
Mach Learn
DOI 10.1007/s10994-010-5170-2

Bayesian instance selection for the nearest neighbor rule

Sylvain Ferrandiz · Marc Boullé

Received: 5 December 2005 / Revised: 30 November 2009 / Accepted: 26 January 2010
© The Author(s) 2010

Abstract The nearest neighbors rules are commonly used in pattern recognition and statis-
tics. The performance of these methods relies on three crucial choices: a distance metric, a
set of prototypes and a classification scheme. In this paper, we focus on the second, challeng-
ing issue: instance selection. We apply a maximum a posteriori criterion to the evaluation
of sets of instances and we propose a new optimization algorithm. This gives birth to Eva,
a new instance selection method. We benchmark this method on real datasets and perform
a multi-criteria analysis: we evaluate the compression rate, the predictive accuracy, the reli-
ability and the computational time. We also carry out experiments on synthetic datasets in
order to discriminate the respective contributions of the criterion and the algorithm, and to il-
lustrate the advantages of Eva over the state-of-the-art algorithms. The study shows that Eva
outputs smaller and more reliable sets of instances, in a competitive time, while preserving
the predictive accuracy of the related classifier.

Keywords Nearest neighbor · Instance selection · Voronoi tesselation · Maximum
a posteriori

1 Classification by the nearest neighbor

Supervised algorithms that learn classifiers input a finite sample {xn, yn} of N instances {xn}
and their respective labels {yn}. The nearest neighbor rule (Fix and Hodges 1951; Cover and
Hart 1967) classifies any previously unseen instance according to a vote among its nearest
neighbor(s) in a set of prototypes derived from the sample. Building such a rule relies on
the choice of a set of prototypes, the definition of a distance metric and the choice of a
classification scheme.

Editor: David W. Aha.

S. Ferrandiz (�) · M. Boullé
Orange Labs, 2, avenue Pierre Marzin, 22300 Lannion, France
e-mail: sylvain.ferrandiz@orange-ftgroup.com

M. Boullé
e-mail: marc.boulle@orange-ftgroup.com

mailto:sylvain.ferrandiz@orange-ftgroup.com
mailto:marc.boulle@orange-ftgroup.com

Mach Learn

1.1 Construction and selection of prototypes

The question of the construction of a set of prototypes can be tackled in many different
ways. Following (Liu and Motoda 2001), we distinguish two different approaches, depend-
ing on whether the prototypes are derived from the instances or simply selected from the
instances.

In (Salzberg 1991), instances are numerical tuples and prototypes are defined as “gen-
eralized exemplars”. Such an exemplar is an axis-parallel hyperrectangle. An extension
to the case of tuples composed of both numerical and categorical values is the aim of
(Wettschereck and Dietterich 1995). Quantization methods define prototypes that are linear
combinations of instances, considering the case of instances embedded in R

d . For example,
in (Chang 1991), an algorithm in which each instance is initially considered as a prototype
is introduced: the pair of nearest instances of the same class are linearly combined into a
single prototype, this process being iterated until classification accuracy starts to decrease.

Generalized exemplars are examples of prototypes whose representation differs from the
initial representation of instances. Quantization exploits the algebraic structure of R

d and
thus outputs prototypes within R

d but outside the set of instances. Generalized exemplars
and Quantization are examples of prototype construction methods. We do not consider this
approach in this article and focus instead on instance selection: the output set of prototypes
is included in the original set of instances.

In practice, another distinction matters: whether the number of prototypes is an input or
an output of the algorithm. In the first case, the number of prototypes is provided by the
user, whereas in the second case, the algorithm selects the best one. For example, Linear
Vector Quantization (LVQ) improves the position of K initial prototypes in R

d (Kohonen
2001). The initial prototypes may result from applying the K-means algorithm (MacQueen
1967) in each class separately or sampling from each class. The number K of prototypes is
an input to LVQ and is set according to prior knowledge or using a validation set.

In this article, we consider the topic of instance selection, where:

– the set of prototypes is a subset of the set of instances (and we will use the terms “proto-
type” and “instance” interchangeably),

– the number of prototypes is an output of the algorithm.

1.2 Measuring similarities

In this article, we consider instance selection algorithms that take as input any distance
metric, disregarding the representation of the instances (i.e. whether they are numerical,
categorical, tuples, strings, graphs, etc). The selection process is guided by the pairwise
computed similarities, not by the instances’ features at all.

There is a great deal of work for designing different distance metrics for different kinds
of features. When instances {xn} live in a real finite-dimensional space R

d , the Euclidean
and related Lp (p ≥ 1) metrics are widely used. If needed, the Mahalanobis distance (Duda
et al. 2001) takes into account the correlation between any two features. The Dynamic Time
Warping heuristic applies to instances that are numerical sequences of possibly different
sizes (Berndt and Clifford 1996). For finite and discrete multi-dimensional sets, which are
the product of d finite alphabets, the Hamming metric is a popular metric. Since this metric
becomes less reliable as the number of symbols increases, similarity measures based on
frequencies have been proposed (Stanfill and Waltz 1986). These metrics are guided by the
supervised classification task as their definition takes into account the labels. In order to deal
with representations composed of both numerical and categorical measurements, weighting

Mach Learn

schemes can be applied in order to deal with scaling effects (Wilson and Martinez 1997a).
When instances are strings or graphs, edit distances rely on editing operations in order to
measure the similarity of two strings or graphs. For example, the Levenshtein distance makes
use of substitution and insertion to compare two strings (Levenshtein 1966). When objects
are represented by graphs, the problem is that of graph matching (Bunke 2000).

Every algorithm presented in this article applies to any distance metric.

1.3 Classification scheme

Once a similarity measure and a set of instances are selected, the nearest neighbors rules rely
on the following classification scheme. For any instance x to be classified, a neighborhood
of x is defined and the labeling is put to a vote among the neighbors of x. Such a scheme
thus relies on the definition of a notion of neighborhood and a voting procedure.

In the K-NN rule (Fix and Hodges 1951), the neighborhood of x is defined as the set
of the K nearest instances of x. In the Parzen window approach (Parzen 1962), the neigh-
borhood is defined as the set of instances whose distance to x is under a given threshold
h, called the width of the window. The winner-takes-all voting procedure is often adopted
for the K-NN rule and when using Parzen windows. It assigns to x the most frequent la-
bel in the neighborhood of x. If closer instances are weighted more heavily, the decision
is smoother. Kernel rules adopt such a classification scheme (Devroye et al. 1996). They
extend the Parzen window approach and the width acts as a smoothing factor.

Instance selection algorithms usually apply a K-NN rule with a winner-takes-all voting
procedure. This will be referred to as the K-NN classification scheme.

1.4 Proposed approach for instance selection

In (Devroye et al. 1996), the authors introduce a tool they call relabeling. It works as follows.
Assume that we have a classifier gD where D is the data {xn, yn}. For example, this classifier
results from the application of the K-NN rule. Let us define the new labels zn = gD(xn). The
relabeling method for classification applies the 1-NN rule to the new data {xn, zn}. In the
chosen example, it means that a new instance x is classified according to a winner-takes-all
procedure in the neighborhood of its nearest instance, and not in its own neighborhood.

We introduce a new classification scheme for instance selection named the Voronoi-
Based Relabeling scheme, or VBR scheme for short, which is a relabeling method relying
on Voronoi partitions. This is a two-stage process closely related to instance selection. In-
deed, if we perform no selection, the VBR scheme reduces to the 1-NN rule. In this article,
we exploit some properties of this new scheme and we propose a new method to optimize
instance selection for this scheme.

Before defining the VBR scheme, let us fix some notations. We denote U = �1,N � the
set of the N statistical units. As an example, for the analysis of detailed phone call records,
the household stands for the statistical unit. Each statistical unit n is subject to a set of
measurements and the resulting tuple is denoted xn. This is the instance of n and we denote
X : n �→ xn the descriptive feature. We denote L = �1, J � the set of the J possible labels.
A label yn ∈ L is associated with each unit n ∈ U and we denote by Y : n �→ yn the resulting
target feature.

A kernel is an application δ that assigns a positive real value to every pair of units (cf.
Scholkopf and Smola 2001). It stands for the given distance metric. While computing sim-
ilarities certainly depend on the representation of the instances in practice, we make the
notation independent of the instances in order to illustrate that all the algorithms presented

Mach Learn

here depend on the kernel only and not on the representation of the statistical units. That is
why we will use n and xn and the terms “unit” and “instance” interchangeably in the next
sections.

Given a kernel δ, any finite set of units defines a Voronoi tesselation. Let H be a finite
subset of N. For k ∈ H , the Voronoi cell Vδ(k,H) is the set

Vδ(k,H) =
{
n ∈ N; k = arg min

k′∈H

δ(n, k′)
}
. (1)

The element k is called the representative or the prototype of its cell Vδ(k,H). The family
of the Voronoi cells Vδ(H) = (Vδ(k,H))k∈H is the Voronoi tesselation associated with H .

From now on and implicitly, we assume that Voronoi tesselations are partitions. In prac-
tice, one has to deal with distance ties. We adopt the heuristic explained in (Devroye et
al. 1996) and add a random component to the descriptive feature to circumvent the prob-
lem.

We can now define the VBR scheme more precisely: a new instance x is classified ac-
cording to a winner-takes-all procedure in the cell of its nearest prototype. This scheme has
several advantages:

– it is nonparametric
– it is better suited to low selection rates than the K-NN scheme (cf. Appendix A)
– instance selection for the VBR scheme is easily turned into a probabilistic hypothesis

selection problem.

Indeed, let us define a model as a couple (H,�) where H is a set of K instances and �

a matrix giving at the position (j, k) (1 ≤ j ≤ J , 1 ≤ k ≤ K) the frequency of the label j in
the cell k of Vδ(H). We denote Mδ(U) the set of models. The problem of instance selection
for the VBR scheme is now a problem of hypothesis selection: which model in Mδ(U) is
the best, with models defined as conditional probability distributions (cf. Fig. 1)?

It is noteworthy that the VBR scheme reduces to the 1-NN scheme if no instance selection
is performed at all. The VBR scheme and instance selection are thus intrinsically linked.

When designing an instance selection algorithm, one needs a criterion for evaluating the
models in Mδ(U) and an efficient algorithm for browsing through this set. In order to fully
exploit the properties of the relabeling tool, the criterion must:

Fig. 1 Instance selection for the relabeling tool is a model selection problem with models defined as condi-
tional probability distributions. Owing to the relabeling tool, the classification relies on more detailed infor-
mation. (a) A Voronoi partition for a binary classification problem. (b) Straightforward classification consists
in coloring the cell according to the label of the prototype. (c) Relabeling allows to take into account the
frequency of every label in each cell when coloring the cell

Mach Learn

– be nonparametric
– take into account the size of the set of prototypes
– consider the whole distribution of the labels in each cell.

In (Ferrandiz and Boullé 2006), we introduced a maximum a posteriori (MAP) criterion
for evaluating such models. In this article, we propose a new optimization heuristic for
finding the best set of prototypes according to this criterion. We benchmark the resulting
instance selection method, named Eva.

1.5 Organization of the paper

The remainder of the article is organized as follows. We present an overview of the existing
instance selection methods in Sect. 2 and cluster them into two groups: the global ones,
which evaluate a set of prototypes as a whole, and the local ones, which rely on an individual
measure of interestingness for each instance.

We introduce in Sect. 3 the criterion presented in (Ferrandiz and Boullé 2006), for the
convenience of the reader. In Sect. 4, we describe a new heuristic with some optimization
that exploits the properties of the criterion in order to increase its scalability. Eva, the result-
ing instance selection method, falls into the category of global evaluation methods.

In Sect. 5, we benchmark Eva on several real datasets. We conduct further experiments
in order to evaluate the benefit of the optimization heuristic versus the criterion. The con-
tribution of the heuristic is demonstrated in Sect. 6. The experiments in Sect. 7 analyze the
behavior of instance selection methods and illustrate the contribution of Eva.

2 Instance selection

Given a set U of N instances with their respective labels and a kernel δ, an instance selection
algorithm attempts to select the “best” instances for the nearest neighbor classifiers. In this
section, we overview the field of instance selection heuristics.

We distinguish methods based on a local evaluation from methods based on a global
evaluation. A global method defines an evaluation criterion for any subset of instances.
In contrast, a local method relies on the definition of a criterion measuring the predictive
interestingness of a single instance. The distinction is based on the evaluation criteria rather
than the algorithms.

2.1 Global methods

In supervised classification, empirical risk minimization is a common evaluation paradigm.
It makes use of the empirical risk as the evaluation criterion: for a given classifier f , each
label yn is compared with the label computed by f ; the number of misclassifications over the
number N of instances defines the empirical risk or error rate. The empirical risk associated
with a subset H of U thus relies on the comparison between the label of each instance with
the label of its nearest neighbor in H . Many instance selection methods attempt to minimize
this risk.

The CNN (for Condensed Nearest Neighbor) selection method (Hart 1968) is one of
them. CNN is incremental and makes several passes through the dataset. This method is
consistent: the empirical risk of the resulting set of prototypes H is null. In order to obtain a
minimal subset according to the consistency property, and under the hypothesis that H con-
tains such a subset, the RNN rule (for Reduced Nearest Neighbor) proposed in (Gates 1972)

Mach Learn

removes from H every prototype which causes no new misclassification. The computational
complexity is of O(N3), close to O(N2) in the average case.

The Delaunay triangulation provides another solution to the selection of a consistent sub-
set (Toussaint and Poulsen 1975). When instances lie in a Euclidean space and the selected
kernel is the Euclidean metric, for a given set of prototypes, two Voronoi cells define an
edge if they share a common boundary. The resulting graph defines a Delaunay triangula-
tion of the Euclidean space. Considering the Voronoi cells associated with U , each cell of
the partition contains a single instance, its prototype, which defines a vertex of the Delau-
nay graph. A vertex whose neighbors in the Delaunay graph have the same label can be
discarded without any modification of the overall decision boundary. The resulting instance
selection method is thus consistent.

Computing the Delaunay graph is intractable as the complexity of the algorithm grows
exponentially with the dimension of the Euclidean space. Approximation schemes have
been proposed (Toussaint et al. 1985). Indeed, the Delaunay graph can be substituted by
any proximity graph, like the Gabriel graph or the relative neighborhood graph (Jaromczyk
and Toussaint 1992). The computation of a Gabriel (or relative) neighborhood is still time-
consuming (O(N2) operations needed to find the set of Gabriel or relative neighbors of an
instance). Approximated neighborhoods, which can be computed more quickly, are intro-
duced in (Bhattacharya et al. 2005). However, the consistency property is lost.

In place of the empirical risk, the following criterion is proposed in (Cameron-Jones
1995) to evaluate sets of prototypes:

e(H) = F(K,N) + K log2(J) + F(E,N − K) + E log2(J − 1), (2)

where K is the number of prototypes in H and E is the number of instances misclassified
by their nearest prototype in H . This criterion is rooted in the Minimum Description Length
principle (Grünwald et al. 2005). The terms F(K,N) + K log2(J) evaluate the description
length of the model (i.e. the selection of K instances and their respective labels). The terms
F(E,N − K) + E log2(J − 1) evaluate the description length of the exceptions (i.e. the E

misclassified instances and their respective labels).
In (Cameron-Jones 1995), the author proposes the following optimization heuristic.

A first incremental step randomly browses through the set of instances and selects an in-
stance if the value of the criterion decreases. Every instance is considered once. A second
decremental step removes a prototype if the criterion is optimized. Finally, 1000 mutations
are performed and evaluated. A mutation is triggered if the criterion decreases. A mutation
consists in adding an instance to the set of prototypes, or removing a prototype or swapping
an instance and a prototype. This heuristic will be denoted Explore(M), where M is the
number of mutations. It has a complexity of O(KmaxN

2 + MN2), with Kmax the maximum
size of a set of prototypes considered during the optimization.

2.2 Local methods

A Local method relies on an individual predictive interestingness measure instead of a global
criterion. For example, the ENN rule (for Edited Nearest Neighbor) described in (Wilson
1972) considers the L nearest neighbors in U of each instance (typically L = 3). An instance
is removed if it is misclassified by a majority vote among its neighbors. The complexity of
the algorithm ENN(L) is of O(LN2). In practice, ENN can be viewed as a noise filtering
rule. This method can be applied iteratively.

More recently, D. Aha and his colleagues proposed a series of algorithms: IB1 to IB5
(Aha et al. 1991; Aha 1992). The last two versions are out of the scope of this paper since

Mach Learn

they deal with feature selection. IB1 is an incremental nearest neighbor rule and serves as a
baseline. IB2 is a limited version of the CNN rule, making a single pass through the dataset.
IB3 enhances the CNN rule by introducing a notion of acceptability of a prototype.

The acceptability of a prototype is determined by comparing the bounds of two confi-
dence intervals: if the lower bound on the accuracy is higher than the upper bound on the
frequency of its label, the prototype is acceptable; if the upper bound on the accuracy is
lower than the lower bound on the frequency of its label, the prototype is poor. The confi-
dence level is set to 90% for acceptance and to 75% for dropping. The bounds are computed
according to the following formula:

c + z2

2n
±

√
c(1−c)

n
+ z2

4n2

1 + z2

n

. (3)

For the accuracy of a prototype, n is the number of times its classification record has been
updated since its introduction in the set of prototypes, c is the number of times an instance
has been well-classified by it and z the confidence level. For the frequency of a label, n is
the number of previously processed instances, c is the proportion of instances so far that are
of this class and z the confidence level. Finally, the algorithm has a complexity of O(N2).

Another tool for measuring the interestingness of an instance, based on a notion of as-
sociation, is presented in (Wilson and Martinez 1997b). For fixed L (typically L = 3), an
instance xn2 is an associate of xn1 if xn1 is one of the L nearest neighbors of xn2 . This notion
is used in a series of selection methods, from DROP1 to DROP5, from which DROP3 has
been shown to perform best in (Wilson and Martinez 2000). The core algorithm is decremen-
tal, dropping an instance xn if at least as many of its associates are still correctly classified
without it (DROP1). The instances are sorted according to their distance to the nearest in-
stance lying in another class and checked decreasingly (DROP2). Furthermore, the ENN(L)
rule is applied as a preprocessing step in order to detect and remove mislabeled instances
(DROP3). The overall complexity of the method is of O(LN2).

In (Sebban et al. 2002), a statistical test is defined. An instance is tested in order to know
whether it contributes to the classification of its associates. This criterion is parametric and
relies on the estimation of the density of the associated statistic. An incremental optimization
heuristic is derived from the AdaBoost algorithm. The quickest version of the resulting
selection method, named PSBoost2, has a complexity of O(LN2).

When local methods rely on a neighborhood defined by the L nearest neighbors, the local
criterion is parametric. In order to obtain nonparametric criteria, it is possible to substitute
the L nearest neighbors by the adjacent vertices of the instance in a proximity graph. For
example, the work described in (Sanchez et al. 1997) results from the use of this trick.

A nonparametric notion of association is proposed in (Brighton and Mellish 2002),
slightly modifying the one used in DROP algorithms. At each step, the algorithm considers
the set H of previously selected instances. Instead of considering the L nearest neighbors in
H of an instance in H for a fixed L, they proposed to take into account the instances that are
nearer than the nearest instance with another label. The neighborhood of an instance thus
contains instances with the same label. The definition of an associate in H of an instance in
H remains the same. At the end of the step, instances in H whose neighborhood is bigger
than the set of their associates are removed. This step is iterated till no removal is triggered.
The algorithm ENN(L) is run as an initial preprocessing step. While the core algorithm is
nonparametric, and has a complexity of O(N3), close to O(N2) in the average case, the
application of ENN makes the overall algorithm, denoted ICF(L), parametric.

Mach Learn

2.3 Summary

Local methods rely on an individual notion of “interestingness”. The experiments in
(Brighton and Mellish 2002) show that ICF(3) performs best among the local methods.
We performed similar experiments, the results of which, not reported here, confirm that ICF
outperforms alternative local methods (ENN, CNN, IB3 and DROP3). It is thus the best
candidate for representing local methods.

Global methods evaluate sets of prototypes as a whole. Methods based on empirical risk
minimization fail: the solution overfits the data, as it is well-known in the field of statistical
learning (Vapnik 1996). A solution to this problem consists in adding a regularization term
to the fitness term. This is what the MDL criterion of Explore does, in a nonparametric
manner. Explore is thus the best candidate for representing global methods.

3 Maximum a posteriori evaluation of a set of prototypes

In (Ferrandiz and Boullé 2006), we introduced a new criterion for evaluating sets of pro-
totypes. In this section, we synthesize this work for the convenience of the reader. We first
illustrate the intuition supporting the criterion. Second, we place the work into the Bayesian
framework. Then, we introduce the criterion and discuss its properties.

3.1 The intuition

In Sect. 1, we proposed to consider the problem of instance selection for the VBR scheme
as a problem of model selection: find the best couple (H,�) where H is the set of selected
instances and � the matrix of the frequencies of the labels in the cells of Vδ(H). We aim
to define a criterion c : Mδ(U) → R (cf. Sect. 1.4 for the notations) for evaluating which
model is the “best”. This criterion should:

– be nonparametric
– take into account the size of the set of prototypes
– consider the whole distribution of the labels in each cell.

The optimization of such a criterion leads to a nonparametric instance selection algorithm
for the VBR scheme, with the number of prototypes being an output of the method. By
taking into account every label in each cell and not only the label of the prototype, the
evaluation leads to finer models (probability distributions and not classifiers). In (Ferrandiz
and Boullé 2006), we introduced a criterion fulfilling this ambition. Adopting a Bayesian
point of view, the criterion is composed of

1. a prior term capturing the complexity of a set of prototypes and depending on its size
2. a likelihood term capturing the heterogeneity of the distributions of the labels.

3.2 The Bayesian framework

A classical paradigm in statistics and machine learning consists in selecting the most prob-
able model M given the data D. This is the maximum a posteriori (MAP) paradigm, as it
relies on the definition of an a posteriori probability P (M/D) on a set of candidate models.
The approach consists in applying the Bayes’ formula and writing arg maxM p(M/D) =
arg maxM p(M)p(D/M). A statistician then defines a prior p(M), a likelihood p(D/M)

and the quality of the model is evaluated by the product p(M)p(D/M).

Mach Learn

In (Ferrandiz and Boullé 2006), we adapted the approach to the particular case of instance
selection, where the set of models Mδ(U) depends on the data. Data consists here in the
set of instances U , the kernel δ and the target feature Y . The models are couples (H,�),
where H is the set of selected instances and � being the matrix of conditional probability
distributions. Bayes’ formula allows us to write

p(H,�/D) = p(H,�/Y, δ, U)

= p(H,�,Y, δ, U)

p(Y, δ, U)

= p(δ, U)p(M/δ, U)p(Y/M,δ, U)

p(Y, δ, U)
. (4)

If we cancel the terms not depending on M = (H,�), the MAP decision can be written

arg maxM p(M/δ, U)p(Y/M,δ, U). (5)

By conditioning on U , the modeling of the instances is pulled aside and we focus on the
relationship between the instances and the labels. We have to define a prior distribution
p(·/U , δ) on the set of models and a likelihood p(·/M, U , δ) on the set of target features in
order to obtain an effective MAP decision.

First, the probability of a model M = (H,�) with K prototypes is written as the product
of the probability of K and the probability of M given K . More precisely:

p(M/δ, U) = p(K,M/δ, U) = p(K/δ, U)p(M/K,δ, U). (6)

We apply the Bayes’ formula to the last term and we write

p(M/K,δ, U) = p(H/δ, U)p(�/H, δ, U). (7)

Second, we adopt an independence hypothesis of the labels between cells. This hypoth-
esis is weaker than the usual i.i.d. assumption on the dataset. We write:

p(�/H,δ, U) =
K∏

k=1

p(�k/Vδ(k,H), δ, U) (8)

and

p(Y/M,δ, U) =
K∏

k=1

p(Yk/�k,Vδ(k,H), δ, U), (9)

where �k is the conditional distribution of the labels in the cell Vδ(k,H) (i.e. the kth row
of �) and Yk denotes the restriction of Y to the cell Vδ(k,H).

3.3 The probabilistic criterion

According to the MAP decision process, a model M = (H,�) is evaluated by the a pos-
teriori probability p(M/Y, δ, U). According to the previous section, the definition of the
primary a posteriori probability relies on the definition of four probabilities. In (Ferrandiz
and Boullé 2006), these four probabilities are made explicit, adopting uniform distributions.

Mach Learn

First, the number K of selected instances is a number greater than 1 and lower than N

and we set

p(K/δ, U) = 1

N
. (10)

Second, we consider H as a K-combination with repetitions. The number of such com-
binations is

(
N+K−1

K

)
and we set

p(H/K,δ, U) = 1(
N+K−1

K

) . (11)

Third, in the kth cell, owing to the dependency, we consider a restricted support for the
possible conditional probabilities and take into account rational probabilities only. More
formally the support is {(Nk1

Nk
, . . . ,

NkJ

Nk
)}, where Nk is the number of instances in the kth cell.

The cardinality of the support is
(
Nk+J−1

J−1

)
and, adopting a uniform prior, we set

p(�k/Vδ(k,H), δ, U) = 1(
Nk+J−1

J−1

) . (12)

Fourth, according to the dependency, it remains to specify the label of each instance in
each cell given the partition Vδ(H) and the conditional probabilities �k = (

Nk1
Nk

, . . . ,
NkJ

Nk
).

For the kth cell, the problem is the same as putting the instances of the cell in J boxes,
under the condition that the j th box contains Nkj elements (1 ≤ j ≤ J). The multinomial
coefficient gives the exact number of possibilities and we obtain

p(Yk/�k,Vδ(k,H), δ, U) = 1
Nk !

Nk1!...NkJ !
. (13)

Finally, if we denote c(M) = − logp(M/Y, δ, U), we aim to minimize:

c(H) = logN + log

(
N + K − 1

K

)
+

K∑
k=1

log

(
Nk + J − 1

J − 1

)
+ log

Nk!
Nk1! . . .NkJ ! , (14)

where K is the size of H , Nk is the number of instances lying in the kth cell Vδ(k,H) and
Nkj is the number of instances in the kth cell with the label j (1 ≤ k ≤ K , 1 ≤ j ≤ J).

It is worth noting that this criterion is additive: we can write

c(H) = c1(K) +
K∑

k=1

c
(k)

2 (H,Y), (15)

where c1(K) = logN + log
(
N+K−1

K

)
and, for 1 ≤ k ≤ K , c

(k)

2 (H,Y) = log
(
Nk+J−1

J−1

) +
log Nk !

Nk1!···NkJ ! . This property, shared by the empirical risk and Explore’s criterion, will prove
useful when designing our optimization algorithm. Finally, we denote

c2(H,Y) =
K∑

k=1

c
(k)

2 (H,Y). (16)

Mach Learn

3.4 Summary

The likelihood term, according to Stirling’s approximation logx! ≈ x logx − x + O(logx),
behaves asymptotically as N times the conditional entropy of the distribution of the yn’s
given the cluster assignment function:

1

N

K∑
k=1

log
Nk!

Nk1! · · ·NkJ ! ≈ −
K∑

k=1

J∑
j=1

Nkj

N
log

Nkj

Nk

. (17)

The criterion thus evaluates the conditional probabilities with a finite-data entropy-related
term balanced with a structural weight, which quantifies the complexity of the model by
taking into account the number K of selected instances. This criterion is nonparametric.
This results from the adaptation of a MAP approach to the case of data-dependent models,
without making the iid assumption on the sample, without defining a generative process
of the instances, without defining a generative process of the labels given the instances
and without adopting a parametric prior. This prior is hierarchical and depends on the data
through the set of models (Robert 2001).

4 A new optimization heuristic

In this section, we describe a new optimization algorithm to find the best set of instances.
First, it consists of a bottom-up greedy heuristic, the complexity of which can be reduced
by exploiting the fact that the criterion is additive. Second, a heuristic which repeatedly
applies the greedy algorithm is designed according to the Variable Neighborhood Search
meta-heuristic. We name the resulting algorithm VNSGreedy. This algorithm applies to the
optimization of the empirical risk and the criterion given by Eq. 2, as they are additive.

4.1 Greedy optimization of a set of prototypes

The greedy heuristic Greedy(H) takes as input a set H of K prototypes (cf. Algorithm 1).
Every subset resulting from the removal of an element in H is evaluated. Among those sub-
sets, the winner is the one minimizing the criterion. This process is iterated and applied to
every successive winner, until a singleton has been evaluated. The best encountered subset is
returned. Note that this well-known heuristic has been applied to the problem of feature se-
lection, giving rise to the Backward Sequential Elimination algorithm (Guyon and Elisseeff
2003).

The greedy method considers O(K2) subsets and each evaluation requires the search of
the nearest prototype for each instance. A straightforward implementation of Greedy(H)
has a complexity of O(NK3).

We now propose some optimizations for additive criteria. The complexity is reduced to
O(NK logK) by exploiting the additive property of the criterion, as described next.

At each step, every removal of a prototype affects the instances of its cell only. At each
step, the N instances are thus considered once, with a computational cost that we make a
constant (cf. Algorithm 2).

First, if for each instance the prototypes are sorted according to their distance to this
instance, the next nearest prototype is available at a constant cost. An initialization step
is added to the greedy algorithm which consists in building the N sorted lists of size K .
The complexity is of O(NK logK) and storing these N lists requires a memory space of

Mach Learn

Algorithm 1: Greedy algorithm

Data: X // Descriptive feature //, Y // Target feature //, δ // Kernel //
Input: H // Set of prototypes
Output: a subset Sbest ⊂ H such that c(Sbest) is minimal among evaluated subsets
S ← H ;1

Sbest ← H ;2

while #S > 1 do3

s0 ← arg mins∈S c(S \ {s});4

S ← S \ {s0};5

if c(S) < c(Sbest) then6

Sbest ← S;7

return Sbest;8

O(NK). By storing the previously removed prototypes, which have to be considered as un-
available, the lists can be updated on the fly and when needed. As each update occurs at most
once during the algorithm, there are at most NK updates. Thus, building and maintaining
the lists has an overall complexity of O(NK logK).

Second, owing to the additive property of the criterion, its value can be updated with
a constant cost. Only the term c2(H,Y) of the criterion depends on the partition of the
instances in the cells. When a prototype k is removed, the first thing to do is to subtract
its contribution c

(k)

2 (H,Y) to the value of the criterion. Then, any instance n lying in the
corresponding cell is associated with its next nearest prototype knext. The parameters Nknext

and Nknextj0
, with j0 the index of the label of the considered instance, are updated by a simple

increment. The term related to the prototype knext is then updated by adding the quantity
SwappingCost(n, k, knext,H,Y) := log(Nknext + J) − log(Nknextj0 + 1).

To summarize, at each of the K steps of the algorithm, each instance is considered once.
Finding its next nearest prototype and updating the value of the criterion is performed with
a constant cost, given N sorted lists of size K and owing to the property of the criterion.
Computing and storing the lists has a complexity of O(NK logK) and requires a memory
space of O(NK). Once the lists have been computed, the optimized greedy heuristic has a
complexity of O(KN). The overall complexity of the algorithm described in Algorithm 2
is thus of O(NK logK).

4.2 Variable neighborhood search

The greedy heuristic performs many evaluations quickly. It is then natural to think about
a repeated application of this algorithm. We want to limit the number of applications of
the greedy heuristic and to improve the solution with each new greedy evaluation. In other
words, we attempt to make the most of the given training time. This is done according to
the Variable Neighborhood Search (VNS) meta-heuristic (Hansen and Mladenovic 2001),
which consists in applying the primary heuristic (i.e. the greedy one) to a neighbor of the
solution. If the new solution is not better, a bigger neighborhood is considered. Otherwise,
the algorithm restarts with the new best solution and a minimal size neighborhood. The
process relies on the definition of a notion of a solution neighborhood.

We propose the following definition for the neighborhoods of a set of prototypes. In-
tuitively speaking, we define a neighbor H of a set of prototypes H0 as a bigger set (i.e.

Mach Learn

Algorithm 2: Optimized greedy algorithm

Data: X // Descriptive feature //, Y // Target feature //, δ // Kernel //, N // Number of
instances

Input: H // Set of prototypes
Result: a subset Sbest ⊂ H such that c(Sbest) is minimal among evaluated subsets
for n = 1 to N do1

Ln ← the list of the prototypes, sorted with respect to their similarity with the nth2

instance;

Mark every prototype as available;3

S ← H ;4

Sbest ← H ;5

BestCost ← c(H);6

BestLabelCost ← c2(H,Y);7

for t = K − 1 to 1 do8

StructuralCost ← c1(t);9

LocallyBestLabelCost ← +∞;10

for s ∈ S do11

LabelCost ← BestLabelCost;12

LabelCost ← LabelCost − c
(s)

2 (H,Y);13

for n ∈ Vδ(s, S) do14

s ′ ← the next available prototype nearest to n, found in Ln;15

LabelCost ← LabelCost + SwappingCost(n, s, s ′,H,Y);16

if LabelCost < LocallyBestLabelCost then17

LocallyBestLabelCost ← LabelCost;18

sbest ← s;19

S ← S \ {sbest};20

BestLabelCost ← LocallyBestLabelCost;21

Mark s as unavailable;22

if StructuralCost + BestLabelCost < BestCost then23

BestCost ← StructuralCost + BestLabelCost;24

Sbest ← S;25

return Sbest;26

H0 ⊂ H), resulting from first removing prototypes from H0 and then adding instances. The
number of removed and added instances is controlled by a rate t ∈ [0,1]. More technically, a
neighbor of H0 is every set H = H1 �H2 where H1 ⊂ H0 and H2 is a set of instances lying in
the cells of Vδ(H0) associated with the prototypes in H0 \H1. If t ∈ [0,1], the neighborhood
Vt (H0) is defined as the set of neighbors H = H1 � H2 of H0 such that the rate of replaced
elements in H0 and the rate of selected instances in the associated cells is t (cf. Fig. 2).

If the solution is never improved by successively exploring neighborhoods of growing
size, the algorithm stops when a neighbor of maximal size is evaluated (the size of a set of
prototypes is bounded by the number N of instances). Instead of incrementally exploring
the neighborhoods by adding only one prototype at a time, which is time consuming for
poor improvement, we propose to use a series of selection rates t0, . . . , tMaxDegree, where
MaxDegree is determined by the user. This parameter quantifies the training time allowed

Mach Learn

Fig. 2 Example of a neighbor of a set of prototypes for t = 0.35. (a) Partition of the instances in the cells.
Two prototypes (i.e. 35% of the prototypes in H0) are replaced. (b) 3 instances (i.e. 35% of the instances in
the cells associated with the prototypes in H0 \ H1). (c) The partition associated with H1

⋃
H2

Algorithm 3: VNSGreedy algorithm

Data: X,Y, δ

Input: MaxDegree
Result: a set of prototypes, each prototype coupled with the most frequent label within

its Voronoi cell
Sbest ← OptimizedGreedy(U);1

S ← Sbest;2

Degree ← 1;3

while Degree < MaxDegree do4

t ← Degree/MaxDegree;5

S ′ ← select at random a solution in Vt (S);6

S ← OptimizedGreedy(S ′);7

if c(S ′) < c(Sbest) then8

Sbest ← S ′;9

Degree ← 1;10

else11

Degree ← Degree + 112

return Sbest13

for optimization. In Sect. 5, MaxDegree = 16. The algorithm VNSGreedy(MaxDegree) has
a complexity of O(MaxDegreeN2 logN) (cf. Algorithm 3).

4.3 Summary

A greedy optimization of the descriptive criterion quickly evaluates many sets of proto-
types by exploiting the additivity of the criterion. It is appealing to apply this algorithm
repeatedly and we embed the heuristic in the framework of the Variable Neighborhood
Search metaheuristic. The overall algorithm VNSGreedy(MaxDegree) has a complexity of
O(MaxDegreeN2 logN). It is controlled by a single parameter MaxDegree ∈ N

∗ which rep-

Mach Learn

resents the allowed training time. The method to optimize the MAP criterion with the VNS-
Greedy heuristic will be referred to as Eva(MaxDegree) (Eva stands for supervised and
nonparametric EVAluation of sets of instances) in the experiments.

5 Benchmarking Eva

In this section we comparatively evaluate several instance selection algorithms using four
performance criteria. The experiment consists in applying the algorithms to datasets from the
UCI Machine Learning Database Repository (Asuncion and Newman 2007) and measuring
the size, the predictive accuracy and the reliability of the solution as well as the running time
for each algorithm.

5.1 Description of the experiment

We compare our method Eva, the global method Explore and the local method ICF (cf.
Sect. 2.3). The algorithm performing no selection is considered as well. The parameter
MaxDegree of the VNSGreedy algorithm is set to 16. The parameters of the other meth-
ods are set as specified by their respective authors: the number of neighbors for the ENN
rule (i.e. the preprocessing step of the ICF algorithm) is set to 3 and the number of mutations
is set to 1000 for the Explore algorithm.

We select 23 datasets (cf. Table 1) from the UCI Machine Learning Database Repos-
itory (Asuncion and Newman 2007). The experiment carried out in this section aims at
evaluating the methods through several indicators. The compression rate (i.e. the ratio of
the number of prototypes to the number of instances) evaluates the capacity of a selec-
tion method to synthesize the dataset. The training time evaluates the effective duration
of the selection process. The test accuracy evaluates the predictive performance of the se-
lected set of prototypes on new instances, that is instances not participating to the selec-
tion of the prototypes. Two classification schemes are considered: the VBR scheme and
the 1-NN rule (cf. Sect. 1.4). A discussion of this choice, based on some complementary
experiments, is given in Appendix A. In order to test whether the classification is reliable,
we introduce a robustness measure which is the ratio of the test accuracy to the training
accuracy. A value of 100 percent means that the generalization ability of the classifier is
high.

Every quantity is estimated using a stratified ten-fold cross-validation. A Student’s t-test
at the 5% confidence level is performed to determine whether the differences of predictive
performance are significant.

We have to define a distance metric. We use the L1 metric for the numerical features, the
Hamming metric for the categorical features, and we sum the contributions. We choose to
work as little as possible on the representation and on the definition of the distance metric
in order not to bias our conclusions. We carry out some experiments in Appendix B in order
to illustrate this point.

5.2 Results

According to Table 2, the global methods Eva and Explore perform better compression than
the local one, retaining 1.5% (Eva) and 2.7% (Explore) of the instances on average against
18% (ICF). ICF is a local method that selects too many prototypes and cannot eradicate re-
dundancy. Global methods evaluate the information that prototypes bring as a whole, which
makes them able to avoid redundancy.

Mach Learn

Table 1 Description of the
datatsets Datasets Size Number of Number of Majority

features classes prediction

Iris 150 4 3 0.33

Wine 178 13 3 0.40

Sonar 208 60 2 0.53

Glass 214 9 6 0.36

Heart 270 13 2 0.56

Bupa 345 6 2 0.58

Ionosphere 351 33 2 0.64

Crx 690 15 2 0.56

Breast 699 9 2 0.66

Pima 768 8 2 0.65

Vehicle 846 18 4 0.26

Led 1000 7 10 0.11

Yeast 1484 8 10 0.31

Segmentation 2310 19 7 0.14

Abalone 4177 8 28 0.16

Spam 4307 57 2 0.65

Waveform 5000 21 3 0.34

WaveformNoise 5000 40 3 0.34

OpticalDigits 5620 64 10 0.10

Satimage 6435 36 6 0.24

Thyroid 7200 21 3 0.92

PenDigits 7494 16 10 0.10

Led17 10000 24 10 0.11

Comparing the two leading methods, Eva selects significantly fewer prototypes (15 wins
and 1 loss). This results from the fact that Eva selects a prototype according to a fine-grained
knowledge: the Eva criterion given by Eq. 14 takes into account the distribution of every
class in each cell while the Explore criterion given by Eq. 2 only makes a binary distinction
between the class of the prototype and the other classes. Furthermore, as shown in the next
section, the VNSGreedy heuristic performs a better exploration of the search space.

The number of selected prototypes is closely related to the reliability of the method.
If the number of prototypes decreases, the number of instances supporting each prototype
increases and the labeling of any new instance should thus be more reliable. This fact is
illustrated by the results in Table 3: the more reductions a method makes, the more reliable
it is. Eva produces the most reliable predictions (97.1% on average).

Eva and Explore are reliable and their criteria are nonparametric. In real studies, the
dataset is often divided in three subsets: one for building the models (the training set), one
for adjusting the parameters independently (the validation set) and one for evaluating inde-
pendently the accuracy of the final models (the test set). The use of the balanced criteria, as
they are nonparametric, makes validation sets useless. The model thus benefits from the use
of a bigger training set.

By reducing the number of prototypes (cf. Table 4), one could wonder whether such a re-
duction sacrifices predictive accuracy. The local method ICF(3) loses respectively 2.5% (for
the VBR scheme) and 2.6% (for the 1-NN scheme) of accuracy on average when compared

Mach Learn

Table 2 Compression rate of
Eva(16), Explore(1000), ICF(3)
and the Lazy algorithm
(performing no selection),
estimated with a stratified 10-fold
cross-validation. The number of
significant Wins/Losses of Eva is
reported

Eva Explore ICF Lazy

Iris 2.3 3.1 40.2 100

Wine 2.2 2.7 22.7 100

Sonar 1.6 2.1 28.3 100

Glass 2.8 5.0 32.9 100

Heart 1.0 1.2 22.1 100

Bupa 0.8 1.0 17.5 100

Ionosphere 2.0 3.4 8.1 100

Crx 0.4 0.6 20.4 100

Breast 0.7 1.0 4.2 100

Pima 0.5 0.6 13.9 100

Vehicle 1.6 3.8 24.6 100

LED 12.0 11.6 37.3 100

Yeast 0.7 4.7 16.8 100

Segmentation 1.0 2.8 16.7 100

Abalone 0.1 1.9 13.9 100

Spam 0.1 0.1 18.6 100

Waveform 0.3 1.9 12.9 100

WaveformNoise 0.4 2.4 12.1 100

OpticalDigits 0.7 3.2 8.1 100

Satimage 0.5 1.7 8.4 100

Thyroid 0.0 0.1 3.5 100

PenDigits 0.6 2.0 6.5 100

LED17 1.0 5.3 24.7 100

Mean 1.5 2.7 18.0 100

W/L 15/1 23/0 23/0

Table 3 Mean of the robustness (in percent) of the VBR scheme and the 1-NN scheme, and number of
significant Wins/Losses of Eva. The VBR scheme and the 1-NN scheme lead to the same decisions for the
Lazy algorithm. The 1-NN scheme is meaningless for Eva

Eva Explore ICF Lazy

NN VBR NN VBR

Mean 97.1 92.8 92.7 89.7 88.9 77.9

W/L 11/0 10/0 14/0 14/0 18/0

with the Lazy algorithm. As illustrated by the experiments in Sect. 7, the local methods rely
on the hypothesis that the classes are separated. This hypothesis does not hold for every real
dataset and such methods behave poorly when it is wrong.

With the selected datasets, we cannot conclude that Eva and Explore preserve predictive
accuracy as they underperform the Lazy algorithm by 1.8% and 1.2% respectively. But it is
very difficult to draw conclusions from the study of predictive accuracy when the standard
deviation (not reported here) of 10 results out of 24 is above 6% for every tested method.

Mach Learn

Table 4 Prediction accuracy of Eva(16), Explore(1000), ICF(3) and Lazy (performing no selection), ac-
cording to the VBR scheme and the 1-NN scheme, estimated using a stratified 10-fold cross-validation. The
number of significant Wins/Losses of Eva is reported. The VBR scheme and the 1-NN scheme lead to the
same decisions for the Lazy algorithm. The 1-NN scheme is meaningless for Eva

Eva Explore ICF Lazy

NN VBR NN VBR

Iris 96.0 96.0 96.0 92.0 92.0 95.3

Wine 88.9 81.0 81.0 74.2 74.8 83.2

Sonar 69.2 63.5 63.5 77.8 76.9 85.1

Glass 60.3 61.2 61.2 65.9 65.4 73.8

Heart 70.4 70.0 70.0 64.8 65.9 64.8

Bupa 67.5 62.4 62.4 62.3 61.2 60.6

Ionosphere 88.6 88.0 88.0 87.2 86.3 90.9

Crx 75.4 73.5 73.5 70.1 67.7 68.3

Breast 97.1 96.1 96.1 95.6 95.9 96.3

Pima 73.4 75.0 75.0 69.3 69.9 68.8

Vehicle 60.3 61.5 61.1 66.8 65.9 67.6

LED 56.4 66.9 66.3 58.3 58.5 72.6

Yeast 53.4 56.6 56.7 52.3 53.2 53.8

Segmentation 87.3 91.9 91.9 94.7 94.8 97.2

Abalone 24.9 25.6 25.9 23.0 24.4 20.8

Spam 83.8 81.2 81.2 83.0 83.0 85.2

Waveform 79.9 82.3 82.3 75.4 76.4 77.1

WaveformNoise 79.1 80.4 80.4 72.9 72.8 75.6

OpticalDigits 93.3 96.2 96.2 96.0 95.9 98.5

Satimage 87.0 89.2 89.2 87.2 88.2 90.7

Thyroid 93.2 93.6 93.6 91.6 93.8 93.2

PenDigits 95.6 98.0 98.0 98.1 98.0 99.5

LED17 48.7 53.8 53.8 53.7 51.4 52.0

Mean 75.2 75.8 75.8 74.4 74.5 77.0

W/L 3/8 3/8 8/6 7/6 6/9

Table 5 Mean of the training
time (in second) of the tested
methods and number of
significant Win/Loss of Eva

Eva Explore ICF NN

Mean 108 5305 34 1

W/L 22/0 0/23 0/23

Some experiments are needed to better understand the predictive behavior of these methods.
They are carried out in Sect. 7.

Table 5 completes the analysis to fully qualify the instance selection methods. The local
one quickly builds a set of prototypes, but with a rather limited compression rate. In con-
trast, Eva and Explore build small and reliable sets of prototypes. But Explore is far more
time demanding. Eva is in between, building even smaller and more reliable solutions than
Explore, with only thrice the time needed by ICF.

Mach Learn

Fig. 3 Bicriteria evaluation of the methods, according to the compression rate and the predictive accuracy
of the VBR scheme. The performance of random instance selection for various selection rates is reported as
well

5.3 Summary

The study carried out on the UCI datasets shows that the local method runs fast but build
sets of prototypes with limited compression. In contrast, the global methods Eva and Explore
build small and reliable sets of prototypes. Among the two methods, Eva’s compression rate
is twice as high, with an increased reliability. Furthermore, Eva runs far faster than Explore.
In Fig. 3, the methods are graphed according to their compression rate and the predictive
accuracy of the VBR scheme.

6 Study of the VNSGreedy heuristic

In this section, we illustrate the advantages of the new VNSGreedy heuristic on synthetic
data. It is compared to the Explore heuristic. The performance is evaluated based on the
training time, the value of Eva’s criterion and the number of selected instances.

6.1 Description of the experiment

In this experiment, we uniformly generate a binary classification problem with 2500 in-
stances lying on a 4 by 4 chessboard, as shown in Fig. 4. We also created a corrupted ver-
sion of this dataset by uniformly mislabeling its instances with a probability of 0.2. Eva’s
criterion (i.e. Eq. 14) is optimized both with the VNSGreedy and Explore heuristics, with
increasing values of their parameter. Furthermore, a set of 16 prototypes, each of which is
the nearest instance of the center of a square, is evaluated. This set of prototypes is certainly
a good solution and serves as a baseline.

The value of the criterion and the number of prototypes, evaluated using a stratified 5-
fold cross-validation, are plotted against the training time for both datasets. The resulting
curves are given in Fig. 5, for the “chessboard” dataset with no noise, and in Fig. 6, for the
noisy “chessboard” dataset.

Mach Learn

Fig. 4 The 4 by 4 “chessboard”
dataset, with 2500 instances

Fig. 5 Comparison of the VNSGreedy and the Explore heuristics on the chessboard dataset. The value of
the criterion (14) and the number of prototypes are reported on the y-axis against the training time, reported
on the x-axis

6.2 Results

In the noise-free case, the best thing to do is to build 16 pure areas. The baseline solution is
thus a global optimum (evaluated at 172). The VNSGreedy algorithm outputs a first solution
in 1 second (VNSGreedy(1), which consists of a single greedy optimization), while the
Explore algorithm builds an equivalent solution in 16 seconds (Explore(0), which performs
no mutations). The difference increases tremendously, as repeating the greedy optimizations
allows to quickly find far better solutions: for a training time of 22 seconds, VNSGreedy(16)
outputs a solution evaluated at 217, while Explore(2000) gives a value of 341. Finally, the
VNSGreedy(2048) optimization outputs an optimal partition. In the same time, The Explore
heuristic builds a partition with more than 18 groups.

This experiment on a noise-free dataset shows that the VNSGreedy heuristic always pro-
duces better solutions than Explore for a given training time or, in other words, equivalent
solutions far more quickly.

Mach Learn

Fig. 6 Comparison of the VNSGreedy and the Explore heuristics on the noisy chessboard dataset. The value
of the criterion (14) and the number of prototypes are reported on the y-axis against the training time, reported
on the x-axis

In the noisy case, the benchmark solution (evaluated at 1088) is not necessarily a global
optimum, as noisy instances can create random patterns. The introduction of noise also
lessens the relative differences. However, the VNSGreedy heuristic still builds better solu-
tions: for a given training time, VNSGreedy always outputs a solution with a lower value of
the criterion. Furthermore, the Explore heuristic faces the challenge of escaping from local
optima with more difficulties. The VNSGreedy(1) algorithm finds a first local optimum eval-
uated at 1157 while the Explore(0) algorithm falls into quite a bad local optimum, since this
optimum is evaluated at 1287 and relies on 13 prototypes only. While the VNS metaheuristic
can escape from local optima quite easily, the Explore heuristic applies a limiting strategy:
by performing swaps, removals or adds one at a time, it takes about 100 seconds and 16,000
mutations for Explore to find a “good” optimum. Finally, this algorithm is asymptotically
unable to escape from an optimum with 18 prototypes.

6.3 Summary

These experiments’ results distinguish the behavior of the Explore heuristic and the new
VNSGreedy heuristic. First, VNSGreedy(1) finds a solution far more quickly than Ex-
plore(0). Furthermore, the solution given by Explore(0) can be quite a bad local optimum.
Its strategy for escaping from such an optimum is rather limited and then requires signifi-
cantly more time to find a good optimum. The VNSGreedy optimization does not suffer from
such a curse, as the adopted Variable Neighborhood Search metaheuristic strategy quickly
enhances the solution.

7 Illustration of the behaviors

Each instance selection method is designed according to a particular aim: a local method re-
lies on a specific and individual notion of interestingness of an instance and a global method
optimizes a global criterion. Each interestingness measure and each global criterion carries
its own semantic. We illustrate the behavior and the limits of each approach on two synthetic
datasets.

Mach Learn

7.1 First experiment

We uniformly generate a binary classification problem with 800 points lying inside the unit
square. The distribution of the classes is (80%,20%) in the upper-right and lower-left cor-
ners, whereas it is (0%,100%) in the upper-left and lower-right corners. The dataset as well
as the reduced sets built by ICF(3), Explore(1000) and Eva(16) are plotted in Fig. 7.

The ICF(3) algorithm applies the ENN rule as a preprocessing step. The ENN rule works
as a noise filtering rule: instances misclassified by their L nearest neighbors are considered
to be mislabeled and dropped. The parameter L corresponds to the decision level for which a
pattern formed with at least L instances is considered significant. In this experiment L = 3,
and as soon as there are at least 3 instances sufficiently close to each other and pertaining
to the same class, those instances are not removed. Furthermore, instances with a different
label next to those significant patterns are considered to be misclassified and dropped, giving
more importance to such patterns. Tuning the parameter L is thus a delicate task.

The second step of the ICF algorithm removes central instances of pure areas: the bigger
they are, the bigger the compression will be. Furthermore, as soon as a significant pattern is
detected by the ENN rule, the method keeps the instances pertaining to a different class next
to this pattern. This limits the influence of such a pattern but limits the compression as well.

Explore is based on a global evaluation resulting from the application of the MDL prin-
ciple. This evaluation balances the predictive accuracy and the number of prototypes needed

Fig. 7 Behaviors of different selection schemes on a synthetic dataset

Mach Learn

to obtain this accuracy. The experiment illustrates that this method does not focus on small
patterns: a small decrease of the error rate implies a great increase of the number of proto-
types to keep and the small noisy patterns are removed. However, the optimization heuristic
performs swaps at random and is not able to escape from a local optimum. Explore thus
selects a bit too many instances, as it is the case in this experiment.

Eva aims to discriminate conditional distributions between cells. The method is designed
for detecting different probabilistic behaviors of the target feature and this is exactly what it
does here: Eva selects four instances as there are four areas (two pure, two slightly mixed).

7.2 Second experiment

Now, we illustrate the limits of the classical methods. We uniformly generate a binary clas-
sification problem with 2000 points lying inside the unit square. The distribution of the
classes is (90%,10%) in the upper-right and lower-left corners, whereas it is (60%,40%) in
the upper-left and lower-right corners. Here, the majority class is the same everywhere. The
dataset as well as the reduced sets built by the ICF(3) algorithm, Explore(1000) and Eva(16)
are plotted in Fig. 8.

This experiment illustrates the limit of the local method ICF: whereas the effects of the
choice of L are well understood (i.e. it controls the size of the significant patterns), the use
of ‘significant pattern’ is questionable. Indeed, such methods make the implicit assumption

Fig. 8 Limits of different selection schemes on a synthetic dataset

Mach Learn

that the instances form pure areas and that small areas are just some noise. If this assumption
is true for some problems, it is not for others. The studied dataset is an example for which
this assumption is false.

Intrinsically, this dataset illustrates the difference between evaluating classifiers (this is
what Explore does) and evaluating conditional probabilities (this is what Eva does). Using a
classification perspective, as the majority class is the same everywhere and as the minority
class is spread out over the whole space, it is hopeless to find pure areas. Explore selects one
prototype and builds the majority classifier. This method thus succeeds where previous ones
fail: in the classification sense, there is nothing to extract from these data.

However, from a probabilistic point of view, the dataset brings information, as the target
feature exhibits four different probabilistic behaviors. Eva, which aims to discriminate such
behaviors, selects four prototypes. The fact that the upper-left prototype is of the minority
class is not significant: according to the VBR classification scheme, the distribution of the
label within the associated Voronoi cell is the only thing that matters.

7.3 Summary

As illustrated by the two experiments, the methods fall into two groups. The local methods
rely on individual definitions of interestingness. However, these definitions make the implicit
assumption that there are only pure areas in the dataset, which is not true in many practical
cases. The global methods, when the evaluation is regularized, do not make this assumption.
Further, Explore evaluates classifiers while Eva focuses on conditional probabilities, which
are finer models. This is a key feature when the class of interest is not the majority one
(consider the case of fraud detection or characterization of customer attrition, for example).
Furthermore, the choice of an optimization heuristic for global evaluation is important as
some heuristics have more difficulty to escape from local optima than others.

8 Conclusion

In this article, we have presented Eva, a new instance selection algorithm. It is designed for
a relabeling classification scheme. The resulting decision rule is nonparametric and does not
significantly sacrifice predictive accuracy when compared to the nearest neighbors rule. Eva
outputs smaller and more reliable sets of instances within a competitive amount of time,
outperforming alternative selection algorithms.

Eva relies on a maximum a posteriori evaluation of the conditional probabilities in each
cell of the Voronoi partition associated with a set of instances. The evaluation is global
and nonparametric. By using a probability distribution criterion (rather than a classification
criterion), Eva is able to automatically tackle any kind of classification problem: from prob-
lems with separated classes to problems where the class of interest is the minority one. In
order to make the most of the evaluation we have proposed a new and efficient optimization
heuristic: VNSGreedy. The algorithm repeatedly applies a bottom-up greedy optimization
according to a Variable Neighborhood Search meta-heuristic.

The next step consists in performing feature selection. The set of models must be ex-
tended to take into account subsets of features, the prior of the maximum a posteriori crite-
rion must be extended to deal with the feature selection part of the models and the optimiza-
tion heuristic must be extended to efficiently browse through the extended set of models.
This is left as future work.

Mach Learn

Appendix A: Influence of the classifying scheme

We carry out complementary experiments in order to compare the VBR and the K-NN clas-
sification schemes. The first experiment is similar to that in Sect. 5, the datasets and their
stratified division into 10 folds remain identical. Selection is performed at random, with
various selection rates. The predictive accuracy of the VBR and NN schemes are plotted in
Fig. 9.

When the selection rate is low (around 1%), the VBR scheme appears to be the better
choice (62% of predictive accuracy) while the 3-NN scheme is the worst (52% of predictive
accuracy). Without relabeling, the prototype carries its own single label and, when the selec-
tion rate decreases, the classification is more and more blind. The classification according to
the 3-NN scheme suffers even more from such a curse. In contrast, the relabeling tool used
by the VBR scheme allows to take into account the whole distribution of the labels in the
Voronoi cell of a prototype, making the classification more informed.

There is still some work remaining to select the right instances without decreasing accu-
racy, as the predictive accuracy of the Lazy algorithm, which performs no selection, is 77%:
the more selective you are, the more difficult it is to retain a high predictive accuracy.

Appendix B: Influence of the representation

We carry out a complementary experiment in order to compare representations. The experi-
ment is identical to the one in Sect. 5: the datasets, their stratified division into 10 folds, the
methods and their parameterization. The only difference is in the representation: while the
L1 metric is still applied, the numerical features are first centered and reduced (the mean is
subtracted and the result is divided by the standard deviation). The metric is still the Ham-
ming distance for categorical features. Table 6 gives the prediction accuracy of the selection
algorithms.

Fig. 9 Comparison of the predictive accuracy of the 1-NN, the 3-NN classification schemes and the
Voronoi-based relabeling scheme. Instance selection is performed at random with varying selection rates

Mach Learn

Table 6 Prediction accuracy of Eva(16), Explore(1000), ICF(3) and the Lazy algorithm (performing no
selection), estimated using a stratified 10-fold cross-validation. The 23 datasets of the UCI are considered.
The number of significant Wins/Losses of Eva is reported. All numerical features are centered and reduced
before the application of the L1 metric

Eva Explore ICF Lazy

1-NN 3-NN VBR 1-NN 3-NN VBR 1-NN 3-NN

Mean 77.7 79.0 68.7 79.0 76.5 76.8 77.1 79.1 79.5

W/L 1/10 11/6 1/10 7/6 4/5 5/5 6/8 3/9

Table 7 Prediction accuracy of Eva(16), Explore(1000), ICF(3) and the Lazy algorithm (performing no
selection) for the Wine dataset, estimated using a stratified 10-fold cross-validation. All numerical features
are centered and reduced before the application of the L1 metric

Normalization Eva Explore ICF Lazy

1-NN 3-NN VBR 1-NN 3-NN VBR 1-NN 3-NN

without 88.9 81.0 48.4 81.0 74.2 71.9 74.8 83.2 77.5

with 96.6 95.5 63.8 95.5 92.1 94.3 92.1 97.2 97.2

Table 8 Means of the compression rate, the robustness and the training time of Eva(16), Explore(1000),
ICF(3) and the Lazy algorithm (performing no selection) over 23 datasets, estimated using a stratified 10-fold
cross-validation

Eva Explore (NN) ICF (NN) Lazy

compression rate 1.5 2.9 15.4 100

Robustness 96.7 93.3 90.9 79.9

training time 104 6904 35 1

The normalization of the features increases the predictive accuracy of every method.
For example, the predictive accuracy of the lazy algorithm rises from 77.0% to 79.1% on
average. This results from the reduction of the scaling differences between features with the
normalization. Explore focuses on predictive accuracy and thus benefits more than Eva from
this process.

There is a “representation masking effect”. For example, let us have a closer look at the
Wine dataset (cf. Table 7). Once the features have been normalized, the classes are easier
to separate and any instance selection method is able to discriminate them. They obtain the
same good prediction accuracy. We could be misled and draw the conclusion that selection
algorithms are equivalent, while it is the representation that does the job. However, according
to Table 8, the training time, the compression rate and the robustness of the selection process
are not affected by such masking effect, strengthening the importance of a multi-criteria
analysis.

Some additional experiments show that there is a “metric masking effect” as well. If
we apply the VDM metric for categorical features (Stanfill and Waltz 1986), and as the
definition of such metric integrates the target feature, it is even more difficult to discriminate
between the benefits of the metric and that of the selection algorithm. This is why we prefer
to adopt the simplest representation and distance metric to get a clear comparison between
instance selection algorithms.

Mach Learn

References

Aha, D. W. (1992). Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms.
International Journal of Man-Machine Studies, 36(2), 267–287.

Aha, D., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms. Machine Learning, 6, 37–66.
Asuncion, A., & Newman, D. (2007). UCI Machine Learning Repository. Irvine, CA: University of Califor-

nia, School of Information and Computer Science. http://www.ics.uci.edu/~mlearn/MLRepository.html.
Berndt, D., & Clifford, J. (1996). Finding patterns in time series: a dynamic programming approach (Tech.

rep.). Advances Knowledge Discovery Data Mining.
Bhattacharya, B. K., Mukherjee, K., & Toussaint, G. T. (2005). Geometric decision rules for instance-based

learning problems. In S. K. Pal, S. Bandyopadhyay, & S. Biswas (Eds.), Lecture notes in computer
science: Vol. 3776. PReMI (pp. 60–69). Berlin: Springer.

Brighton, H., & Mellish, C. (2002). Advances in instance selection for instance-based learning algorithms.
Data Mining and Knowledge Discovery, 6(2), 153–172.

Bunke, H. (2000). Recent developments in graph matching. In ICPR (pp. 2117–2124).
Cameron-Jones, R. (1995). Instance selection by encoding length heuristic with random mutation hill climb-

ing. In Proceedings of the eighth Australian joint conference on artificial intelligence (pp. 99–106).
Chang, C. (1991). Finding prototypes for nearest neighbor classifiers. IEEE Transactions on Computers,

23(11), 1179–1184.
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. Institute of Electrical and Electronics

Engineers Transactions on Information Theory, 13, 21–27.
Devroye, L., Györfi, L., & Lugosi, G. (1996). A probabilistic theory of pattern recognition. Berlin: Springer.
Duda, R., Hart, P., & Stork, D. (2001). Pattern classification. New York: Wiley.
Ferrandiz, S., & Boullé, M. (2006). Supervised evaluation of Voronoi partitions. Intelligent Data Analysis,

10(3), 269–284.
Fix, E., & Hodges, J. (1951). Discriminatory analysis. Nonparametric discrimination: consistency properties

(Technical Report 4). Project Number 21-49-004, USAF School of Aviation Medicine, Randolph Field,
TX.

Gates, G. (1972). The reduced nearest neighbor rule. IEEE Transactions on Information Theory, 18(3), 431–
433.

Grünwald, P., Myung, I., & Pitt, M. (2005). Advances in minimum description length: theory and applica-
tions. Cambridge: MIT Press.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine
Learning Research, 3, 1157–1182.

Hansen, P., & Mladenovic, N. (2001). Variable neighborhood search: principles and applications. European
Journal of Operational Research, 130, 449–467.

Hart, P. (1968). The condensed nearest neighbor rule. IEEE Transactions on Information Theory, 14, 515–
516.

Jaromczyk, J., & Toussaint, G. (1992). Relative neighborhood graphs and their relatives. Proceedings of the
IEEE, 80(9), 1502–1517.

Kohonen, T. (2001). Self-organizing maps (3rd ed.). Berlin: Springer.
Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics

Doklady, 10(8), 707–710.
Liu, H., & Motoda, H. (2001). Instance selection and construction for data mining. Dordrecht: Kluwer.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In L. Cam,

& Neyman (Eds.), Fifth Berkeley symposium on mathematical statistics and probability (pp. 281–297).
Parzen, E. (1962). On estimation of a probability density function and mode. Annals of Mathematical Statis-

tics, 33(3), 1065–1076.
Robert, C. (2001). The Bayesian choice: from decision-theoretic motivations to computational implementa-

tion. New York: Springer.
Salzberg, S. (1991). A nearest hyperrectangle learning method. Machine Learning, 6, 277–309.
Sanchez, J. S., Pla, F., & Ferri, F. J. (1997). Prototype selection for the nearest neighbour rule through prox-

imity graphs. Pattern Recognition Letters, 18(6), 507–513.
Scholkopf, B., & Smola, A. (2001). Learning with kernels: support vector machines, regularization, opti-

mization, and beyond. Cambridge: MIT Press.
Sebban, M., Nock, R., & Lallich, S. (2002). Stopping criterion for boosting-based data reduction techniques:

from binary to multiclass problem. Journal of Machine Learning Research, 3, 863–885.
Stanfill, C., & Waltz, D. (1986). Toward memory-based reasoning. Communications of the ACM, 29, 1213–

1228.
Toussaint, G. T., Bhattacharya, B., & Poulsen, R. (1985). The application of Voronoi diagrams to nonpara-

metric decision rules. In Computer science and statistics: the interface (pp. 97–108).

http://www.ics.uci.edu/~mlearn/MLRepository.html

Mach Learn

Toussaint, G. T., & Poulsen, R. (1975). Some new algorithms and software implementation methods for
pattern recognition research. In Proceedings of the international computer software applications con-
ference (pp. 55–63).

Vapnik, V. (1996). The nature of statistical learning theory. New York: Springer.
Wettschereck, D., & Dietterich, T. (1995). An experimental comparison of the nearest neighbor and nearest

hyperrectangle algorithms. Machine Learning, 19(1), 5–27.
Wilson, D. (1972). Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on

Systems, Man and Cybernetics, 2, 408–421.
Wilson, D., & Martinez, T. (1997a). Improved heterogeneous distance functions. Journal of Artificial Intelli-

gence Research, 6(1), 1–34.
Wilson, D., & Martinez, T. (1997b). Instance pruning techniques. In D. Fisher (Ed.), Proceedings of the 14th

international conference on machine learning (pp. 403–411). San Francisco: Morgan Kaufmann.
Wilson, D., & Martinez, T. (2000). Reduction techniques for instance-based learning algorithms. Machine

Learning, 38(3), 257–286.

	Bayesian instance selection for the nearest neighbor rule
	Abstract
	Classification by the nearest neighbor
	Construction and selection of prototypes
	Measuring similarities
	Classification scheme
	Proposed approach for instance selection
	Organization of the paper

	Instance selection
	Global methods
	Local methods
	Summary

	Maximum a posteriori evaluation of a set of prototypes
	The intuition
	The Bayesian framework
	The probabilistic criterion
	Summary

	A new optimization heuristic
	Greedy optimization of a set of prototypes
	Variable neighborhood search
	Summary

	Benchmarking Eva
	Description of the experiment
	Results
	Summary

	Study of the VNSGreedy heuristic
	Description of the experiment
	Results
	Summary

	Illustration of the behaviors
	First experiment
	Second experiment
	Summary

	Conclusion
	Appendix A: Influence of the classifying scheme
	Appendix B: Influence of the representation
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

