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Abstract. In the context of large databases, data preparation takes a
greater importance : instances and explanatory attributes have to be
carefully selected. In supervised learning, instances partitioning tech-
niques have been developped for univariate representations, leading to
precise and comprehensible evaluations of the amount of information
contained in an attribute, with respect to the target attribute. Still, the
multivariate case remains unstated.
In this paper, we describe the partitioning intrinsic convenience for data
preparation and we settle a framework for supervised partitioning. A
new evaluation criterion of labelled objects partitions, which is based on
Minimum Description Length principle, is then set and tested on real
and synthetic data sets.

1 Supervised partitioning problems in data preparation

In a data mining project, the data preparation phase is a key one. Its main
goal is to provide a clean and representative database for the consecutive mo-
delling phase [3]. Typically, topics like instances representation, instances selec-
tion and/or aggregation, missing values handling, attributes selection, are to be
carefully dealt with. Among the many designed methods, partition-based one
are often used, for their ability to comprehensibly summarize the information.

The first examples that come in mind are clustering techniques, like the
most popular one : K-means [11], which aim at partitioning instances. Building
partitions hierarchy or mixture models is another way of doing unsupervised
classification [5]. Combining clustering and attributes selection has led to the
description of self-organizing feature maps [10].

In the supervised context, induction tree models are plainly partition-based
[2],[12],[8]. These models build a hierarchy of instances groups relying on the dis-
criminating power of the explanatory attributes with respect to the categorical



target attribute. As the naive Bayes classifier, they need to discretise the contin-
uous explanatory attributes to make probability estimations more accurate. As
discretisation is the typical univariate supervised partitioning problem, we now
take a closer look at it.

The objective of the discretisation of a single continuous explanatory at-
tribute is to find a partition of the values of this attribute which best discrim-
inates the target distributions between groups. These groups are intervals and
the partition evaluation is based on a compromise : fewer intervals and stronger
target discrimination are better. There are mainly two families of search algo-
rithms : bottom-up greedy agglomerative heuristics and top-down greedy divisive
ones.

Discrimination can be evaluated in four ways using statistical test, entropy,
description length or bayesian prior :

– Chimerge [9] applies chi square measure to test the independance of the
distributions between groups,

– C4.5 [12] uses Shannon’s entropy based information measures to find the
most informative partition,

– MDLPC [6] defines a description length measure, following the Minimum
Description Length principle [13],

– MODL [1] states a prior probability distribution, leading to a bayesian eval-
uation of the partitions.

The discretisation problem is illustrative of the convenience of supervised
partitioning methods for data preparation since it addresses simultaneously the
three following problems :

– Data representation : a suitable representation of the objects at hand have
to be selected. Partitioning is an efficient mean to evaluate representations
quality (in the supervised context, statistical test for class separability is
another one, cf. [14]).

– Interpretability : labelled groups result from an understandable compromise
between partition simplicity and target discrimination.

– Comparison capacity : explanatory attributes effects on the target can be
quickly compared.

These themes are intertwined and play a crucial role in the data preparation
phase (cf. Table 1 for an intuitive illustration in the multivariate case). The goal
of this paper is to set a framework for supervised partitioning and to specify
an evaluation criterion, preserving the interpretability bias and allowing not to
consider single continuous attributes only.

In the remainder of the paper, we first set our framework and a description
method of partitions (section 2). Then, we propose a new evaluation criterion
(section 3) and we test its validity on real and synthetic datasets (section 4).
Finally, we conclude and point out future works (section 5).



Labels distributions in groups
Group 1 Group 2 Group 3

Explanatory attributes Set. Ver. Vir. Set. Ver. Vir. Set. Ver. Vir.

Sepal width, sepal length, 50 0 0 0 50 0 0 0 50
petal width, petal length

Petal width, petal length 50 0 0 0 50 1 0 0 49

Sepal width, sepal length 50 2 1 0 48 49

Petal width 50 0 0 0 48 0 0 2 50

Table 1. Examples of resulting partitions of Fisher’s Iris database for different repre-
sentation spaces. Partitioning techniques allow, among other things, to carry out the
selection of an attribute subset in an intelligible way, as the results are quickly in-
terpretable and easily comparable. Here, we see that the three iris categories (Setosa,
Versicolor and Virginica) are completely discrimated by the four attributes. However,
one can consider petal width only. Furthermore, one can state that setosas distinguish
themselves by their sepal width and length.

2 Graph constrained supervised partitioning

Let O = {o1, . . . , oN} be a finite set of objects. A target ln lying in an alphabet
of size J is associated to each object on and a graph structure G is set on O. This
structure can be natural (road networks, web graphs, . . . ) or imposed (proximity
graphs, partial orders, . . . ). In the remainder, we will suppose G non-oriented.
Our problem consists in finding an optimal partition of G, considering parti-
tions composed of connected groups with respect to the discrete structure (i.e
connected partitions). As explained above, optimality of a partition relies on the
correct balance between the structure of its groups and its discriminating power
(cf Figure 1). The setting of the balance requires the definition of description
parameters both for the structure and the target distribution.

Fig. 1. 2 classes problem : which is the ”best” partition?

Let π be a connected partition of G. We now introduce an effective and inter-
pretable bias. We consider the balls induced by the discrete metric δ : δ(o1, o2)



is the minimum number of edges needed to link o1 and o2. As illustrated by
Figure 2, each group of π is then covered with δ-balls.

Fig. 2. Applying algorithm 1 : description of a partition with non-intersecting balls
(B(a, 2), B(b, 1), B(c, 1), B(d, 0)) defined by the graph distance.

The method consists in selecting non-intersecting balls that are included in
a group of π. At each step, the biggest one is picked up :

Algorithm 1 :

– A← O
– B ← ∅
– While A 6= ∅ Do

• S ← the ball with maximal size included in A and in a group of π
• B ← B

⋃

{S}
• A← A \ S

However, the set B does not characterise π : different partitions can give the
same set B (cf Figure 3). But if the number of groups K is considered as a
description parameter, obtaining π from B is the same as putting these balls in
K different boxes. Finally, π is fully described by the set of balls B, the number
K and a partition of B in K groups. This is not a compact description as we
do not take into account the graph structure in the second step. Indeed, some
partitions of B in K groups do not lead to connected partitions and should not
be taken into account.

The description parameters of the target distribution are more easily catched.
If πk is one of the K groups in π, describing its inner labels distribution is the
same as putting the objects contained in πk in J boxes. This is done by firstly

assigning the numbers Nkj of objects in πk to put in the jth box, and secondly
specifying the partition of the group πk in J groups of sizes Nk1, . . . , NkJ .

The description bias allows to define the structural complexity of π relying
on its ball decomposition in an interpretable way : fewer and bigger balls means
simpler structure. The description of the target disribution in terms of frequency



Fig. 3. Examples of possible partitions obtained with different groupings of the balls.

parameters leads to an informational definition of the target discrimination :
strong discrimination is related to low entropy. The evaluation of a partition
must result from a compromise as strong discrimination goes with high structural
complexity.

3 Evaluation criterion

Let π be a connected partition of O. To set an evaluation criterion l(π), the
Minimum Description Length principle is applied [13], for its intrinsic ability to
handle compromises. The problem turns into a two-step description problem :
description of the parameters defining groups and description of the labelling
parameters. This leads to write

l(π) := lstructure(π) + llabels/structure(π),

with l standing for description lengths function. A description protocol must be
designed from which description lengths can be specified.

As the structure is characterised by a set of balls B and a partition of B, its
description length is split into the sum of the descritpion length of B and that
of the partition of B :

lstructure(π) := lballsset(π) + lballsgrouping(π).

As the distributions are characterised in each group by the frequencies of the
labels and a partition, the related description length is split into the following



way :

llabels/structure(π) :=
K

∑

k=1

lfrequencies(πk) +
K

∑

k=1

lpartitioning/frequencies(πk),

where π = (π1, . . . , πK).
In the first place, let’s form a description protocol of the balls set B. The

balls in B are ordered by decreasing sizes d1 > · · · > dp and if ti is the number
of balls of size di, Bi

j refers to the jth ball (1 ≤ j ≤ ti) of size di (1 ≤ i ≤ p).
The protocol consists in specifying by decreasing size which is the next ball of
the description and, when needed, the next size to be considered. Precisely :

– p← 1
– describe dp

– if dp < N then

• While dp > 1
∗ describe successively Bp

1 , . . . , Bp
tp

∗ p← p + 1
∗ describe dp

As description lengths can be interpreted as negative log of probabilities, we
just have to assign probabilities to obtain lballsset(π). We choose a uniform prior
for each parameter description step and description lengths are computed using
counting. For example, description length of d1 is log2(N) as possible values of
d1 are 1, . . . , N . Description length of d2 is log2(d1 − 1) as, at this step, the
possible values of d2 are 1, . . . , d1 and so on. Besides, the description length of
B1

1 is log2 β1
1 , where β1

1 is the total number of balls of size d1 induced by the
discrete structure G. That of B1

2 is log2 β1
2 , where β1

2 stands for the total number
of balls of size d1 induced by G that do not intersect B1

1 , etc. . . The overall sum
of these lengths defines lballsset(π).

In the second place, to set lballsgrouping(π), we describe the group number K
of π and the partition of B in K groups. Once again, a uniform prior is applied.
As K lies between 1 and the size KB of B and as the number of partitions of B
in less than K groups is B(KB , K) (the sum of the K first Stirling numbers),
we have

lballsgrouping(π) = log2 KB + log2 B(KB , K).

In the third and final place, applying a uniform prior to obtain the description
lengths of the target leads to set

llabels/structure(π) =
K

∑

k=1

log2

(

Nk + J − 1

J − 1

)

+
K

∑

k=1

log2

Nk!

Nk1! . . .NkJ
.

The first sum results from the description of the labels frequencies (Nk1, . . . , NkJ )
in each group k. These J-tuples satisfy the property

∑

Nkj = Nk (with Nk the

size of group k), and
(

Nk+J−1

J−1

)

is the number of such tuples. The number of
partitions of a set of size Nk in J groups of sizes Nk1, . . . , NkJ is the multinomial
coefficient Nk!

Nk1!...NkJ !
. That gives the second sum.



4 Experiments

The experiments are performed using the standard hierarchical greedy bottom-
up heuristic, the initial partition being that with one object per group :

Algorithm 2

– π ← InitialPartition
– For k = 2 to N Do

• π ← the best partition resulting from the merging of two groups of π

– Return the overall best partition encountered

Thus, O(N2) partitions are evaluated. The greedy character of this heuristic
does not allow to evaluate a significant part of the partitions set and such a
method easily falls into local optima. To alleviate these facts, we select a more
appropriate initial partition : initial groups are the biggest clean balls (i.e objects
in a ball share the same label).

A graph structure has to be selected. As the objects are always imbedded
in an euclidean space, the experiments are carried out with the Gabriel graph,
which is a proximity graph [7]. The distance between two objects o1 and o2 is
taken to be the imbedding euclidean one L and these objects are adjacent in the
Gabriel sense (cf Figure 4) if and only if

L(o1, o2)
2 ≤ min

o∈O
L(o1, o)

2 + L(o2, o)
2.

Fig. 4. Example of a Gabriel graph. The ball of diameter [ab] contains no other point :
a and b are Gabriel-adjacent. The ball of diameter [bc] contains another point : b and
c are not Gabriel-adjacent.

We perform two experiments on synthetic datasets and one on real datasets.
In a first one, we check the criterion ability to detect the independence between
the descriptive attributes and the target one, on synthetic datasets. These are



two-classes problems, with points uniformly generated inside the Hamming hy-
percube and each point label uniformly assigned. The varying parameters are
the number N (from 1 to 100) of points and the space dimension d (taking val-
ues 1, 2, 3, 5 and 10). For each couple of values, 25 datasets are generated. For
every dataset, our method builds a partition composed of one single group. This
is exactly the expected behavior : no discrimination has to be done since the
target is independent of the explanatory attributes.

In a second experiment, we test the criterion discrimination ability for gaus-
sian mixture models in the plane. We settle a four gaussians problem, centered in

(1, 1), (−1, 1), (−1,−1) and (1,−1), with diagonal covariance matrix

(

1/4 0
0 1/4

)

.

The varying parameter is the number N of points and for each value, 25 datasets
were generated. Figure 5 shows that, with sufficiently many points, the four
groups are detected. The detection threshold could however be better. Indeed,
as we do not take into account the graph structure for the description of the balls
set partition, the description length lballsgrouping is over-estimated. To obtain a
decrease of the total description length, the (too big) increasing of the structural
length induced by the decision of creating a new group must be balanced by a
(very) strong resulting discrimination.

Fig. 5. Resulting number of groups on the four gaussians problem.

In a third experiment, we consider the resulting partition as a predictive
model : a new instance is classified according to a majority vote in the nearest
group. The evaluation consists in a stratified five-fold cross-validation and results
of the Nearest Neighbor (NN) rule [4] are given for comparison. The tests were
carried through 3 datasets from the UCI machine learning database repository.

The well-known Fisher’s Iris dataset contains 150 instances of such flowers
described by 4 continuous explanatory attributes and belonging to one of the



three classes Setosa, Versicolor and Virginica (as previously seen). The Wine
database results from the analysis of 13 components found in each of 3 types
of wines, and is composed of 178 instances. Finally, the Breast dataset aims at
studying the malignant character of a breast cancer for 699 subjects through 9
descriptive attributes.

In order to limit scale effects on the distance measure, each explanatory
attribute is linearly transformed to lie in [0, 1]. Table 2 summarizes the results
of the evaluation. The main advantage of partitioning methods lies in the fact
that they detect or supply an underlying structure of the analysed data. As this
structural gain may be balanced by an information loss, it’s noteworhty that, on
the three datasets, our technique does not suffer from such a curse.

Dataset NN Partition Group number

Iris 0.95 ± 0.03 0.94 ± 0.04 3 ± 0.0

Wine 0.95 ± 0.03 0.94 ± 0.04 3 ± 0.0

Breast 0.96 ± 0.01 0.96 ± 0.01 2 ± 0.0

Table 2. Prediction accuracy of both NN and partition-based rules and group number
of the partition. Our method gives additional information : each class lies in a single
cluster, for every datasets.

5 Conclusion and further works

In this paper, we have discussed the usefulness of supervised partitioning meth-
ods for data preparation, set a framework for supervised partitioning, proposed
and tested an evaluation criterion of labelled partition. The representation qual-
ity of the objects and their inner amount of information about the target at-
tribute can be subtly and simply evaluated, whatever may be the kind of the
objects. Specifically, multivariate representations can be considered.

The proposed method builds an underlying structure of the data : a partition.
This is done in an understandable way (with the use of balls) and without loss
of predictive information (as shown by the experiments on real datasets). The
settled criterion is able to detect independance too. If the explanatory attributes
contain no information with respect to the target attribute, the ”best” partition
should be that with one group and that’s the way the criterion behaves.

Still, this is preliminary work. The presented criterion can be improved. The
”balls grouping” description part could take into account the graph structure,
leading to a more accurate evaluation criterion.

As well, the greedy agglomerative approach is not effective and easily falls into
a local optimum. Furthermore, the heuristic lacks of computational efficiency :
the complexity’s polynomial order is too high for real applications. In future
works, we plan to design a heuristic founded on the description bias (the use of
balls).
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p.
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