
the former says that an excess of interaction is located in cell
ci1i2iS , the latter highlights a deficit of interaction (a negative
contrast); and MIi1i2iS = 0 (or nearly) indicates no significant
contrast.

While the visualization of CMI of the cells highlight
valuable information that is local to a cluster of cats, the
contrast is a global scope visualization. Both CMI and contrast
bring complementary insights to exploit the summary provided
by the grid. In our experiments, we show the added-value of
those visualizations on both synthetic and real data sets.

IV. EXPERIMENTAL VALIDATION

Our grid-based co-clustering method KHC and visualization
tools are both available under the name KHIOPS at http://www.
khiops.com. In this section, to validate our contributions, we
report the experimentations on both synthetic and real-world
large-scale DBLP data sets. These experiments are designed to
answer the following questions:

1) Effectiveness: How successful is KHC in co-clustering
cats, i.e., finding meaningful clusters of cats ids and
events and intervals of time ?

2) Efficiency / Sacalability: Considering computational
time, how does KHC scale w.r.t. the data size and
characteristics (i.e., the number of points, cats ids,
events, underlying pattern to be discovered and noise)
?

3) Knowledge and insights: What kind of insights do the
resulting grid and the exploitation tools bring in our
knowledge of the data ?

A. Synthetic data sets

Let us consider two patterns M1 and M2 defined on the
time domain T = [0; 1000] ⊆ R+ and the set of events E =
{a, b, . . . , k, l} such that table II defines:

TABLE II. TWO SYNTHETIC PATTERNS: DEFINITION.

M1

t ∈ TM1
1 = [0; 250]⇒ e ∈ EM1

1 = {a, b, c}
t ∈ TM1

2 =]250; 500]⇒ e ∈ EM1
2 = {d, e, f}

t ∈ TM1
3 =]500; 750]⇒ e ∈ EM1

3 = {g, h, i}
t ∈ TM1

4 =]750; 1000]⇒ e ∈ EM1
4 = {j, k, l}

M2

t ∈ TM2
1 = [0; 100]⇒ e ∈ EM2

1 = {j, k, l}
t ∈ TM2

2 =]100; 400]⇒ e ∈ EM2
2 = {g, h, i}

t ∈ TM2
3 =]400; 600]⇒ e ∈ EM2

3 = {d, e, f}
t ∈ TM2

4 =]600; 1000]⇒ e ∈ EM2
4 = {a, b, c}

Let us consider 10 cats following pattern M1 and 10 cats
for pattern M2 (we also did the experiments for CM =50 and
100 cats per pattern). We generate a data set D of N = 220

points (i.e., 5.104 points in average per cats). Each point is a
triplet with a randomly chosen cats id (among 20), a random
value t (on T ) and an event value e generated according
to the pattern Mi related to the cats id, i.e. an event value
randomly chosen in the set Mi(t) (see Table II). Furthermore,



we consider several noisy versions of this data set at various
noise level η = {0.1, 0.2, 0.3, 0.4, 0.5}: when generating a
point, the probability that the event value fulfills the pattern Mi

definition is p(e ∈Mi(t)) = 1−η and p(e ∈ {E\Mi(t)}) = η.
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Fig. 2. Evolution of ARI for synthetic two-pattern cats data sets, for CM =
10, 50 and 100 cats per pattern and at various levels of noise w.r.t. number
of points N .

We apply KHC to subsets of D of increasing sizes: N
varying from 21 to 220, i.e., overall KHC is experimented
through 360 various synthetic data sets. We compute the
Adjusted Rand Index (ARI) for each grid generated by KHC
to evaluate the agreement between cats id clusters of the grid
and the two underlying patterns – the ground truth.
The results are reported in Figure 2. We observe that for small
subsets of D, there is not enough points for KHC to discover
significant patterns: no cluster of cats id is found for N ≤ 64
(i.e., in average 3 points per cats). For CM = 10 (10 cats per
pattern in figure 2(a)), beyond N = 128 points (6 points per
cats in average), we have ARI = 1 and the two underlying
patterns are discovered. We see also that at noise level η ≤ 0.1
, N = 128 points are enough to find the patterns; then, more
noise implies that more points are necessary to discover the
patterns. Finally, increasing the number of points up to 220

does not lead to over-fitting, ARI = 1 and is stable. The same
observations hold for CM = 50 and CM = 100: when the
number of cats per pattern increases more points are needed.
Concerning the other variables (time T and event E), generally
speaking, when considering the increasing number of points,
the true segmentation of time is discovered at the same step

(or just before) and the true clustering of events is discovered
first, i.e., just before the clustering of cats – both remaining
stable with increasing number of points in the data.

Running time. Figure 3 reports running time of KHC on
various versions of two-pattern data sets for CM = 10, 50, 100
w.r.t. the number of points N . As expected, running time
increases with the number of points in D but also with CM
and η. For the most “difficult” data set, i.e., N = 220,
CM = 100 (5200 points per cats in average) and η = 0.5,
KHC finds the two underlying patterns in about 90 minutes:
the difficulty comes from the time dimension (potentially 220

different values).
A similar experiment has been led while considering integer
values of time (T = [0; 1000] ⊆ N+); in that case, KHC
finds the patterns faster, in 13 minutes. We have led other
similar experiments with 5 and 10 underlying patterns to be
discovered. The main result is that more cluster patterns require
more computational time and more points to be detected.
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Fig. 3. Running time of KHC w.r.t. number of points (N ), number of cats
per pattern (CM ) and noise level (η).

Visualization and characterization of clusters. Let us con-
sider the 3D-grid obtained by KHC on the two-pattern data
set with N = 220 points, CM = 10 and η = 0.5. Figure 4
shows 2D-views (T×E) of each cluster of cats found by KHC.
Frequency, CMI and contrast visualizations bring different
insights in the data and valuable information on the found
clusters.
In figures 4M1(a) and M2(a), for the frequency visualization
(i.e., the number of points NiSjT iE for a cell iSjT iE), we
already perceive the underlying patterns M1 and M2; however,
the noise level η = 0.5 degrades the visibility of patterns.
Figures 4M1(b) and M2(b) bring to light and characterize
cluster patterns M1 and M2. Red cells relate positive CMI, i.e.,
excess of interactions between T and E in a cell conditionally
to current cats ids cluster – that characterizes pattern cluster.
Light blue cells stand for negative MIi1i2 values, i.e. a slight
deficit of interactions corresponding to noisy cells that are not
significant to definition of the pattern cluster.
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Fig. 4. T ×E 2D-view: visualization of Frequency, Contribution to Mutual Information (CMI) and contrast for the two clusters of cats (corresponding to the
two underlying patterns M1 and M2) found by KHC.

Finally, figures 4M1(c) and M2(c) show the contrasting cells
of each cats ids cluster: red for positive contrast, blue for
negative contrast and white for no contrast. For example, let
consider cluster pattern M1: despite the noise level, white cell
([0; 100], {g, h, i}) is not characteristic of M1 since probability
of event group {g, h, i} in time interval [0; 100] is not different
from M1 to M2. Also, white cell ([401; 500], {d, e, f}) shows
null contrast since it is common to the definition of the two
underlying patterns (there is a similar distribution of points in
the cell due to our data generator). Finally, for M1, red cells
an excess of interactions whereas blue cells indicates negative
contrast (a deficit of interactions) – that gives the mirror effect
between figures 4M1(c) and M2(c).

B. Big pictures from DBLP bibliography

In this section, we report the results of an exploratory
analysis of the DBLP data set using our contributions.
The DBLP Computer Science Bibliography [8] records
millions of publications (mainly from journals and conference
proceedings) of Computer Science authors since 1936.
Let us consider a cats-like view of DBLP as a 3D point data
set: Author, Y ear,Event, i.e. we consider author’s sequence
of publications over the years as cats data: Author is the cats
id, Event is the name of the journal/proceedings/other where
an author has published and Year is the year he has published
in the current event. Duplicated points indicate that an author
has published more than once in an event the same year (like
e.g., (Jian Pei, 2008, KDD) appearing thrice in the data).
In this form, DBLP data1 contains more than 6.352 million

1downloaded in august 2013; 2013 was still incomplete and 2014 referenc-
ing just began

points – described by more than 1.297 million authors who
have published in 6767 events from 1936 to 2014. In addition
to its large-scale nature, the DBLP cats data shows skewed
marginal distributions2, which makes a difficult problem to
effectively address: roughly speaking, (a) 80% of authors
have published less than 5 times; (b) Most of the points come
from the last 20 years; (c) half the events appear less than
200 times and 80% less than 1000 times.

Big Picture. To confirm the scalability and robustness of our
approach and to obtain a global picture of DBLP cats data,
we apply KHC on the whole data – and to the best of our
knowledge, it has never been done. A first grid solution is
obtained after 12 hours. Several rounds of optimization allow
12% improvement of the cost criterion and KHC ends after
19 days. Figure 5 relates the evolution of cost improvement
(compared with the first output grid solution which is already
a “good” solution) w.r.t. computational time. We observe that
most of the improvement is achieved in the first three days,
then the improvement is saturated. The anytime facet of KHC
allows us to stop before the completion of all rounds of
optimization and more generally, it allows the analyst to set
the amount of time devoted to the mining phase.

Notice that we have also run KHC on smaller versions
of DBLP cats data, e.g., with only authors having published
5 times or more and with only events appearing more than
40 times in the data: this version of DBLP is made of 240
thousands of authors and 5K events over the same timeline.
Obviously, computational time is smaller (first grid obtained

2http://dblp.uni-trier.de/statistics/
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Fig. 5. cost improvement (compared with the first output grid) w.r.t. running
time on the whole DBLP cats data set.

in 7 hours, rounds of optimization offer 8% of improvement
and end in 8 days). Similar high-level results described below
can be obtained from both experiments since removed data
correspond to the least frequent events and authors (also the
least typical) that have the smallest impact on the global data
grid structure.
As far as we know, the whole DBLP cats data has never
been studied through summarization techniques. Most of the
time, only carefully selected subsets of the data are used for
experimental validation in the literature. We think it is worth
waiting several days for computation since DBLP cats data
is year-scale, thus potential update of such analysis is needed
once a year. Using the whole DBLP cats data set, the final grid
M∗ is made of 267 clusters of authors, 4 time intervals and
565 clusters of events (i.e., 6 × 105 cells) whereas the finest
grid is made of about 6.8× 1011 cells.

Using dissimilarity index ∆ and information rate IR, from
M∗ to M∅, we build a hierarchy of clusters or intervals
for each dimension. Figure 6 relates the whole hierarchy
for the event dimension and shows how the events (pro-
ceedings/journals/others) are organized by topic in DBLP
from cats data point of view. Since 565 clusters are hardly
interpretable by humans, figure 6 highlights the hierarchy at
HierarchicalLevel = 1− IR(M) = 0.56, i.e., keeping 44%
information from M∗.
At this granularity, 21 clusters of events can be interpreted
and labeled easily by looking at the most typical event ti-
tles of the clusters. Indeed, the found clusters correspond to
Computer Science research sub-fields indexed by DBLP. For
example, SIGMETRICS, SIGCOMM, INFOCOMM, GLOBE-
COM, IMC, CoNEXT, IEEE Communications Magazine,
. . . are among the most typical events of terminal clusters under
the branch 11 (labeled Networks&Communications) because
recurrent researchers in that field regularly published in these
events over the years and not significantly in other fields like
e.g., 19: Robotics. Notice also the singularity of cluster 8
which mainly consists of references of Computing Research
Repository (CoRR) covering many sub-fields of Computer
Science research.

At this scale, the grid is made of 21 clusters of events,
4 time intervals and 20 clusters of authors. Considering the
2D visualization of CMI for Author and Event dimensions
(see figure 7), red cells (i.e., positive CMI relates significant
positive interactions) highlight the diagonal 2D-cells of the
A× E matrix with different color intensity depending on the
time interval or the whole period considered, while the other
light blue cells indicate a deficit of interactions. The diagonal
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Fig. 6. Hierarchy of events from DBLP data set. Colored sub-
hierarchy at HierarchicalLevel = 1 − IR(M) = 0.56, where
21 clusters of events may be labeled easily. 1: Software Engineering;
2: AI, ML, Agents, DB, DM; 3: Educat’lComput, ComputerHumanIn-
teract, VisualInterface; 4: Computat’Linguistics, Info&TextRetrieval, NLP,
Speech-AudioRecog&Process; 5: FormalMethods, LogicComput&Prog; 6:
Security, Cryptography; 7: DiscreteMaths, Algo, CS&InformTheory; 8:
CoRR&InformTheory; 9: Real-TimeSystems, Parallel-Distrib-GridComputing;
10: GeneralComput, Systems&Software; 11: Networks&Communications;
12: SystIntegration-Config-Design-Architecture; 13: Simulation, Applied-
Maths, OperatResearch; 14: MedicalInfo, SignalProcess; 15: ComputBiol-
ogy, BioInfo; 16: DiverseAppliedCS-1; 17: DiverseAppliedCS-2; 18: Ap-
pliedAI&NeuralNetworks&FuzzySystems; 19: Robotics; 20: CompGraphics,
InfoVisualization; 21: ComputerVision, PatternRec, Multimedia, ImageProcess

form of interactions between authors and events (actually
almost diagonal due to the singular cluster 8 including CoRR)
indicates that, at this scale, most of the researchers (grouped
in clusters) are active exclusively in a unique sub-field.
Another interesting observation may be made when consider-
ing the two agglomerate clusters (clusters 1-12 and 13-21 from
figure 6) at the top the hierarchy: the former mainly relates
to fundamental research while the latter is more focused on
applied research.

Fig. 7. CMI visualization for A× E for the whole time period.

Zoom in the Data Bases and Data Mining fields. Figure 8
details the sub-hierarchy of cluster 2 (AI, ML, Agents, DB,
DM) from figure 6. For the same reason as above, and even if
there exist authors across several sub-fields of cluster 2, Data
Bases, Data Mining, Machine Learning, Artificial Intelligence
and Agents Systems are recognized as close though different
sub-fields – confirming the intuition; particularly, Data Mining



is closer to Data Bases than AI, ML or Agents. As in previous
observation, since most of the researchers (grouped in clusters)
are active exclusively in a unique sub-field, events of a sub-
field are grouped together – which explains the obtained
hierarchy. Another interesting observation from Figure 8 is
that the most typical events of terminal event clusters are the
top-tier conferences and journals of the sub-field, e.g., KDD,
SDM, ICDM for data mining or VLDB, SIGMOD for the
data base community. An intuitive explanation is that top-tier
events are long-time well established conferences or journals
with regular community, a part of which is made of researchers
frequently publishing in those events; while other events are
either younger or not followed by a large enough regular
community.
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Fig. 8. Sub-hierarchy corresponding to close but different sub-fields: Machine
Learning, Artificial Intelligence, Agents, Data Bases, Data Mining. (X-axis:
HierarchicalLevel = 1− IR(M), Y -axis: most typical events of terminal
clusters).

In figure 9, we present two terminal clusters of authors who
are involved in DB/DM research. Since clusters of authors may
contain thousands of authors (due to skewness, most of them
have published less than 5 times) and frequency visualization
is not enough to characterize the clusters, we show the 15
most typical authors and what is contrasting in their trajectory
of publications over the years w.r.t. the rest of the data.
We observe that cluster (a) is made of senior DB researchers
(H. Garcia-Molina, D. Weikum, D. Agrawal, . . . ) who are
characterized by their activity in DB events in the whole time
period with a strong contrast before 2004 in the top DB events.
Cluster (b) whose most typical authors are e.g., J. Xu Yu, W.
Lehner, . . . is made of experienced but younger DB researchers:
the contrast highlight their activity in DB field in the last ten
years.
We have also found clusters of authors who are characterized
(by contrast) by their activity in (core) Data Mining research
(resp. Semantic Web): typical authors of those clusters are
well-known experienced researchers like P.S. Yu, J. Han, C.
Faloutsos, . . . (resp. I. Horrocks, S. Staab, W. Neijdl, . . . ) who
cover their respective field since its birth. Similar observations
can be made for any other sub-fields discovered by the
hierarchy of event clusters in figure 6.

Thus, starting from the big picture provided by the 3D-

Typical Authors Contrast

Fig. 9. Visualization of two clusters of authors, their typical authors, and
contrast in 2D T × E view. Positive contrast (red cells) highlights what is
characteristic of the cluster. (DBi and DMj correspond to terminal clusters
highlight in figure 8.

grid computed in a parameter-free way by KHC on the whole
DBLP cats data, we are able to select a granularity for further
analysis, to zoom in discovered sub-fields of Computer Science
research indexed by DBLP, to highlight the most typical events
of various sub-fields, to obtain the most typical authors of
clusters of authors that are involved in the field and to explain
the characteristics of their sequence of publications in terms
of contrast.

V. BACKGROUND AND RELATED WORK

Since most standard numerical time series clustering algo-
rithms are based on (dis) similarity measures, several (dis)
similarity measures have been designed and exploited for
cats clustering: e.g., the Levenshtein distance for clustering
life courses [4], the discrete Fréchet distance for clustering
migration data [9], the Compression-based Distance Mea-
sure (CDM) [10]. . . These measures are adapted to classi-
cal clustering and partitioning algorithms; they often require
aligned time-stamps, parameter tuning and do not directly
offer abilities to interpret and explore the results for time
and event variable. Besides distance-based clustering, [11]
extends model-based custering for cats data, more precisely
for categorical/ordinal event sequences.

Coclustering methods may be classified into two different
branches: (i) coclustering methods for object × attributes (see
pioneering work [12]); (ii) coclustering methods for two or
more attributes like Dhillon et al. [13], which is the most
related to 2D data grid models. Dhillon et al. [13] have
proposed an information-theoretic coclustering approach for
two discrete random variables: the loss in Mutual Informa-
tion MI(X,Y ) −MI(XπM , Y πM ) is minimized to obtain a



locally-optimal grid with a user-defined mandatory number of
clusters for each dimension.
The Information Bottleneck (IB) method [14] stems from
another information-theoretic paradigm: Given the joint prob-
ability P (X,Y ), IB aims at grouping X into clusters T in
order to both compress X and keep as much information as
possible about Y . IB also minimizes a difference in Mutual
Information: MI(T,X)− βMI(T, Y ), where β is a positive
Lagrange multiplier. Wang et al. [15] build upon IB and
suggest a coclustering method for two categorical variables.
Extending IB for more than two categorical variables, Slonim
et al. [16] have suggested the agglomerative multivariate infor-
mation bottleneck that allows constructing several interacting
systems of clusters simultaneously; the interactions among
variables are specified using a Bayesian network structure.

There also exist many research works that suggest solutions
for the problem of segmentation of one discrete-time event
sequence: e.g., Kiernan & Terzi [17] suggest a parameter-
free method for building interpretable summaries through
segmentation of only one event sequence.

As far as we know, there is no method building upon above
recent related work and suggesting an effective and efficient
solution to large-scale clustering of cats. . . except for the very
recent work by Garcı́a-Magariños & Vilar [18] who confirm
the scarcity of clustering methods dealing with such data sets.
Moreover, the distance-based framework suggested in [18]
requires the time-stamps to be aligned and equally spaced for
all sequences and thus does not consider timing information
like elapsed times between consecutive events.

The substantial differences of the present work compared
with [6] are: (i) we are dealing with multiple mixed-type
variables, i.e., not only two categorical variables: this allows
us to summarize temporal event sequence data set; (ii) we
are providing useful tools to explore and exploit the resulting
summary at various granularities.

VI. CONCLUSION & DISCUSSION

We have suggested a method for clustering and exploratory
analysis of temporal event sequence data based on three-
dimensional data grid models. The sequence identifiers are
grouped into clusters, the time dimension is discretized into
intervals and the events are also grouped into clusters –
the whole forming a 3D-grid. The optimal grid (the most
probable a posteriori in Bayesian terms) is obtained with an
user parameter-free procedure. To exploit the resulting grid,
we have suggested (i) a dissimilarity index between clusters
to select the wanted granularity of the grid while controlling
the information loss; (ii), a criterion, namely the typicality, to
rank and identify representative values in a cluster; (iii) two
other criteria stemming from Mutual Information to character-
ize, interpret and visualize the found clusters. Our insightful
findings have been illustrated on both synthetic and real-world
data sets.

We think our approach has a high potential to inspire
the research community, paritcularly in emerging application
domains such as web usage mining, or sociology for e.g., life
course mining as well as healtcare for e.g., electronic medical
records mining.
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[11] S. Frühwirth-Schnatter and C. Pamminger, “Model-based clustering of
categorical time series,” Bayesian Analysis, vol. 5, no. 2, pp. 345–368,
2010.

[12] J. A. Hartigan, “Direct clustering of a data matrix,” Journal of the
American Statistical Association, vol. 67, pp. 123–129, 1972.

[13] I. S. Dhillon, S. Mallela, and D. S. Modha, “Information-theoretic co-
clustering,” in Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Washington,
DC, USA, August 24 - 27, 2003, 2003, pp. 89–98.

[14] N. Tishby, O. C. Pereira, and W. Bialek, “The information bottleneck
method,” in Allerton Conference on Communication, Control and Com-
puting, 1999.

[15] P. Wang, C. Domeniconi, and K. B. Laskey, “Information bottleneck
co-clustering,” in Workshop TextMining@SIAM DM’10, 2010.

[16] N. Slonim, N. Friedman, and N. Tishby, “Agglomerative multivariate
information bottleneck,” in Advances in Neural Information Processing
Systems 14, NIPS, December 3-8, 2001, Vancouver, British Columbia,
Canada, 2001, pp. 929–936.

[17] J. Kiernan and E. Terzi, “Constructing comprehensive summaries of
large event sequences,” in Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Las Vegas, Nevada, USA, August 24-27, 2008, 2008, pp. 417–425.

[18] M. Garcı́a-Magariños and J. A. Vilar, “A framework for dissimilarity-
based partitioning clustering of categorical time series,” Data Mining
& Knowledge Discovery, vol. 29, no. 2, pp. 466–502, 2015.


