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Abstract. In the field of data mining, data preparation has more and
more in common with a bottleneck. Indeed, collecting and storing data
becomes cheaper while modelling costs remain unchanged. As a result,
feature selection is now usually performed. In the data preparation step,
selection often relies on feature ranking. In the supervised classification
context, ranking is based on the information that the explanatory feature
brings on the target categorical attribute.
With the increasing presence in the database of feature measured over
time, i.e. dynamic features, new supervised ranking methods have to be
designed. In this paper, we propose a new method to evaluate dynamic
features, which is derived from a probabilistic criterion. The criterion is
non-parametric and handles automatically the problem of overfitting the
data. The resulting evaluation produces reliable results. Furthermore, the
design of the criterion relies on an understandable and simple approach.
This allows to provide meaningful visualization of the evaluation, in ad-
dition to the computed score. The advantages of the new method are
illustrated on a telecommunication dataset.

1 Data preparation and feature ranking

In a data mining project, the data preparation step is a cornerstone. It aims
at providing a dataset for the modelling step, that is a row/column table, from
primary collected data [3]. Typically, topics like instance representation, instance
selection and/or aggregation, missing values handling, feature selection, are to
be dealt with. We focus in this paper on feature selection, in the context of
supervised classification.

In [7], a check list of the different problems to tackle when performing feature
selection is provided. According to this list, we consider in the present paper
that :



– we have domain knowledge : the whole search space may be of very large
size and domain knowledge limits the evaluation to meaningful features,

– features are commensurate : no normalization has to be carried out prelim-
inarily,

– we are to select subsets of the input variables : the context is that of large
databases,

– we assess features individually : for the sake of simplicity and scalability,

– we do not focus on the prediction performance : the context is that of data
preparation,

– we cannot make hypotheses on the interdependence or the ”noisiness” of the
features : this must be detected not hypothesized,

– we want a stable solution : extracted information must be general, not valid
on the data at hand only.

Assessing the features individually, more than being simple and scalable, is
well-suited to the data preparation step. Indeed, following the classification of
[9], this is a filter method, being independent of the choice of a predictor. We can
think of the problem as a variable ranking problem. We assume that a high score
describes a valuable variable and that variables are sorted decreasingly. As an
application, nested subsets progressively incorporating more and more variables
of decreasing relevance can be defined in order to build predictors. Classical
scoring paradigms are described in the section 2.

With the increasing collecting and storing capacity of many computerized
systems, data-miners have to deal with more and more heterogeneous data and
face new challenges. As an example, while features used to be static, they are
becoming more and more dynamic, being measured over time. To each instance
can be associated static continuous values (like the age of the patient), static
categorical values (like the hospital in which the patient is being treated), and
dynamic features (like an ECG, an EEG). We discuss the problematic of super-
vised selection of dynamic features in the section 3.

In the static case, the approach adopted in [2] for discretization of a contin-
uous feature and in [1] for grouping the values of a categorical feature provides
the user with an evaluation of the amount of information the feature contains
relating to the target attribute. As dynamic features are innerly multivariate,
any extended version of these static methods to the multivariate case allows to
evaluate dynamic features. In [5], the approach is adapted to the case of mul-
tivariate features. It relies on partitioning the set of instances and designing a
criterion for the evaluation of different partitions. We derive from it a method
to evaluate dynamic features in the section 4. For the convenience of the reader,
the technicalities around the criterion are postponed to the section 5.

In the section 6, we illustrate the advantages of the new criterion for su-
pervised selection of dynamic features on a telecommunication dataset. As this
dataset contains continuous data only, we restrict ourselves to this kind of data
in the following. But, as it will become clearer, the proposed indicator can deal
with any kind of data.



2 Classical evaluation paradigms

Let us consider a continuous explanatory random variable X and a target at-
tribute Y . We describe in this section the classical approaches for designing a
measure of interest of X relating to Y .

In a two-class classification problem, the values of Y can be mapped to the
values ±1. Then, the squared correlation coefficient between X and Y can be
used to score the variable X . It can be shown that this correlation coefficient is
closely related to the ratio of the between-class variance to the within-class vari-
ance, that is to Fisher’s criterion, and to the Student’s T-test. Variable ranking
can thus be turned into classical statistical testing. This approach is limited to
two-class problems, is parametric (in the algorithmic and statistical sense) and
relies on an asymptotic approximation.

In the considered supervised context, many scores are based on the individual
predictive performance of X . Once X is turned into a classifier, the error rate
evaluated on a separated validation sample measures such a performance. For
example, in a two-class problem, a classifier is obtained by setting a threshold
on the values of X . Varying the threshold allows to perform a ROC analysis,
measuring the performance of X with the area under the ROC curve [4]. Cutting
a continuous attribute into more than two intervals is a discretization problem.
By considering more complex cuttings, one has to prevent from overfitting the
data [10]. In case of large number of variables, ranking criteria based on predictive
performance cannot separate the top ranking variables.

The maximum margin principle can be applied as well. The margin of an
instance is the absolute difference between its distance to the nearest example of
the same class and its distance to the nearest example of another class. Consid-
ering the sum of the margins on X provides an evaluation of X . This evaluation
extends straightforwardly to the multivariate case. The resulting feature subset
selection problem is tackled in [6]. The use of margins comes with distribution-
free generalization bound. These bounds can be very loose in practice.

Another well-known approach is the information theoretic one. It relies on
the maximization of the mutual information, which measures how far the joint
distribution of X and Y is from independency. The main difficulty is to empiri-
cally estimate the mutual information, as it considers the joint distribution and
the marginal distributions simultaneously. Some might say that the problem is
easier in the categorical case, as the integral becomes a sum. Discretization is
then applied, with an information preserving goal, this time. Once again, one
has to prevent from overfitting the data [10].

3 When features are dynamic

In the classical case, a feature is static : the marital status, the gender, the
salary, etc. As collecting and storing data becomes cheaper, it is more and more
usual to monitor features over time. While gender cannot fluctuate over time,
the salary and marital status do. The salary curve then has to be considered as
a fully qualified feature. This is what we will refer to as a dynamic feature.



Thus, beside static features, the data-miner now encounters dynamic fea-
tures. While the overall problematic of the data mining tasks remains unchanged
(building a classifier, in the supervised classification context, for example), the
introduction of such features raises new questions that require a particular treat-
ment. Especially, the question of the representation is strengthened.

While the representation problem for continuous static features is usually
turned into a discretization problem, and is quite less considered for categorical
static features, the range of possibility is dramatically enlarged for dynamic
features :

– the time scale is fixed according to technical constraints and can be unrele-
vant for the data-mining task,

– data can be noisy,
– relevant information can be hidden,
– . . .

Segmentation, denoising, Fourier’s transform and many other algorithms are
applied to the primary data and produce different representations. It means that,
when ranking features, different representations of the same dynamic feature
have to be evaluated too. Indeed, for a particular supervised study, the Haar’s
transform might be better than the Fourier’s one. In the supervised context, such
transformations are applied according to the domain knowledge, disregarding the
target attribute.

As an example, let us consider head related transfer functions (HRTFs),
which describe the acoustic filtering properties of a listener’s external auditory
periphery and are used in 3-D audio systems. An HRTF results from the appli-
cation of the Fourier’s transform to a particular head-related impulse response.
The domain knowledge leads to work with the log of the Fourier’s coefficient
(as our auditive scale is closer to a logarithmic scale than a linear one), and to
adopt a threshold (which corresponds to a threshold of hearing). The distance
between HRTFs is usually measured by the euclidean distance. Studies show
that weighting schemes produce similarity measure closer to the properties of
our auditive system.

A dynamic feature is represented by a new set of explanatory attributes :
the Fourier’s coefficients, the segment means, etc. Then, a similarity measure
between instances is usually defined. This measure itself is part of the represen-
tation. Supervised ranking of dynamic features amounts to the evaluation of a
set of attributes equipped with a similarity measure.

4 Evaluation of dynamic features

Let us consider that a representation of a dynamic feature is given by a set of
descriptive attributes and a similarity measure. In the static case, it is proposed
in [2] to consider the problem of the discretization of a continuous attribute as a
modelling problem. A model is a partition of the attribute into a set of intervals.
The most probable given the data is selected. The originality of the method relies



on the definition of the probability of a model given the data, compromising
between the complexity of the model (i.e. the number of intervals) and goodness
of fit to the data (i.e. the purity of the target attribute in each interval). In [5],
the approach is extended in order to deal with the multivariate case, provided
that a similarity measure is defined.

Fig. 1. Examples of synthetic and real Voronoi partitions for the euclidean metric.

While intervals are considered in the static case, partitions are made up with
Voronoi cells in the multivariate case. Given a set P of instances, the Voronoi

cell induced by p ∈ P contains the points x whose p is the most similar element
in P , with respect to a fixed dissimilarity measure. The element p is called the
representative or the prototype of its cell. Examples of Voronoi partitions are
given in the Figure 1. The problem of selecting the most probable partition
given the data is then turned into an instance selection problem.

In order to perform instance selection, a representation must be fixed, that
is a set of attributes and a similarity measure. In this context, a model is no
other than a set of prototypes, i.e. a subset of the set of instances. For a given
representation R and any set of prototypes M , let us evaluate the quality of
M with the supervised criterion c(R, M), the definition of which is postponed
to the next section. Instance selection is performed by minimizing this criterion
and we denote c∗(R) the minimum value of c(R, M) :

c∗(R) = minMc(R, M).

The resulting evaluation function c∗ can be used and helpful for ranking rep-
resentations : for a given representation, apply a combinatorial optimization
algorithm for instance selection and evaluate the representation according to
the minimum encountered criterion value. The technicalities of the criterion and
the optimization algorithm are discussed in the next section.

The proposed primary criterion c(M, R) sets a compromise between the size
of M and the discrimination of the target attributes. Every instance in the



database has a nearest prototype, according to the representation R. Each pro-
totype thus supports the distribution of the labels of the instances lying in its
Voronoi cell. Increasing the size of M produces distributions that are purer and
purer but supported by less and less instances. The criterion c(M, R) quantifies
the compromise between the size of M and the reliability of the distributions,
in a principled manner.

The criterion c(M, R) is the negative log of the probability of M given the
representation R and the data. As the adopted approach provides a regularized
criterion, the search for the best set of prototypes is not prone to overfitting. In
order to provide a normalized indicator, we consider the following transformation
of c∗ :

g∗(R) = 1 −
c∗(R)

c0(R)
,

where c0(R) is the criterion value for the empty set of prototypes. This can
be interpreted as a compression gain, as negative log of probabilities are no
other than coding lengths [11]. The compression gain g∗(R) is greater than 0 (as
soon as the empty set is evaluated during the optimization) and less than 1. If
g∗(R) = 0, the representation R brings no information on the target attribute.
The nearer g∗(R) is from 1, the more separable the labels are.

The use of a validation set is very constraining. It limits the size of the
training set and introduces useless variance in the result. Cross-validation is
often used in order to reduce the variance effects, but is time consuming. Unlike
performance based criteria, the compression gain is validation free.

The use of margins is validated by the fact that they provide distribution-free
bounds on the generalization performance. In practice, these bounds are often
very loose and margins are not innerly meaningful. The compression gain makes
sense by quantifying a simple compromise between complexity of the hypotheses
and discrimination of the target attribute.

Informational criteria and statistical tests often rely on statistical parametric
assumptions (the probability laws are supposed to have a predetermined para-
metric shape) and possess an asymptotic validity. For a particular finite dataset,
the quality of the estimations is not guaranteed or can be very loose as well. Un-
like informational criteria or statistical tests, the compression gain is a finite-data
criterion.

5 Instance selection : criterion and algorithm

In this section, we describe the criterion and the algorithm from which is derived
the new method to evaluate dynamic features.

5.1 Evaluation of sets of prototypes

We first set the notations. We have a finite sample D = {Xn, Yn} of N labelled
instances. We denote D(x) = {Xn} the set of instances and D(y) = {Yn} the set



of labels. The labels lie in an alphabet of size J and the instances in a space X.
A dissimilarity measure δ : X × X → R+ is given.

For a set of prototypes M = {p1, . . . , pK} ⊂ X, K is the size of M , Nk

(1 ≤ k ≤ K) is the number of instances whose nearest prototype is pk and Nkj

denotes the number of such instances in the jth class. Thus, N = N1 + · · ·+NK

and Nk = Nk1 + · · · + NkJ .
The approach adopted in [5] leads to the following supervised evaluation of

M :

c(M) = log N + log

(

N + K − 1

K

)

+

K
∑

k=1

log

(

Nk + J − 1

J − 1

)

+ log
Nk!

Nk1! . . . NkJ !
.

This value can be interpreted as the negative log of p(D(y), M/D(x)). The first
term of the criterion stands for the choice of the number K of prototypes, the
second term for the choice of the K prototypes and the third term for the
choice of the output label distributions in each cell. The last sum over the cells,
according to the Stirling’s approximation log x! ≈ x log x−x+O(log x), behaves
asymptotically as N times the conditional entropy of the distribution of the Yn’s
given the clusters assignment function :

1

N

K
∑

k=1

log
Nk!

Nk1! . . .NkJ !
≈ −

K
∑

k=1

J
∑

j=1

Nkj

N
log

Nkj

Nk

.

The criterion thus evaluates the discrimination of the distributions with a finite-
data entropy-related term balanced with a structural weight, which quantifies
the complexity of the partitioning. This prevents from overfitting the data.

5.2 The optimization heuristic

In this section, an optimization algorithm is described. It consists in a greedy
optimization of a set of prototypes, the complexity of which can be reduced
by exploiting the properties of the descriptive criterion. This greedy search is
embedded into a meta-heuristic in order to further optimize the criterion.

The greedy heuristic Greedy(M) applies to every set M of p prototypes. Ev-
ery subset resulting from the removal of an element in M is evaluated. Among
those subsets, the winner is the one minimizing the criterion. This process is
iterated and applied to every successive winners, until a singleton has been eval-
uated. The best encountered subset is returned. This method considers O(p2)
subsets and each evaluation requires a search of the nearest prototype for each
instance. A straightforward implantation of Greedy(M) has a complexity down
to O(Np3). The properties of the models and the criterion allows to reduce this
complexity to O(Np log p).

The greedy heuristic thus performs many evaluations quickly, as long as the
number p of prototypes is not too large. It is then natural to think about applying
this algorithm repeatedly. This is done according to the Variable Neighborhood



Search (VNS) meta-heuristic [8], which consists in applying the primary heuris-
tic (i.e. the greedy one) to a neighbor of the solution. If the new solution is not
better, a bigger neighborhood is considered. Otherwise, the algorithm restarts
with the new best solution and a minimal size neighborhood. The process is con-
trolled by specifying the maximum length of the series of growing neighborhoods
to explore.

6 Application

We illustrate the advantages of the new evaluation method for dynamic features
on a real dataset. The problem is that of dynamic feature selection for data
preparation, in the context of supervised classification. The target attribute is
a four-class attribute and the distribution of the labels is uniform : 25% of the
instances are in class A, 25% in class B, 25% in class C and 25% in class D. We
aim at scoring 24 dynamic features. The 24 features are themselves well-ordered
and indexed from 1 to 24. Each feature is represented by 7 continuous attributes.
Experiments are carried out with the L1 and L2 metrics alternatively.

Fig. 2. Evaluation of the 24 dynamic features.

The scoring curve of the dynamic features is plotted in the figure 2. In the
case of the L1 metric, the compression gain of the features from 3 to 6 is null. This
means that these dynamic features are uncorrelated with the target attribute.
Automatically and with few risks of taking a wrong decision, the data-miner can
eliminate those features.

Considering the L1 and the L2 metric alternatively, compression gain is
higher when using the first one. Under such a hypothesis, the data-miner can



perform metric selection according to the compression gain. Here, the L1 metric
should be prefered.

Fig. 3. Prediction accuracy of the 24 dynamic features.

The partition comes with a set of prototypes. The predictive accuracy of
the nearest neighbor rule on this set of prototypes is reported on the figure
3 for every dynamic feature. The accuracy is measured by the prediction rate
estimated on a separate test set. As can be noticed, the prediction accuracy and
the compression gain exhibit the same global behavior.

Furthermore, the number of final prototypes is very low. This allows to pro-
vide the user with a visualization of the discrimination. The relating distribution
of the target attribute can be plotted. Working with continuous attributes, for
a prototype p, the instances whose nearest prototype is p can be averaged. The
resulting mean profile assigned to each prototype can be plotted as well. This is
done for the 15th feature, which is the most relevant one, in the figure 4. The
four classes are very mixed, and none of them clearly dominate the others. This
is often the case in practice. In such situations, notions like prediction accuracy
and margins are likely to be less meaningful.

Owing to the provided visualization, the approach adopted in this paper al-
lows to make more than dynamic feature ranking. Useful and reliable general
knowledge can be extracted. While the B class is not discriminated (for every
prototypes, the proportion of instances labelled B is about 25%), the proportion
of the D class ranges from 52% to 16%. Coupling this information on the dis-
tributions with the mean profiles allows the data-miner to draw the conclusion
that instances with profile 4 on the 15th dynamic feature are more likely to be
in the class D than others. Furthermore, the peaks on the mean profile can be
turned into knowledge as well.



Fig. 4. Visualization of the mean profiles and the related distributions, for the 15th

feature. The method select four prototypes. To each prototype p is associated a mean
profile : the average of the instances the nearest prototype of which is p. The four
extracted profiles are plotted on the left. The labels of the instances can be collected
and attributed to the nearest prototype and the four resulting frequential distributions
are plotted on the right. The support of each prototype is reported too (Profile 1 (18%)
means that the first prototype is the nearest prototype of 18% of the instances).

As the approach is non-parametric and handles automatically the problem of
overfitting the data, validation sets are useless. The learning task usually benefits
from considering more instances and then produces more accurate classifiers. In
the present situation, more instances means more robust estimations of the label
distributions and, possibly, a finer detection of behaviors. This is illustrated on
the figure 5. Evaluation of the 15th feature is performed with the data from the
training AND the validation sets. Using more data allows to distinguish new
profiles (6 instead of 4) and the data-miner is able to extract more knowledge,
which is still reliable.

Fig. 5. Visualization of the mean profiles and the related distributions, for the 15th

feature, with more data.



7 Conclusion and further work

In this paper, we have discussed the ranking paradigm for feature selection
and the particular problem raised by the presence of dynamic features in the
database, especially in the context of data preparation. We proposed a new
scoring method for such features, based on a criterion applying to instance se-
lection for the nearest neighbor rule. The advantages of the new method fonction
are illustrated on a real telecommunication dataset.

Being non-parametric, the method does not require a validation set. The
method is able to take advantage of the presence of more instances. As the
criterion handles automatically the problem of overfitting the data, the results
are reliable. Furthermore, the underlying instance selection, which is performed
when evaluating a feature, allows to produce a visualization in addition to the
computed score. Finally, although the criterion does not focus on the prediction
accuracy, the adopted target discrimination principle exhibits a strong correla-
tion to the accuracy.
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[1] Boullé, M.: A grouping method for categorical attributes having very large number
of values. In: P. Perner and A. Imiya (Eds.), Machine Learning and Data Mining in
Pattern Recognition, Springer Verlag, lnai 3587, MLDM 2005, (2005), 228–242
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