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Abstract

Since its introduction, the nearest neighbor rule has been widely re-

fined and there exists many techniques for prototypes selection or con-

struction. The underlying structure of such rules is the Voronoi partition

induced by the prototypes. Construction of the best Voronoi partition

often relies on the generalisation performance and thus faces the risk of

overfitting the data.

In this paper, we adopt a descriptive approach for the supervised eval-

uation of medoid-based Voronoi partitions. The resulting criterion mea-

sures the discrimination of the classes, is parameter free and prevents

from overfitting. Experiments on real and synthetic datasets illustrate

these properties. Although this criterion is not related to the classifying

task, the accuracy and robustness of the induced classifier are also com-

pared with standard methods, such as the nearest neighbor rule and the

linear vector quantization method.

Keywords : Supervised classification – nearest neighbor rule – Voronoi
tesselations – partitioning – data-dependent evaluation

1 Classification and Voronoi partitions

Data mining aims at extracting information from data sources. With the in-
creasing number of collected data, preprocessing techniques which summarize
and clean the databases before the modelling step become more and more ap-
pealing. As soon as a dissimilarity notion is available, Voronoi partitions [11]
become a key tool for many of these techniques. Examples of Voronoi partitions
are given in Figure 1.

Such partitions have many useful characteristics. The partitioning paradigm
is intrinsically well-suited for discrimination of the behaviors. Voronoi partitions
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assign to each detected behavior a typical example. By grouping similar objects,
reliable information can be extracted by considering the objects in each cell
jointly : effects of the outliers decrease. Finally, the definition of a Voronoi
partition merely relies on a set of objects, which makes the set of partitions
easy to handle. For these attractive properties, Voronoi partitions have been
widely used for clustering databases.

Figure 1: Examples of synthetic and real Voronoi partitions for the euclidean
metric.

In the unsupervised context, the dissimilarity measure of a partition just
sums the dissimilarities between each instance and its nearest representative.
The best partition is the one with minimum dissimilarity. If the euclidean metric
is applied, the K-means algorithm [9] is a stochastic method which optimizes this
criterion. Firstly, a set of K prototypes is picked out from the set of instances at
random. Then, in each cell, the mean of the instances is computed and the set
of the means replaces the initial set of prototypes. A more accurate partition
results from this and the process is iterated up to stability. The method is known
to converge quickly. However, it must theoretically deal with metric spaces and
is efficient for euclidean spaces only.

K-medoids methods [6] overcome this constraint by considering sets of pro-
totypes included in the set of instances. The only required input is the ma-
trix of dissimilarities between any two instances. For example, instances can
be described by categorical values and dissimilarities can be measured by the
Hamming metric. Such methods are naturally combinatorial which makes them
less computationally tractable.

In [5], two optimisation heuristics are proposed. PAM (for Partitioning
Around Medoids) is a two phases algorithm, which incrementally builds a set of
prototypes and then performs swaps between prototypes and instances. CLARA
(for Clustering LARge Applications) relies on sampling and applies PAM on suc-
cessive samples in order to save memory space and computing time. CLARANS
(for Clustering Large Applications based on RANdomized Search) is a hill-
climbing search with multiple randomized starts [10].

Working with a dissimilarity based criterion in an unsupervised context
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forces the user to specify the number K of prototypes. Indeed, the whole set of
instances is the one minimizing the dissimilarity (which is null in this case) and
the dissimilarity always decreases with the increase of K. Then, there is no hope
for automatically selecting K by optimizing such a criterion. In some cases, like
assigning customers to salesmen, the number of prototypes is obviously given
by the problem setting. But one often has to apply a heuristic.

In the context of density estimation, Normalised Maximum Likelihood (or
Stochastic Complexity) principle [12] is a theoretical framework which allows
to compare mixture models with different number of components. The idea
consists in penalizing the likelihood of a model for the given sample by the sum
of the likelihoods over every samples. For multinomial data, the criterion is
made computationally tractable in [8].

In the supervised context, a label lying in a finite alphabet is assigned to
each instance and the data thus pertain to predetermined classes. A natural
way for partitioning such data consists in applying unsupervised methods to
each class and putting together the resulting prototypes [4]. In case of well-
separated classes, this heuristic behaves satisfactorily but fails if the classes are
mixed. Indeed, the positioning of the prototypes for each class does not take
into account the instances in the other classes. Furthermore, the specification
of the number of representatives in each class remains an open issue.

LVQ (for Linear Vector Quantization [7]) aims at improving the position
of K preselected prototypes. The initial prototypes may results from applying
the K-means algorithm in each class separately or sampling from each class.
The on-line version processes one instance at a time, adapting the position of
the nearest prototype according to the class labels : if the instance and the
prototype share the same label, the prototype moves toward the instance, else
it moves away. LVQ uses all the instances for positioning the representatives
and thus handles the case of mixed classes. But the choice of the number K is
still left to the user.

In this paper, we present a new supervised finite-data evaluation criterion for
medoid-based Voronoi partitions of different sizes with frequential distributions.
As the instances are labelled, we do not focus on the global dissimilarity of the
instances but on the discrimination of the labels : a good partition must result
from a compromise between the number of cells and the discrimination of the
labels between cells. The adopted descriptive approach allows to make this
compromise formally explicit.

The remainder of the paper is organized as follows. We first present the
related works (section 2) and describe the new criterion (section 3). Then,
we evaluate the descriptive approach on synthetic and real data (section 4)
and compare with the predictive classical one, represented by the LVQ method
(section 5).
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2 Related works

Supervised medoid-based partitioning is an extension of the instance selection
paradigm. Instance selection consists in selecting prototypes among the in-
stances of the sample and assigning their initial label to these instances, while
supervised partitioning considers all labels in each cell. Many instance selection
techniques have been proposed. A comparative study is the aim of [16].

Information Bottleneck principle has been applied to supervised data cluster-
ing, by extracting a compact representation of the instances under a constraint
on the mutual information between the clustering and the labels [15]. The prob-
lem is turned into a variational problem, which can be explicitly solved provided
that the joint density of the instances and the labels is known. A bottom-up
greedy agglomerative heuristic is applied which produces a hierarchy of parti-
tions. The method works with full knowledge about the densities. In practice,
the densities are estimated from their corresponding empirical densities. Fur-
thermore, the ”right” number of groups is fixed heuristically, as the evaluation
criterion cannot be used to compare partitions with different sizes.

The Discriminative Clustering approach [14] consists in obtaining as dis-
criminating clusters as possible according to the labels. A finite-data entropy-
shaped evaluation criterion is proposed, derived from a MAP (for Maximum
A Posteriori) estimation. In order to allow a gradient optimization, the crite-
rion is extended by introducing smooth parameterized membership functions.
The method falls into the category of Vector Quantization methods. The eu-
clidean metric is used as the measure of dissimilarity. Though entropy measures
are known to provide a good evaluation of the discrimination of the labels, it
cannot be used alone for selecting the number of prototypes.

The idea of balancing the number of cells and the discrimination of the labels
has led to propose a heuristic criterion which evaluates any general partition π
[2] :

c(π) = Impurity(π) + βPenalty(π).

The Impurity term evaluates the dispersion of the labels by taking the ratio
of the overall number of minority examples to the number of instances. The
Penalty term is essentially the square root of the ratio of the number of groups
to the number of instances. β (0 ≤ β ≤ 3) is a parameter to tune.

Albeit possessing the capacity to compare partitions with different sizes, this
criterion results from heuristic choices, is thus parametric and measures a non
explicit quantity. Estimation of β requires a cross-validation step, which is time
demanding.

3 Supervised evaluation of data-dependent par-

titions

We adopt a descriptive approach and make the compromise between the number
of prototypes and the discrimination of the distributions formally explicit. From
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this results a supervised finite-data evaluation criterion for medoid-based Voro-
noi partitions with frequential distributions. This meaningful criterion allows
to compare partitions with different sizes.

3.1 Notations

Let us fix the notation used throughout the following analysis. We have a finite
sample D = {Xn, Yn} of N labelled instances. We denote D(x) = {Xn} the set
of instances and D(y) = {Yn} the set of labels. The labels lie in an alphabet
L = {lj} of size J and the instances in a space X. A dissimilarity measure
δ : X× X→ R+ is defined.

Given a subset P ⊂ X, the Voronoi partition V (P ) = (V (p))p∈P relying on
P is defined by :

∀p ∈ P, V (p) =

{

x ∈ X; p = argmin
p′∈P

δ(x, p′)

}

.

Thus, for p ∈ P , the Voronoi cell V (p) contains the points x for which p is the
most similar element in P , with respect to the dissimilarity measure δ. The
element p is called the representative or the prototype of its cell V (p).

In the supervised context, we seek a Voronoi partition of the space with a
multinomial distribution defined in each cell. Thus, we define a (descriptive)
model as a couple (v, ψ) with v a Voronoi partition with K cells and ψ a matrix
giving the probability of label j (1 ≤ j ≤ J) in cell k (1 ≤ k ≤ K) at the
position (k, j). The number of cells of such a model will be denoted k(v, ψ).

Given a Voronoi partition v with K cells v1, . . . , vK , the size of D(x)
⋂

vk is
denoted Nk (1 ≤ k ≤ K) and the size of {Xn ∈ D

(x)
⋂

vk; Yn = lj} is denoted
Nkj (1 ≤ j ≤ J). Thus, N = N1 + · · ·+NK and Nk = Nk1 + · · ·+Nkj .

3.2 Formalization

A model M = (V,Ψ) is evaluated according to the probability p(M,D(y)/D(x)).
This probability can be written as the product p(M/D(x))p(D(y)/M,D(x)). In-
formally, instead of describing the relationship between the instances and the
labels directly (i.e. the probability p(D(y)/D(x))), we firstly describe a model
depending on the instances (p(M/D(x))) and then we rely on the model in order
to describe the relationship (p(D(y)/M,D(x))).

The p(M/D(x)) part balances the contribution of the model p(D(y)/M,D(x)),
in order to prevent from overfitting the data. Unlike the classical bayesian
approach, which needs to set a prior p(M) on the whole set of models, the
descriptive approach allows to exploit a data-dependency. Furthermore, the
p(D(y)/M,D(x)) part is defined without assuming that M generates the data.
The approach then provides a finite-data solution to the problem of overfitting.

Now, we focus on the problem of specifying p(M,D(y)/D(x)). Denoting
K = k(V,Ψ) :

p(V,Ψ, D(y)/D(x)) = p(K,V,Ψ, D(y)/D(x)),
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which enables to compare different-sized models. The description of the models
relies on the description of the number of cells, then the selection of the pro-
totypes and finally the description of the distribution of the labels. In other
words, we iterate the dependency using Bayes’ formula :

p(V,Ψ, D(y)/D(x)) = p(K/D(x))p(V/K,D(x))p(Ψ, D(y)/K, V,D(x)).

At this step, we assume that the behavior of the multinomial distributions
in the cells are conditionally independent from each other, which means :

p(Ψ, D(y)/K, V,D(x)) =

K
∏

k=1

p(Ψk, D
(y)
k /Vk, D

(x)
k ),

with Vk the kth cell of V , Ψk the model distribution of the labels in Vk (i.e. the

kth row of Ψ), D
(x)
k the instances in Vk and D

(y)
k their labels. Then, in each cell,

the model distribution is considered first and the relationship between D
(x)
k and

D
(y)
k is considered next. In other words, we apply one last time the Bayes’ rule

and we have :

p(V,Ψ, D(y)/D(x)) = p(K/D(x))p(V/K,D(x))
K
∏

k=1

p(Ψk/Vk, D
(x)
k )p(D

(y)
k /Vk,Ψk, D

(x)
k ).

Informally, the overall description is carried out hierarchically, which consists
in applying the Bayes’ theorem iteratively, and the description of the relation-
ship between the instances and their labels is made independently in each cell.

3.3 Specification

We turned the problem of defining the probability p(M,D(y)/D(x)) into four
similar but simpler sub-problems. Now, we propose analytic formulas for the
above probabilities. The idea consists mainly in specifying the support of the
involved variable and then adopting a uniform prior.

For the number of groups K, i.e the probability p(K/D(x)), possible values
lie between 1 and N . Applying a uniform prior on these values, we have :

p(K/D(x)) =
1

N
.

The Voronoi partition is uniquely characterized by its prototypes. According
to the data-dependency, we restrict ourselves to prototypes that are medoids and
consider sets of prototypes that are subsets of D(x). Adopting a uniform prior
would lead to use the classical

(

N

K

)

binomial coefficient, as K representatives
among N instances have to be specified. But this coefficient is symetric with
respect to the number K of cells for fixed N , and we prefer lower K. We select
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the coefficient
(

N+K−1
K−1

)

, which increases with K, is close to
(

N

K

)

for low values
of K, null if K = 1, and thus models quite well our preference :

p(V/K,D(x)) =
1

(

N+K−1
K−1

) .

In the kth cell, we exploit the data-dependency and consider a restricted
support for the possible multinomial distributions by taking into account only
rational probabilities with Nk as denominator. Formally, the support is







(

nk1

Nk

, . . . ,
nkJ

Nk

)

;

J
∑

j=1

nkj = Nk







,

the cardinality of which is
(

Nk+J−1
J−1

)

(1 ≤ k ≤ K). Applying a uniform prior
gives :

p(Ψk/Vk, D
(x)
k ) =

1
(

Nk+J−1
J−1

) .

At this point, the partition and the multinomial distribution in each cell are
given and it remains to specify the label of each instance in each cell. In each cell,
we suppose that the frequencies of the labels follow a multinomial distribution.
The support is restricted according to the data-dependency : for the kth cell
(1 ≤ k ≤ K), the problem is the same as putting the elements of the cell in J
boxes, under the condition that the jth box contains Nkj elements (1 ≤ j ≤ J).
The multinomial coefficient gives the exact number of such possibilities and we
obtain :

p(D
(y)
k /Vk, D

(x)
k ) =

1
Nk!

Nk1!...NkJ !

.

Finally, taking the negative log of p(M,D(y)/D(x)), a model M is evaluated
according to the following formulae :

c(M) = logN+log

(

N +K − 1

K − 1

)

+

K
∑

k=1

log

(

Nk + J − 1

J − 1

)

+

K
∑

k=1

log
Nk!

Nk1! . . . NkJ !
.

Since Shannon’s work [13], negative log of probabilities can be interpreted as
code lengths, measured in nats if the log is natural. An example of evaluation
is given on the figure 3.3.

3.4 Summary

According to the Stirling’s approximation (log x! ≈ x log x − x +O(log x)), the
last term of the above criterion is related to entropy and mutual information.
The sum over the cells behaves asymptotically as N times the conditional en-
tropy of the distribution of the Yn’s given the clusters assignment function :

1

N

K
∑

k=1

log
Nk!

Nk1! . . .NkJ !
≈ −

K
∑

k=1

J
∑

j=1

Nkj

N
log

Nkj

Nk

.
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Figure 2: Evaluation of a partition with 5 prototypes (triangle instances) in
a two classes problem (grey and black) with 22 instances. Specifying K = 5
requires log 22 nats; specifying which instances are prototypes requires log

(

27
5

)

nats; specifying the frequencies in each cell requires log 7 + log 6 + 2 log 5 + log 4
nats; specifying the relationship in each cell requires log 6!

3!3! + log 4!
2!2! + log 3!

2!
nats. The overall evaluation is 28.62 nats.

The criterion thus evaluates the discrimination of the distributions with a finite-
data entropy-related term balanced with a structural weight, which quantifies
the complexity of the cutting.

The new criterion makes the probability p(D(y),M/D(x)) explicit and is
thus meaningful, being a probabilistic measure of the ability for a model to
discriminate the labels. The consideration of the data-dependency at each step
is the mainspring which makes the criterion

• finite-data,

• non-parametric (in the computational meaning),

• able to evaluate partitions with different sizes

without

• making the iid assumption on the sample,

• defining a generative process of the Xn’s,

• defining a generative process of the Yn’s given the Xn’s,

• adopting a parametric prior.

In a few words, this criterion is well-suited for extracting reliable information
from data without further knowledge, which is exactly the aim of the data
preparation task.
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4 Evaluation of the descriptive approach

We perform experiments on real and synthetic datasets in order to illustrate
the properties of our criterion. In all the experiments we use the L1 metric as
dissimilarity measure. Firstly, we set up a synthetic problem to illustrate the
discrimination ability of the criterion; secondly, we study the tolerance to the
increasing presence of mislabelled data and finally, we investigate its predictive
accuracy and robustness on real data.

4.1 The adopted heuristic

The criterion measures the discrimination capacity of medoid-based Voronoi
partitions. An exhaustive search through the whole space of models (which
cardinality is 2N) is unrealistic. We use the CLARANS heuristic proposed in
[10] within an unsupervised context. The method swaps a prototype for a non
prototype iteratively. Starting from an arbitrary set of K prototypes, swaps are
performed at random, evaluated, and triggered if the value of the criterion de-
creases. The number of swaps is controlled by the parameterMaxSwapNumber.
If the criterion does not decrease after MaxSwapNumber swaps, the algorithm
stops and restarts with a new set of prototypes. The number of start is con-
trolled by the parameter LocalMinimumNumber. More precisely, the pseudo
code of the CLARANS(K) algorithm is :

• i← 1

• Best← NULL

• For i = 1 . . . LocalMinimumNumber Do

– j ← 1

– Current← pick up an arbitrary set of K prototypes

– While j ≤MaxSwapNumber Do

∗ Swapped ← swap an element in Current for an element not in
Current

∗ If Swapped has a lower cost than Current

· Current← Swapped

· Break

∗ Else

· j ← j + 1

– If Current has a lower cost than Best

∗ Best← Current

• Return Best
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According to the experiments carried out in [10], the authors suggest to
set LocalMinimumNumber = 2 (i.e to use the version which finds two lo-
cal optima) and MaxSwapNumber = p × K(N − K), with p = 1.25. We
adopt the same tuning. This gives a computational complexity of O(K2N2)
for CLARANS(K). As the presented criterion is able to compare sets of pro-
totypes with different sizes, the algorithm CLARANS(K) is applied iteratively
for 1 ≤ K ≤ Kmax. This gives an overall complexity of O(K3

maxN
2)

4.2 Discrimination

The first experiment aims at illustrating the notion of discrimination that the
criterion captures. We generate a two classes dataset with 2000 points lying
inside the 2d ball of radius 1 for the L∞ metric. The distribution of the classes
is (0.9, 0.1) in the upper-right and lower-left corners, whereas it is (0.6, 0.4)
in the upper-left and lower-right corners. We optimize the criterion with the
CLARANS heuristic, with Kmax = 8. The method builds 4 cells (cf. Figure
4.2).

Figure 3: Synthetic dataset for discrimination. The criterion focuses on the
discrimination and builds 4 cells.

Many criteria focus on the purity of the resulting clusters and thus take into
account the majority class only. In other words, they focus on the prediction
accuracy. In case of well separated classes, the approach is safe. But, as soon
as the classes are mixed, it fails. In the discussed example, the majority class
is the same everywhere : purity and prediction accuracy are irrelevant notions
in this context. At the opposite, our criterion detects significant variations of
the conditional distributions. Though the example is a toy one, it illustrates a
classical situation. In practice, classes are often mixed or the most interesting
class might be the minority one. This is the case for real problems such as fraud
detection.
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4.3 Mislabelled data

In a second experiment, we study the tolerance of the criterion to the increasing
presence of mislabelled data into the dataset. We generate datasets in the same
way as in the first experiment, the distribution of the classes being (1 − α, α)
in the upper-right and lower-left corners and (α, 1 − α) in the upper-left and
lower-right corners. The parameter α varies from 0 (XOR problem) to 0.5 (pure
noise problem). We optimize the criterion with the CLARANS heuristic again,
with Kmax = 8. The optimization is run ten times. The number of prototypes
is reported in the Figure 4.3.

Figure 4: Tolerance to noise. For each value of the noise rate α, the method
is run ten times. The figure shows the mean and the standard deviation of the
resulting number of prototypes.

The criterion is effective as long as the data contains less than 40% of mis-
labelled data. The method sometimes falls into a local optima and builds more
than 4 cells. By compromising between the number of cells and the discrimi-
nation, the criterion is able to decide that no significant discrimination can be
done : if the best partition has one single cell, the Xn’s and the Yn’s are inde-
pendent. This is the case for the noisy and next to noisy problems (α = 0.5 and
α = 0.45).

4.4 Accuracy and robustness

On one hand, the Nearest Neighbor (NN) rule, which assigns the class label of its
nearest neighbor to an unseen instance [3], can be thought of as a simple medoid-
based partitioning method (creating one group per instance by considering the
whole set D(x) as the set of prototypes). On the other hand, a model (V,Ψ)
implicitly defines a classifier : if a new instance X belongs to the kth cell vk of
V , X is classified as the majority class in vk.
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Dataset Size Attributes Class Majority Class
Iris 150 4 3 0.33

Wine 178 13 3 0.40
Heart 270 10 2 0.56
Bupa 345 6 2 0.58

Ionosphere 351 34 2 0.64
Australian 690 6 2 0.56

Crx 690 6 2 0.56
Breast 699 9 2 0.66
Pima 768 8 2 0.65

Vehicle 846 18 4 0.26
Waveform 5000 21 3 0.34

WaveformNoise 5000 40 3 0.34

Table 1: Tested datasets.

The NN rule stores every instances and each classification of a new instance
requires to browse the whole set. This limits the deployment of the method. By
reducing the number of prototypes, our method solves this problem. But one
could wonder whether such a reduction goes with a loss of predictive accuracy,
particularly since the criterion does not focus on the accuracy.

The experiment aims at comparing both the accuracy and robustness (mea-
sured as the ratio of the test accuracy to the train accuracy) of the classifier
induced by our approach and the NN rule. We select datasets (cf Table 1)
from the UCI machine learning database repository [1] for which the NN rule
performs far better than the majority classifier. As we focus on continuous at-
tributes, we discard the nominal attributes of the Heart, Crx and Australian
databases.

Our criterion is still optimized with the CLARANS heuristic, with Kmax =
10, and the overall best partition encountered is returned. The evaluation con-
sists in a stratified five-fold cross-validation. The predictive accuracy of the
classifiers are reported in the Table 2, as well as the robustness. We can notice
that the robustness of NN equals the test accuracy, since the train accuracy
always equals 1. A Student’s test at the 5% confidence level is performed to
determine whether the differences of performance are significant.

The proposed criterion allows to select a few representative instances (about
1% of the initial database) without any loss of accuracy with respect to the NN
rule. Furthermore, the robustness is dramatically increased when compared with
the NN rule and nearly equals one. This property is a strong and important one
for real-case studies. Indeed, it means that the best set of prototypes according
to the criterion will behave quite well on previously unseen data.

The method thus outperforms the Nearest Neighbor rule in terms of predic-
tive accuracy (4 significant wins and 1 significant loss), robustness (10 significant
wins and no significant loss) and ease of deployment (1 prototype for 100 in-
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Test accuracy Robustness
Datatsets SM NN SM NN

Iris 0.97 0.95 0.99 0.95
Wine 0.84 0.82 0.93 0.82
Heart 0.69 0.59 0.91 0.59
Bupa 0.66 0.58 0.87 0.58

Ionosphere 0.90 0.91 0.95 0.91
Australian 0.73 0.68 0.97 0.68

Crx 0.72 0.67 0.96 0.67
Breast 0.97 0.97 0.99 0.97
Pima 0.74 0.69 0.97 0.69

Vehicle 0.63 0.67 0.96 0.67
Waveform 0.81 0.77 0.98 0.77

WaveformNoise 0.79 0.76 0.98 0.76
Mean 0.786 0.755 0.954 0.755

W/D/L 4/5/1 10/0/0

Table 2: Predictive accuracy and robustness of the supervised medoid-based
method (SM) and the nearest neighbor rule (NN) estimated by stratified 5-fold
cross-validation. Numbers of Win/Draw/Loss of SM are reported.

stances in average).

4.5 Summary

Our approach makes the compromise between the discrimination of the target
and the number of cells explicit. The resulting criterion allows to discriminate
different behaviors of the target (as shown in the first experiment). By adopting
a discriminative point of view, the criterion still behaves satisfactorily in the
presence of mislabelled data (as shown in the second experiment). The classifier
induced by the best partition enhances the Nearest Neighbor rule in terms of
predictive accuracy and robustness (as shown in the third experiment).

5 Comparing the descriptive with the predictive

approach

The classical approach consists in estimating a classifier with high generalization
performance. We use the Linear Vector Quantization method [7] in order to
illustrate the main differences with our descriptive point of view.
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5.1 Description of the LVQ algorithm

LVQ is a state of the art supervised method which deals with Voronoi partitions.
Quantization consists in placing the prototypes strategically with respect to the
decision boundaries and considers a bigger class of partitions than the class of
medoid-based ones, with the hope of a better fit of the data. Let v1(t), . . . , vK(t)
(t ∈ N) be a set of K prototypes and l1, . . . , lK the labels corresponding to the
given prototypes. The LVQ algorithm [7] iteratively corrects the position of the
initial prototypes according to the following process :

• Sample an instance X (with replacement),

• Consider the nearest prototype vk(t) of X ,

• If X and vk(t) share the same label, move vk(t) towards X :

– vk(t+ 1) = vk(t) + ε(t)(X − vk(t)),

• Else move vk(t) away from X :

– vk(t+ 1) = vk(t)− ε(t)(X − vk(t)).

• For every k′ 6= k, vk′ (t+ 1) = vk′(t).

LVQ thus optimizes the position of the prototypes. The initial prototypes
are either randomly and separately sampled within each class or results from
applying K-means algorithm separately in each class [4]. The number K of
prototypes is a parameter and is fixed heuristically. The learning process is
controlled by two parameters : ε, the learning rate, and α, the number of
iterations. The number of iterations α controls the rate of convergence of the
method.

According to Kohonen [7], the same number of initial prototypes is assigned
to each class. The learning rate ε can be set initially to 0.02 and made linearly
decreasing to 0. The number of iteration α is fixed to 500 times the number of
instances.

5.2 Prediction vs description

Our method evaluates the best description of the relationship between the Xn’s
and the Yn’s in terms of a Voronoi partition with frequential distributions.
The usual learning paradigm works with sets of classifiers and focuses on the
generalization performance. We illustrate the main difference between the two
approaches with the help of a two classes synthetic dataset. 2000 instances
are uniformly sampled inside the 2d ball of radius 1 for the L∞ metric. The
upper-left and lower-right corner are pure, while the instances in the two other
corners are labelled independently and uniformly. We show in the Figure 5.2
the dataset and the Voronoi partitions resulting from the optimisation of our
criterion and the LVQ method respectively, with a number of cell K = 4.
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Figure 5: (a) The dataset : lower-left and upper right corners form a no man’s
land in term of prediction. (b) The predictive approach : quantization places a
diagonal border inside the no man’s land and prototypes move toward the pure
areas. (c) The descriptive approach : our method discriminates behaviors.

From a predictive point of view, the mixed corner are useless. The decision
boundary can be moved inside these areas without affecting the accuracy and
this is what quantization does. From a descriptive point of view, significant
variations of the conditional density constitute very valuable informations. This
is exactly what our criterion measures.

The predictive and the descriptive approaches are not in competition with
each other but complementary. In the preprocessing steps of the supervised
mining task, the user wants to quickly extract relevant and reliable information,
without making too much assumptions about the data. The presented criterion
allows to perform relevant and reliable discrimination. In the modelling phase,
predictive accuracy and generalization performance become the predominating
concepts.

5.3 Comparison of the predictive accuracy

By taking a majority vote into each cell of the best partition, our method can
be turned into a predictive one. We compare its accuracy with the LVQ method
on real datasets (cf Tab.1) by a stratified five-fold cross validation. The number
K of prototype varies from 1 to 10. The K initial prototypes for the LVQ
are either selected randomly in each class or result from applying the K-means
algorithm in each class, with the same number of prototypes in each class. A
Student’s test at the 5% confidence level is performed to determine whether the
differences of performance are significant. The results are reported in the Table
3.

The numbers of Win/Draw/Loss of the presented criterion against the best
LVQ initialised at random or by the K-means algorithm are 2/8/2 and 3/7/2
respectively. While the experimental protocol favours the LVQ method, the
predictive use of our method is shown to be competitive with quantization on
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Test accuracy
Dataset SM RLVQ KMLVQ

Iris 0.97 0.97 0.98
Wine 0.84 0.78 0.75
Heart 0.69 0.68 0.70
Bupa 0.66 0.65 0.66

Ionosphere 0.90 0.85 0.85
Australian 0.73 0.69 0.65

Crx 0.72 0.69 0.67
Breast 0.97 0.96 0.95
Pima 0.74 0.73 0.75

Vehicle 0.63 0.54 0.55
Waveform 0.81 0.84 0.85

WaveformNoise 0.79 0.84 0.85
Mean 0.786 0.770 0.768

W/D/L 2/8/2 3/7/2

Table 3: Predictive accuracy resulting from the optimisation of the presented
supervised criterion (SM) and from LVQ initialised at random (RLVQ) or by
the K-means algorithm (KMLVQ). The best predictive accuracy of LVQ (for
1 ≤ K ≤ 10) is reported only. Numbers of Win/Draw/Loss of SM are reported.

the tested datasets, as could be expected. Indeed, detection of pure areas is a
part of the discrimination task.

The quantization method relies on a bigger set of models than our method.
While we evaluate sets of prototypes included in the set of instances, the LVQ
algorithm can place the prototypes everywhere in the whole space. This explains
the significant differences observed on the Waveform datasets. But the LVQ
method is theoretically restricted to deal with euclidean spaces. Furthermore,
it is parametric and faces the risk of overfitting. By restricting ourselves to
medoid-based Voronoi partitions, we are able to set a non-parametric finite-
data criterion which automatically prevents from overfitting the data. The
experiment shows that such a structural restriction does not lead to a significant
loss in term of predictive accuracy.

6 Conclusion

Classification according to the nearest neighbor relies on the construction of
a Voronoi partition or, which is the same, a set of prototypes. In this paper,
we proposed a supervised evaluation of medoid-based Voronoi partitions. A
descriptive approach has been adopted. The resulting criterion, based on a
comprehensible compromise between discrimination and number of prototypes,
is non-parametric and automatically handles the problem of overfitting. In
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practice, this criterion makes validation sets useless and gives reliable results,
as shown by a first set of experiments.

While not focusing on the generalization performance, the method builds a
medoid-based Voronoi partition which naturally defines a classifier. It is then
interesting to evaluate its predictive accuracy. A first experiment shows that the
Nearest Neighbor rule classifying on the whole set of instances is outperformed
in terms of predictive accuracy and robustness. Furthermore, by selecting few
prototypes (about 1% of the initial database), our method makes the Nearest
Neighbor rule effective and attractive for real case studies, especially when the
deployment of models is considered.

While we evaluate medoid-based Voronoi partitions only, the LVQ algorithm
uses quantization in order to finely place the prototypes. The quantization
method relies on a bigger set of models with the hope of a better fit of the data.
An experiment shows that this is not necessarily the case (2 and 3 wins of our
method against 2 losses) and that the predictive accuracy is slightly the same on
the average (78.6% against 77%). The main difference is the confidence in the
result : quantization algorithm is parametric and requires an heuristic control
of overfitting. At the opposite, our criterion is non-parametric and handles the
problem of overfitting the data.

In a few words, the optimisation of the presented criterion brings trustworthy
descriptive information, which can be used in a prediction purpose as well.
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proofreading of the manuscript and his comments.

References

[1] C.L. Blake and C.J. Merz, UCI repository of machine learning databases,
http://www.ics.uci.edu/mlearn/MLRepository.html.

[2] C. Eick, N. Zeidat and R. Vilalta, Using representative-based clustering
for nearest neighbor dataset editing, Proceedings of the 4th International
Conference on Data Mining, 2004, pp. 375–378.

[3] E. Fix and J. Hodges, Discriminatory analysis. Nonparametric discrimina-
tion : consistency properties, Technical Report 4, USAF School of Aviation
Medicine, Randolf Field, TX, 1951.

[4] T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learn-
ing, Springer, 2001.

17



[5] L. Kaufman and P.J. Rousseeuw, Clustering by means of medoids, Statis-
tical Data Analysis Based on the L1-Norm, Y. Dodge, Ed. Amsterdam, The
Netherlands: North-Holland, 1987, pp. 405–416.

[6] L. Kaufman and P.J. Rousseeuw, Finding groups in data : an introduction
to cluster analysis, Wiley & Sons, 1990.

[7] T. Kohonen, Self-organizing maps. Springer, 3rd edition, 2001.
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