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Abstract. In supervised learning, discretization of the continuous ex-
planatory attributes enhances the accuracy of decision tree induction
algorithms and naive Bayes classifier. Many discretization methods have
been developped, leading to precise and comprehensible evaluations of
the amount of information contained in one single attribute with respect
to the target one.
In this paper, we discuss the multivariate notion of neighborhood, ex-
tending the univariate notion of interval. We propose an evaluation crite-
rion of bipartitions, which is based on the Minimum Description Length
(MDL) principle [1], and apply it recursively. The resulting discretization
method is thus able to exploit correlations between continuous attributes.
Its accuracy and robustness are evaluated on real and synthetic data sets.

1 Supervised partitioning problems

In supervised learning, many inductive algorithms are known to produce bet-
ter models by discretizing continuous attributes. For example, the naive Bayes
classifier requires the estimation of probabilities and the continuous explanatory
attributes are not so easy to handle, as they often take too many different values
for a direct estimation of frequencies. To circumvent this, a normal distribution
of the continuous values can be assumed, but this hypothesis is not always real-
istic [2]. The same phenomenon leads rules extraction techniques to build poorer
sets of rules. Decision tree algorithms carry out a selection process of nominal
attributes and cannot handle continuous ones directly. Discretization of a con-
tinuous attribute, which consists in building intervals by merging the values of
the attribute, appears to be a good solution to these problems.

Thus, as the results are easily interpretable and lead to more robust esti-
mations of the class conditional probabilities, supervised discretization is widely
use. In [2], a taxonomy of discretization methods is proposed, with three dimen-
sions : supervised vs. unsupervised (considering a class attribute or not), global



vs. local (evaluating the partition as a whole or locally to two adjacent inter-
vals) and static vs. dynamic (performing the discretizations in a preprocessing
step or imbedding them in the inductive algorithm). This paper is placed in the
supervised context.

The aim of the discretization of a single continuous explanatory attribute is
to find a partition of its values which best discriminates the class distributions
between groups. These groups are intervals and the evaluation of a partition is
based on a compromise : fewer intervals and stronger class discrimination are
better. Discrimination can be performed in many different ways. For example,

– Chimerge [3] applies chi square measure to test the independance of the
distributions between groups,

– C4.5 [4] uses Shannon’s entropy based information measures to find the most
informative partition,

– MDLPC [5] defines a description length measure, following the MDL princi-
ple,

– MODL [6] states a prior probability distribution, leading to a bayesian eval-
uation of the partitions.

Fig. 1. The XOR problem : projection on the axes leads to an information loss.

The univariate case does not take into account any correlation between the
explanatory attributes and fails to discover conjointly defined patterns. This fact
is usually illustrated by the XOR problem (cf. Figure 1) : the contributions of
the axes have to be considered conjointly. Many authors have thus introduced a
fourth category in the preceding taxonomy : multivariate vs. univariate (search-
ing for cut points simultaneously or not), and proposed multivariate methods
(see for examples [7] and [8]). These aim at improving rules extraction algorithms
and build conjonctions of intervals. It means that considered patterns are paral-
lelepipeds. This can be a limiting condition as underlying structures of the data
are not necessarily so squared (cf. Figure 2). We then distinguish these strongly
biased multivariate techniques from weakly biased multivariate ones, that con-
sider more generic patterns. This opposition is slightly discussed in [2], where the
authors talk about feature space and instance space discretizations respectively.



Fig. 2. A challenging synthetic dataset for strongly biased multivariate discretization
methods.

We present in this paper a new discretization method, which is supervised,
local, static, multivariate and weakly biased. As for the MDLPC method, an
evaluation criterion of a bipartition is settled following the MDL principle and
applied recursively.

The remainder of the paper is organized as follow. We first set the notations
(section 2). Then, we describe the MDLPC technique (section 3) and our frame-
work (section 4). We propose a new evaluation criterion for bipartitions (section
5) and test its validity on real and synthetic datasets (section 6). Finally, we
conclude and point out future works (section 7).

2 Notations

Let us set the notations we will use throughout this paper. Let O = {o1, . . . , oN}
be a finite set of objects. A target class ln lying in an alphabet of size J is
associated to every object on. For a subset A of O, N(A) stands for the size
of A, J(A) for the number of class labels represented in A and Nj(A) for the
number of elements in this groups with label j (1 ≤ j ≤ J). The Shannon entropy
of A, which measures the amount of information in bits needed to specify the
class labels in A, is then

Ent(A) = −
J∑

j=1

Nj(A)
N(A)

log2

Nj(A)
N(A)

.

The problem consists in setting an evaluation criterion of the hypothesis
H(A, A1, A2) : split the subset A so that A = A1

⊔
A2. We distinguish the

null hypothesis H(A, A, ∅)(= H(A, ∅, A)) from the family of split hypotheses
(H(A, A1, A2))A1�A.



Following the MDL principle, a description length l(A, A1, A2) must be as-
signed to each hypothesis and the best hypothesis is the one with the shortest
description. Two steps are considered for the description : description of the
hypothesis (leading to a description length lh(A, A1, A2)) and description of the
data given the hypothesis (leading to a description length ld/h(A, A1, A2)), so
that l(A, A1, A2) = lh(A, A1, A2) + ld/h(A, A1, A2).

3 MDLPC discretization method

In the univariate case, O is a set of ordered real values (i.e. on1 ≤ on2 if n1 ≤ n2)
and the considered groups are intervals. The MDLPC method [5] seeks for the
best split of an interval I into a couple of sub-intervals (I1, I2), applying the
MDL principle.

We begin by considering a split hypothesis. This is determined by the position
of the boundary point, and the numbers J(I1), J(I2) of class labels represented
in I1 and I2 respectively. Description lengths are no other than negative log of
probabilities, and assuming a uniform prior leads to write :

lh(I, I1, I2) = log2(N(I) − 1) + log2(3
J(I) − 2),

as there is N−1 possibilities for the choice of the boundary point and the number
of admissible values for the couple (J(I1), J(I2)) has been evaluated to 3J(I)−2.

The description of the data given the hypothesis consists in first specifying the
frequencies of the class labels in each interval and second the exact sequences of
class labels. The evaluation of the lengths is based on the entropy of the intervals
I1 and I2 :

ld/h(I, I1, I2) = J(I1)Ent(I1) + N(I1)Ent(I1) + J(I2)Ent(I2) + N(I2)Ent(I2).

The evaluation of H(I, I1, I2) finally relies on the following formula :

l(I, I1, I2) = log2(N(I) − 1) + log2(3
J(I) − 2)

+J(I1)Ent(I1) + N(I1)Ent(I1) + J(I2)Ent(I2) + N(I2)Ent(I2).

For the null hypothesis, the class labels in I have to be described only (i.e
lh(I, I, ∅) = 0) :

l(I, I, ∅) = J(I)Ent(I) + N(I)Ent(I).

The MDL principle states that the best hypothesis is the one with minimal
description length. As partitioning always decreases the value of the entropy
function, considering the description lengths of the hypotheses allows to balance
the entropy gain and eventually accept the null hypothesis. Performing recur-
sive bipartitions with this criterion leads to a discretization of the continuous
explanatory attribute at hand.



4 Multivariate framework

Extending the univariate case mainly requires the definition of a multivariate
notion of neighborhood corresponding to the notion of interval. The univariate
case does not actually consider the whole set of intervals but those whose bounds
are midpoints between two consecutive values. The resulting set of ”patterns”
is thus discrete, data dependent and induced by a simple underlying structure :
the Hasse diagram, which links two consecutive elements of O.

We thus begin by supposing that a non-oriented graph structure G on O
conveying a well-suited notion of proximity is provided. Some cases of natural
underlying structure arise, like road networks, web graphs, etc . . . If the objects
in O are tuples of an euclidean space R

d and a natural structure does not exist,
proximity graphs [9] provide definitions of neighborhood.

Fig. 3. Example of a Gabriel graph. The ball of diameter [ab] contains no other point :
a and b are Gabriel-adjacent. The ball of diameter [bc] contains another point : b and
c are not Gabriel-adjacent.

For example, as we work with vectorial data in practice, the Gabriel discrete
structure can be chosen. Two multivariate instances o1 and o2 are adjacent in
the Gabriel sense (cf Figure 3) if and only if

L(o1, o2)2 ≤ min
o∈O

L(o1, o)2 + L(o2, o)2,

where L is any distance measure defined on O.
The related discrete metric will be called the Gabriel metric on O and will

be used throughout the experiments. Any prior knowledge of the user would
eventually lead him to select another discrete metric, and it’s noteworthy that the
use of the Gabriel one is a general choice, made without any further knowledge.

Once a discrete structure G is chosen, we define partitions on the basis of
elementary ”patterns” related to G. We consider the balls induced by the discrete
metric δ related to G : δ(o1, o2) is the minimum number of edges needed to link
o1 and o2 (o1, o2 ∈ O). The resulting set of balls is denoted B (cf. Figure 4).

We can now express a multivariate analog of the univariate family of split
hypotheses, considering balls as basic patterns. In the multivariate case, a local



Fig. 4. Multivariate analog of intervals : examples of discrete balls. For example, the
ball centered in a with radius 2 contains 8 objects of the dataset.

bipartitioning hypothesis consists in spliting a subset S of O into a ball B ∈ B,
included in S, and its complement. H(S, B) denotes such a hypothesis. As we
utilize a connected discrete structure (the Gabriel graph), eventually obtaining
partitions with non-connected groups can be somewhat counterintuitive. We do
not try to alleviate this conceptual fact in the present paper.

5 Evaluation of a bipartition

The proposed framework leads to the study of the hypothesis H(S, B), where S
is a subset of O, B a ball included in S. We now introduce an evaluation criterion
l(S, B) for such a hypothesis. Following the MDL principle, we have to define a
description length lh(S, B) of the bipartition and a description length ld/h(S, B)
of the class labels given the bipartition.

We first consider a split hypothesis : B �= S. In the univariate case, the bipar-
tition results from the choice of a cut point. In the general case, the bipartition
is determined by the ball B and the description of B relies on two parameters :
its size N(B) and its index in the set of balls of size N(B) included in S.

Description lengths are negative log of probabilities and, if β(S, B) stands
for the number of balls of size N(B) included in S, we obtain

lh(S, B) = log2 N(S) + log2 β(S, B)

assuming a uniform prior.
Let us now specify the distribution of the class labels in a subset A of O (A

will be S, B or S \B). This is the same as putting the elements of A in J boxes.
We begin specifying the numbers of elements to put in the jth box, that is, the
frequencies (N1(A), . . . , NJ(A)). It then remains to give the index of the actual
partition in the set of partitions of A in J groups of sizes N1(A), . . . , NJ(A).

Each possible J-uple of frequencies satisfies the property that the sum of
its components equals N(A). The set of possible frequencies is then of size(
N(A)+J−1

J−1

)
. Counting the set of partitions of A in J groups of fixed sizes



N1(A), . . . , NJ(A) is a multinomial problem and the size of this set is the multi-
nomial coefficient N(A)!

N1(A)!...NJ (A)! .
Still assuming a uniform prior, the description length of the distribution of

the labels in A is then :

ld(A) = log2

(
N(A) + J − 1

J − 1

)
+ log2

N(A)!
N1(A)! . . . NJ(A)!

.

For fixing ld/h(S, B), we suppose the distributions of the labels in B and its
complement independant. This results in setting :

ld/h(S, B) = ld(B) + ld(S \ B).

Finally, the description length of a split hypothesis is given by the formula :

l(S, B) = log2 N(S) + log2 β(S, B)

+ log2

(
N(B) + J − 1

J − 1

)
+ log2

N(B)!
N1(B)! . . . NJ(B)!

+ log2

(
N(S \ B) + J − 1

J − 1

)
+ log2

N(S \ B)!
N1(S \ B)! . . . NJ(S \ B)!

.

The null hypothesis relies on the description of the size of the considered
subset (S) and the distribution of the labels in S. Indicating that the size is that
of S amounts to pointing the null hypothesis. Thus, lh(S, S, ∅) = log2 N(S) and
ld/h(S, S, ∅) = ld(S), giving

l(S, S) = log2 N(S) + log2

(
N(S) + J − 1

J − 1

)
+ log2

N(S)!
N1(S)! . . . NJ(S)!

.

Still, the decision results from an optimal compromise between an entropy
gain and a structural cost of the considered split hypotheses, taking into account
the null hyptohesis as well. But the latter does not employ the Shannon entropy
(as MDLPC does), replacing it by a binomial evaluation of the frequencies of
the distributions. The former exploits a multinomial definition of the notion of
entropy, overcoming the asymptotic validity of the Shannon entropy.

6 Experiments

The multivariate discretization algorithm consists in applying recursively the
following decision rule :

1. S a subset of O (initialy, S = O)
2. select the ball B0 which minimizes l(S, B) over the balls B ∈ B contained in

S,
3. if l(S, B0) < l(S, S), performs step 1 on S = B and S = S \ B, else stop.



Continuous Class Majority
Dataset Size Attributes Values Class

Iris 150 4 3 0.33

Wine 178 13 3 0.40

Heart 270 10 2 0.56

Bupa 345 6 2 0.58

Ionosphere 351 34 2 0.64

Crx 690 6 2 0.56

Australian 690 6 2 0.56

Breast 699 9 2 0.66

Pima 768 8 2 0.65

Vehicle 846 18 4 0.26

German 1000 24 2 0.7

Table 1. Tested datasets.

Constructing the Gabriel graph requires O(N3) operations. If D is the diam-
eter of the graph, the overall number of balls is in O(DN) and each decision thus
results from evaluating O(DN) hypotheses. Each evaluation can be performed
with O(J) operations, storing the O(DN) sizes of the balls. At most N splits
can be triggered, giving a time complexity in O(JDN2) and a space complex-
ity in O(DN) for the optimisation algorithm. In practice, the method performs
few splits and the number of available balls quickly decreases, giving an O(N3)
algorithm.

We perform three experiments, one on real datasets and two on synthetic
datasets. The metric is chosen to be the euclidean one. We do not consider any
other metric or weighting scheme, as the experiments aim at comparing our
methods with others, in a single framework.

The main advantage of partitioning methods lies in their intrinsic capacity for
providing the user with an underlying structure of the analysed data. However,
this structural gain may be balanced by an information loss. The first experiment
aims at evaluating how our method is affected by such a flaw. We consider
the resulting partition as a basic predictive model : a new instance is classified
according to a majority vote in the nearest group. We thus compare the accuracy
of the discretization method to the accuracy of the Nearest Neighbor rule (NN),
which gives the class label of its nearest neighbor to an unseen instance [10].

The tests are performed on 11 datasets (cf Table 1) from the UCI machine
learning database repository [11]. As we focus on continuous attributes, we dis-
card the nominal attributes of the Heart, Crx and Australian database. The
evaluation consists in a stratified five-fold cross-validation. The predictive accu-
racy of the classifiers are reported in the Table 2, as well as the robustness (i.e
the ratio of the test accuracy by the train accuracy) of our classifier.

The overall predictive accuracy does not significantly suffers from the par-
titioning of the data (72% against 73%). But with some datasets (Iris, Wine,
Vehicle), the disadvantage of making local decision is evidenced. Indeed, as illus-



Test accuracy Robustness

Dataset Partition NN Partition NN

Iris 0.92 ± 0.05 0.96 ± 0.02 0.98 ± 0.06 0.96 ± 0.02

Wine 0.69 ± 0.09 0.76 ± 0.07 0.90 ± 0.14 0.76 ± 0.07

Heart 0.62 ± 0.04 0.55 ± 0.03 0.88 ± 0.04 0.55 ± 0.03

Bupa 0.61 ± 0.06 0.61 ± 0.05 0.85 ± 0.07 0.61 ± 0.05

Ionosphere 0.85 ± 0.04 0.87 ± 0.02 0.99 ± 0.04 0.87 ± 0.02

Crx 0.66 ± 0.03 0.64 ± 0.05 0.90 ± 0.06 0.64 ± 0.05

Australian 0.69 ± 0.02 0.68 ± 0.02 0.95 ± 0.05 0.68 ± 0.02

Breast 0.97 ± 0.01 0.96 ± 0.01 1.00 ± 0.01 0.96 ± 0.01

Pima 0.68 ± 0.01 0.68 ± 0.02 0.94 ± 0.04 0.68 ± 0.02

Vehicle 0.54 ± 0.04 0.65 ± 0.02 0.90 ± 0.07 0.65 ± 0.02

German 0.70 ± 0.01 0.67 ± 0.02 0.96 ± 0.01 0.67 ± 0.02

Mean 0.72 0.73 0.93 0.73

Table 2. Predictive accuracy and robustness of our method and predictive accuracy
of the NN rule for the tested datasets.

trated by the Figure 5, a succession of local decisions can lead to the constitution
of some border groups, which is especially harmful in the context of separable
distributions, producing a decrease of the accuracy. While our method takes on
a safe approach, handling the boundary data with cautions, the NN rule builds
more hazardous decision boundaries without being penalized in term of test
accuracy.

The robustness of the NN rule is equal to its test accuracy, and we observe
that building a well-suited partition of the data sharply increases the robustness
of the prediction (0.93 against 0.73).

Fig. 5. Partitioning of a 2 separable classes problem : creation of a buffer zone, con-
taining a mixture of the two classes.

In a second experiment, we compare our method and the well-known deci-
sion tree algorithm C4.5 when faced with the challenging pattern presented in



Method Test accuracy Robustness Group number

Partition 0.83 ± 0.01 0.95 ± 0.01 29.5 ± 0.35

C4.5 0.71 ± 0.04 0.94 ± 0.01 17 ± 1.41

NN 0.90 ± 0.00 0.90 ± 0.00 -

Table 3. Predictive accuracy, robustness and number of groups of our method, C4.5
and the NN rule on the ”challenging” dataset.

Figure 2. The dataset contains 2000 instances and we carry out a stratified two-
fold cross-validation. We report the predictive accuracy, the robustness and the
number of groups in the Table 3.

From this experiment, we notice quite a strong difference between the pre-
dictive performances : our method perfoms a better detection than C4.5 (0.83
against 0.71). This is not surprising and illustrates the distinction between
weakly and strongly biased multivariate partitioning. C4.5, which is a strongly
biased method, is forced to detect parallelepipeds, limiting its detection abil-
ity as evidenced on this example. This experiment shows the robustness of the
partitioning methods once again.

On the negative side, we notice a loss of predictive accuracy of our method
compared with the NN rule. Examining the two produced partitions, we find
that after the detection of a few clean balls (i.e objects in a ball sharing the
same class label), a group containing about 600 instances marked Grey and 100
marked Black remains uncut. As the set of balls is updated by deleting balls
only, the descriptive capacity of our method becomes poorer after each triggered
cut. This results from the fact that we consider balls defined in the whole set O
and not a locally defined set of balls. As the method makes local optimizations,
performing better updates would enhance its predictive accuracy.

The third experiment consists in evaluating the tolerance of our method to
the presence of mislabelled data. The method is applied to 11 Datasets, each
containing 1000 instances uniformly generated in [−1, 1] × [−1, 1], representing
the XOR problem with increasing mislabelled data rate, from 0 (XOR problem)
to 0.5 (pure noise). The evolution of the predictive accuracy and the robust-
ness (evaluated by a stratified 5-fold cross-validation) is shown in Figure 6, and
compared with NN rule results again.

The expected optimal accuracy curve is the line passing through (0, 1) and
(0.5, 0.5). The partitioning algorithm is up to 10% more accurate than the NN
rule and far more robust. This is its main advantage : still building accurate and
robust partitions in presence of noise.

7 Conclusion and further works

In this paper, we have discussed the usefulness of supervised partitioning meth-
ods for data preparation in the univariate case. We have proposed an extension
to the multivariate case, relying on the multivariate definition of discrete neigh-



Fig. 6. Evolution of the predictive accuracy and the robustness with the mislabelled
data rate of the partitioning technique and the NN rule on the XOR pattern.

borhood by means of a non-oriented graph structure. A framework for supervised
bipartitioning has been proposed, which applied recursively leads to a new mul-
tivariate discretization algorithm. Finally, this algorithm has been tested on real
and synthetic datasets.

The proposed method builds an underlying structure of the data, producing
understandable results without fitting parameters and without loss of predic-
tive information (as shown by the experiments on real datasets). Defining basic
patterns (the balls) from the data allows the technique to better partition the
dataset, compared with classical strongly biased multivariate algorithm like C4.5.
Furthermore, its demonstrated robustness is a main advantage, particularly since
it’s very tolerant to the presence of noise.

Still, more experiments have to be carried out. In the reported experiments,
our method is evaluated as a classifier not as a data preparation technique. We
plan to evaluate the impact of our method when considered as a preprocessing
step of a naive bayes classifier, for example. Furthermore, the presented criterion
can be improved, by considering local sets of balls rather than updating the
global set.
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[6] Boullé, M.: A bayesian approach for supervised discretization. Data Mining V,

Zanasi and Ebecken and Brebbia, WIT Press (2004) 199–208
[7] Bay, S.: Multivariate discretization of continuous variables for set mining. In Proc.

of the 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (2000)
315–319

[8] Kwedlo, W., Kretowski, M.: An evolutionary algorithm using multivariate dis-
cretization for decision rule induction. In Proc. of the European Conference on Prin-
ciples of Data Mining and Knowledge Discovery (1999) 392–397

[9] Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their rela-
tives. P-IEEE 80 (1992) 1502–1517

[10] Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. Institute of Elec-
trical and Electronics Engineers Transactions on Information Theory 13 (1967) 21–27

[11] Blake, C.L., Merz, C.J.: UCI repository of machine learning databases.
http://www.ics.uci.edu/m̃learn/MLRepository.html


