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Abstract—Sequential data is generated in many domains of
science and technology. Although many studies have been carried
out for sequence classification in the past decade, the problem
is still a challenge; particularly for pattern-based methods. We
identify two important issues related to pattern-based sequence
classification which motivate the present work: the curse of
parameter tuning and the instability of common interestingness
measures. To alleviate these issues, we suggest a new approach
and framework for mining sequential rule patterns for classifica-
tion purpose. We introduce a space of rule pattern models and a
prior distribution defined on this model space. From this model
space, we define a Bayesian criterion for evaluating the interest of
sequential patterns. We also develop a parameter-free algorithm
to efficiently mine sequential patterns from the model space.
Extensive experiments show that (i) the new criterion identifies
interesting and robust patterns, (ii) the direct use of the mined
rules as new features in a classification process demonstrates
higher inductive performance than the state-of-the-art sequential
pattern based classifiers.

I. INTRODUCTION

Sequence classification [1] has many real-world applica-
tions in a broad range of domains, such as biology [2], [3],
text mining [4] or web mining [5]. Mining sequential rules
for classification has become very popular since the result-
ing classifier might be interpretable by the domain analyst.
A sequential rule is an expression that takes the form of
π : s → ci where s is the body sequence of the rule and
ci is a value of a class attribute. One can interpret π as “when
event sequence s is observed for an object, then it is often an
object of class ci”. An incoming unseen object, that matches
a discovered rule pattern, will be more likely of the class
indicated by the rule. Adopting the strategy of the pioneering
work for transactional data on “Classification Based on Asso-
ciations” (CBA) [6], several rule-based approaches have been
suggested for sequence classification. Generally, pattern-based
classification methods [7] follow a similar strategy: firstly, a
sequential rule set is mined w.r.t. an interestingness measure;
secondly, either a dedicated classifier, like a decision list or a
Maximum Entropy model, is built upon a selected subset of
the mined rules [8], [9], [10] or the mined rules are directly
used as new features in a classification process [11], [12],
[13]. While most of the existing approaches generally lead to
good inductive performance, we now highlight two of their
weaknesses, namely the curse of parameter tuning and the
instability of the interestingness measures.

The curse of parameter tuning. Most of the existing ap-
proaches need parameter tuning. One has to set an interest-
ingness measure threshold (sometimes also with a frequency

threshold and a gap constraint) for the mining phase, then
choose the number of rules for the final set used for clas-
sification. Unfortunately, setting parameters is not an easy
task – each application data could require a specific setting.
The associated dilemma is well-known: for large data sets,
low frequency thresholds lead to an untractable task or a
huge number of output patterns many of which are spurious;
while high frequency thresholds produce too few patterns
with low class-discrimination power. Moreover, the predictive
performance of rule-based classifiers highly depends on these
settings [14].

The instability of interestingness measures. We justify this
claim by considering a motivation example, let us consider
three widely used measures for evaluating sequential rules:
confidence, growth rate and lift. One can easily show that rule
patterns extracted according to these measures are not individ-
ually robust. In figure 1, we plot test values of confidence
(resp. growth rate) against train values of each mined rule
pattern (one point per pattern) for the skater data set [15]. We
observe very blurred scatter plots, meaning that interestingness
measures values are severely unstable from train to test data:
a “good” rule w.r.t. an interestingness measure in training
phase may turn out to be weak in test phase. Particularly, the
top-1000 rules obtained from training data according to each
considered measure are clearly not anymore the top-1000 when
evaluated on test data. Thus, it could be misleading to bet on
such rules for classifying new incoming objects.

(a) Confidence (b) Growth rate

Fig. 1. Comparison of confidence (resp. growth rate) values for sequential
classification rules in a train-test experiment: 50% train / 50% test for the
skater data set.

These two weaknesses suggest that there is room for
improving inductive performance and ergonomy of pattern-
based sequence classification methods. The main contributions



of this work tackle these two problems and are summarized as
follows:

Towards a robust criterion for evaluating sequential clas-
sification rules. We embrace the Bayes theory and suggest
a Bayesian criterion, called level, for identifying interesting
and robust sequential classification rules. Our suggested frame-
work has been already successfully instantiated for several
data mining tasks such as supervised discretization [16] and
classification rule mining in transactional data sets [17]. The
level criterion is based on the a posteriori probability of a rule
model given the data and does not require any wise threshold
setting.

A parameter-free approach for mining sequential classifi-
cation rules. We discuss and present a new algorithm MiSeRe
for Mining Sequential Classification Rules. The main features
of MiSeRe are: (i) it is user parameter-free, (ii) it employs
an instance-based randomized strategy that promotes diversity
mining, (iii) it uses a bitset representation and the Boolean
operations, to efficiently mine the sequential classification rules
and (iiii) it is anytime – the more time the user grants to the
task, the more it learns.

To validate our contributions, we perform an extensive
experimental evaluation on a variety of datasets, including
biological sequences, web usage logs and text sequences.
The main results are unequivocal: (i) the suggested Bayesian
criterion identifies interesting and robust sequential patterns;
(ii) using the extracted sequential rules as new features in
a classification process outperforms state-of-the-art sequential
rule-based classifiers in terms of predictive performance.

II. PRELIMINARIES

Let I = {e1, e2, · · · , em} be a finite set of m dis-
tinct items. A sequence s over I is an ordered list s =
〈s1, · · · , s`s〉, where si ∈ I; (1 ≤ i ≤ `s, `s ∈ N). A sequence
s′ = 〈s′1 · · · s′`s′ 〉 is a subsequence of s = 〈s1 . . . s`s〉, denoted
by s′ � s, if there exist indices 1 ≤ i1 < i2 < · · · < i`s′ ≤ `s
such that s′z = siz for all z = 1 . . . `s′ and `s′ ≤ `s. s is said
to be a supersequence of s′. T(I) will denote the (infinite)
set of all possible sequences over I. Let C = {c1, · · · , cj} be
a finite set of j distinct classes. A labeled sequential data
set D over I is a finite set of triples (sid, s, c) with sid is
a sequence identifier, s is a sequence (s ∈ T(I)) and c is a
class value (c ∈ C). The set Dci ⊆ D contains all sequences
that have the same class label ci (i.e., D = ∪ji=1Dci ). The
following notations will be used in the rest of the paper:

• m: Number of items in I.

• j: Number of classes in C.

• n: Number of triples (sid, s, c) in D.

• nc: Number of triples (sid, s, c) in Dc.

• `s: Number of items in the sequence s.

• ks: Number of distinct items in the sequence s, (ks ≤ `s).

• `max: Number of items in the longest sequence of D.

Definition 1: (Support of a sequence) Let D be a labeled
sequential data set and let s be a sequence. The support of s
in D, denoted f (s), is defined as:

f (s) = |{(sid′, s′, c′) ∈ D|s � s′}|

sid sequence class
1 〈abadc〉 c1
2 〈acbe〉 c1
3 〈badcb〉 c2
4 〈eefcbc〉 c2

TABLE I. D: A TINY LABELED SEQUENTIAL DATA SET AS AN
EXAMPLE.

The value of n− f (s) can be written as f (s). The support of
s in Dc is noted fc(s) and fc(s) stands for nc − fc(s).

Definition 2 (Standard Classification Rule Model): Let D
be a labeled sequential data set with j classes. A sequential
classification rule π is an expression of the form:

π : s→ fc1(s), fc2(s), · · · , fcj (s)

where s is a sequence, called body of the rule, and fci(s) is
the support of s in each Dci , i = 1 · · · j.

This definition of classification rule is slightly different
from the usual definition where the consequent is a class value.
It refers to the notion of distribution rule [19] and allows us to
access the whole frequency information within the contingency
table of a rule π – which is needed for the development of our
framework.

Example 1: We use the sequence database D in Table I
as an example. It contains four data sequences (i.e., n = 4)
over the set of items I = {a, b, c, d, e, f} (i.e., m = 6). C =
{c1, c2} is the set of classes, j equals to 2. The longest sequence
of D is s = 〈eefcbc〉 (i.e., `s = `max), `max equals to 6
while ks equals to 4. Sequence 〈aad〉 is a subsequence of
〈abadc〉. Given a sequence s = 〈ab〉, we have f (s) = 3,
f (s) = 1, fc1(s) = 2, fc1(s) = 0, fc2(s) = 1 and fc2(s) = 1.
π : 〈ab〉 → fc1(〈ab〉) = 2, fc2(〈ab〉) = 1 is a sequential
classification rule.

III. BAYESIAN FRAMEWORK FOR SEQUENTIAL PATTERN

Standard classification rule evaluation criterions aim at
selecting general rules (e.g., based on the frequency constraint)
and informative rules that characterize classes (e.g., based on
confidence or growth rate). However the trade-off between
generality and informativeness is difficult to achieve and
usually rely on manual parameter tuning. Using a Bayesian
approach, we aim at obtaining a statistical evaluation criterion
with the expectation of automatically and optimally finding the
best trade-off between generality and informativeness.

Following the framework introduced by [16], from a
Bayesian point of view, the problem of sequential classification
pattern mining is formulated as a model selection problem.
To choose the “best” sequential rule model from the model
space, we use a Bayesian Maximum A Posteriori approach:
we look for maximizing p(π|D), the posterior probability of
a rule model π given the data D. According to Bayes rule
p(π|D) is given as :

p(π|D) = p(π,D)
p(D)

=
p(π)× p(D|π)

p(D)

Considering that p(D) is constant in the current optimization
problem, it goes back to the maximization of the expression
p(π)× p(D|π). The evaluation criterion, called cost, is based



on the negative logarithm of p(π|D) and is expressed as
follows:

cost(π) = − log(p(π)︸︷︷︸
prior

× p(D | π)︸ ︷︷ ︸
likelihood

) ∝ − log(p(π | D)︸ ︷︷ ︸
posterior

)

Now to choose the best rule for data D, we have to minimize
the cost of a sequential classification rule.

To compute the prior p(π), we complement Definition 2 of
sequential classification rules with a hierarchy of parameters
that uniquely identifies a given rule in the rule model space:

Definition 3: (Standard Classification Rule Model) A se-
quential classification rule or (SCRM) π : s → fc1(s),
fc2(s), · · · , fcj (s) is defined by:

• the constituent items of the rule body s.

• the order of occurrence the items in the body s.

• the class distribution inside and outside of the body s.

Our working model space is then the space all SCRMs.
Considering the hierarchy of parameters from the definition
of SCRM, we use the following hierarchical prior distribution
on SCRM models:

1) the number of distinct items ks in a rule body s is uniformly
distributed between 0 and m.

2) the length of the sequence s in a rule body is uniformly
distributed between 0 and `max.

3) for a given number ks of items, every subset of ks distinct
items of the m items is equiprobable.

4) for a given number of distinct items ks and for a given
number of items in sequence `s, every ordered set of `s
items of the ks distinct items is equiprobable.

5) every distribution of the class values is equiprobable, in and
outside of the body.

6) the distributions of class values in and outside of the body
are independent.

Notice that such a prior is uniform at each stage of the
hierarchy; it does not mean that the hierarchical prior is a
uniform prior over the rule space, which would be equivalent
to a maximum likelihood approach. From the definition of the
model space and its prior distribution, we can now give an
expression of the prior probability (p(π)) of a rule model and
the probability (p(D | π)) of the data given a model π, i.e. the
likelihood of π.
Prior probability. The prior probability of a rule model π is:

p(π) = p(s)× p(f(s))× p({fci(s)}
j
i=1{fci(s)}

j
i=1|f (s), f (s))

Expanding each term of the prior turns into an enumeration
problem. The first two hypotheses assume uniform distribution,
which lead to m + 1 and `max + 1 enumeration terms. The
third hypothesis assume the equiprobability of every set of ks
constituent distinct items of the sequence body. The number of
combinations

(
m
ks

)
is a natural candidate to compute this prior

term, however it is symmetric. Adding new items (beyond
m/2) to the body makes the rule more probable, which is
an undesired effect. Indeed, adding spurious items is favored
even if it has an insignificant impact on the likelihood of the
model. To obtain simpler models, we prefer a parsimonious
prior that increases with ks: considering a multinomial distri-
bution with q independent trials and m equiprobable outcomes,

the likelihood of a draw with counts (q1, . . . , qm) such that∑m
i=1 qi = q is q!

q1!...qm!

∏
i (

1
m )qi . If we keep only the draws

for which all items are distinct, we obtain q!
mq . The fourth

hypothesis promotes the equiprobability of every ordered set
of `s items over ks distinct items; here we use the exponential
term k`ss . We now have p(s):

p(s) =
1

m+ 1
× 1

`max + 1
× ks!

mks
× 1

ks
`s

(1)

Considering the last two hypotheses, enumerating the dis-
tributions of the j classes in and outside of the body is a
combinatorial problem:

p({fci(s)}
j
i=1|f (s), f (s)) =

1(
f (s)+j−1
j−1

) (2)

p({fci(s)}
j
i=1|f (s), f (s)) =

1(
f (s)+j−1
j−1

) (3)

Likelihood The probability of the data given the rule model
p(D|π) is the probability of observing the data inside and
outside of the rule body (w.r.t. f (s) and f (s)) given the
multinomial distribution:

p(D|π) =
1

f (s)!
j∏

i=1
fci (s)!

× 1

f (s)!
j∏

i=1
fci (s)!

(4)

The complete and exact definition of the cost of SCRM is
then:

cost(π) = log(m+ 1) + log(`max + 1)

+log(
mks

ks!
) + log(ks

`s)

+log

(
f (s) + j − 1

j − 1

)
+ log

(
f (s) + j − 1

j − 1

)
+log(f (s)!)−

j∑
i=1

log(fci(s)!)

+log(f (s)!)−
j∑
i=1

log(fci(s)!)

The amplitude of the cost values depends on the number n
of sequences and the number m of items in the data set. For
convenience, we defined a normalized criterion, called level,
which plays the role of an interestingness measure to evaluate
and compare SCRMs.

Definition 4 (Level): Given a SCRM π, the level of π is
defined as:

level(π) = 1− cost(π)

cost(π∅)

where cost(π∅) is the cost of the null model (i.e. default rule
with empty sequence body). The cost of the default rule π∅ is
formally:

cost(π∅) = log(m+ 1) + log(`max + 1) + log

(
n+ j − 1

j − 1

)
+log(n!)−

j∑
i=1

log(nci !)



The level naturally highlights the border between the in-
teresting patterns and the irrelevant ones. Indeed, rules π such
that level(π) ≤ 0, are less probable than the default rule π∅.
Then using them to explain the data by characterizing classes
of sequence objects is more costly than using π∅; such rules
are considered spurious. Rules such that 0 < level(π) ≤ 1
highlight the interesting patterns. In fact, rules with lowest cost
(highest level) are the most probable arising from the data and
show correlations between the rule body and the class attribute.

IV. MINING SEQUENTIAL CLASSIFICATION RULES

Mining sequential patterns [20] is a NP-hard problem. The
good pruning properties of frequency measure and condensed
representations of frequent patterns [21] allows to save compu-
tational time though the problem remains hard for large-scale
data sets (see [22] for the case of sequential classification
rules). Our level evaluation criterion does not hold as good
properties as the frequency. Thus, if we look for the whole set
of SCRM with positive level values, an exhaustive exploration
of the search space is not conceivable. Indeed, the size of
the search space is exponential with m the number of items:∑`max

i=1 mi ≡ O(m`max). That’s why we opt for a simpler
and more realistic formulation of the problem: “Mining with
diversity a subset of SCRMs with positive level values”.

Algorithm 1: MiSeRe
input : D, a Labeled Sequential Data Set
output: R, a Set of SCRMs

1 begin
2 S ={s = 〈s1〉; s1 ∈ I} ;
3 R ={π : s→ fc1(s), · · · , fcj (s); s ∈ S ∧ level(π) > 0} ;
4 while ¬ StoppingCondition do
5 s= ChooseRandomSequence(D) ;
6 ads= ComputeNumberOfSubsequences(s) ;
7 for i = 1 to log(ads) do
8 s′= GenerateRandomSubsequence(s) ;
9 π : s′ → fc1(s

′), · · · , fcj (s′) ;
10 if level(π) > 0 ∧ π 6∈ R then
11 R = R ∪ {π}

12 return R;

In the following, we describe our algorithm MiSeRe for
Mining Sequential Classification Rules. Firstly, we generate
all SCRMs whose body is made of one single item, such rules
with positive level values are chosen (Lines 2-3). The stopping
condition Line 4 refers to the running time that the end-user
provides to the mining process. At each iteration of the main
loop (Lines 4-11), a SCRM is built and when time is up, the
process ends and the current rule set is output. We randomly
choose one sequence s from the labeled sequential database
D (Line 5). Then, we count the number of all subsequences
that can be generated for s (denoted as ads), we employ
the efficient counting procedure presented in [23]. The inner
loop (Lines 7-11) generates randomly log(ads) subsequences
of the chosen sequence s to promote diversity instead of
exhaustiveness for the coverage of s . This generation (Line 8)
is done by randomly removing z items from s where z is
between 1 and `s − 2. Then, the rule π is built based on the
generated subsequence s′. Finally, the rule π is added to the

rule set if its level value is positive and it is not already in R.
The main challenge in this algorithm is “how to efficiently
compute the distribution of the sequence s in each class;
i.e., fc1(s), · · · fcj (s)”. To achieve this task, we use a bitset
representation and Boolean operations presented in [24] and
we benefit from the BitSet1 class in Java in order to efficiently
deal with the bitset. Using a bitset representation allows us to
mine one rule π in time complexity O(`s × n× log(n)).

Classification procedure. We suggest to use the SCRMs
mined with MiSeRe as new features to recode the sequential
data set D into a binary transactional labeled data set. A new
binary feature is created for each mined rule π, and takes
value 1 for an object (sid, s, c) if s if a supersequence of
the body sequence of π; 0 otherwise. This procedure presents
two advantages: (i), the full arsenal of existing classification
algorithms can be applied to this new recoded data set; (ii),
in some real-world data, the sequences are only a part of
the description of data objects (together with e.g., classical
categorical/numerical attributes): thus, replacing the sequential
part of the description of the data by relevant binary features
enriches the data before using a classification algorithm.

V. EXPERIMENTS

In this section, we empirically evaluate our approach.The
experiments are designed to discuss the following questions:
Q1: Is level a stable and robust interestingness measure
compared with classical measures? And does it avoid spurious
patterns? Q2: What about the predictive performance of well-
known classification algorithms on benchmark data recoded us-
ing SCRMs mined with MiSeRe? Q3: How does the predictive
performance of our approach evolve w.r.t. the number of rules
extracted? And, what about the time-efficiency of MiSeRe?
Q4: How does the predictive performance of our approach
compare with state-of-the-art rule-based classifiers?

For empirical evaluation, we chose 11 real-life data sets
briefly described in [18]. We also carried out experiments on
a large marketing database from the French Telecom company
Orange containing sequential information about the behavior
of 76564 customers to predict their propensity to churn. Due to
page limitations, we report a detailed interactive visualization
of all the results as well as the JAVA code of MiSeRe are
publicly available from [18].

A. Stability of the level criterion

To evaluate the stability and robustness of an interest-
ingness measure, we perform train-test experiments. Each
data set is in divide in two parts: 50% for training and
50% for testing. Then, for each mined rule, train and test
values are compared. We extract frequent sequential patterns
from training data set by applying cSPADE [27] with a
minimum support of 2% and maximum gap of 2. Sequential
classification rules are then generated from these patterns. We
compute the level values of the mined rules for train and
test set as well as the values of three well-known measures:
confidence, growth rate and lift. Notice that for the motivat-
ing example skater data of the introduction (figure 1), the
level values computed for the mined rules are perceptibly

1http://docs.oracle.com/javase/7/docs/api/java/util/BitSet.html



more stable than confidence and growth rate as shown in
figure 2. The same observations stand for the other data sets.

Fig. 2. Level values for mined
rules in a train-test experiment
for the skater data .

To have a global view of
the stability of the studied mea-
sures on the benchmark data
sets, we study the rank agree-
ment of the measure values in
the train-test experiments. For a
given data set and for each mea-
sure, we rank the mined rules
according to their measure val-
ues in train and test data. Then,
the agreement between train and
test ranks is analyzed using Spearman correlation coeffi-
cient [28]. Figure 3 shows that level has the high train-test
correlation (coefficient value near 1) and is stable while the
other measures have a weak correlation from train to test data
and are thus unstable.

Fig. 3. Agreement between train rank and test rank of the mined rules
according to measure values for benchmark data sets.

The robustness of the level measure is also studied with
the help of the following experiment. For each data set,
we randomly assign a class label c ∈ C to each sequence
while respecting the original class distribution. As our method
MiSeRe is controlled by a running time constraint, we run
MiSeRe for 30 minutes for all data sets with random labels.
As a result, not one single rule could be extracted as all have a
negative level value. Conversely, for most of the data sets, we
still could find some sequential classification rules with high
confidence, growth rate or lift. Thus, it can be concluded that
level is a robust measure, it discovers no spurious patterns
and avoids overfitting.

B. Predictive performance of our approach

To evaluate the predictive performance of our approach,
we employ several standard classifiers on the benchmark
data sets recoded using SCRMs obtained with MiSeRe. We
use Naı̈ve Bayes (NB), Random Forest (RF), Decision Tree
(C4.5 alias J48), Support Vector Machine (SVM), lazy clas-
sifier IBk (a k-Nearest Neighbor) available from the Weka
package [29] – all with default parameter values – and the
Selective Naı̈ve Bayes2 (SNB) [30]. The predictive perfor-
mance results are all obtained with stratified 10-fold cross
validation: MiSeRe operates only on the training data folds.

2http://www.khiops.com

Although MiSeRe is anytime, for convenience, we set a
number of rules to be extracted, say 210, i.e., 1024 rules.

1 2 3 4 5

SNB
RF

SVM
J48
IBk
NB

CD = 2.2735

Fig. 4. Critical difference
of performance between vari-
ous classifiers on data using ex-
tracted SCRMs.

We apply the Friedman test and
a post-hoc Nemenyi test as sug-
gested by [31] for comparisons
of classifiers over multiple data
sets (at significance test α =
0.05 for both tests). The null-
hypothesis is rejected, meaning
the compared classifiers are not
equivalent in terms of accuracy.
The result of the Nemenyi test
is represented by the critical difference (CD) chart shown in
figure 4 with CD ' 2.2735 and where the mean rank of
each classifier is plotted. Even if none of the six classifiers
is singled out, the chart highlights two different groups of
classifiers: {SVM, J48, IBk, NB} between which there is no
statistical difference of performance; and {SNB, RF}, although
they are not statistically better than SVM, they outperform the
others. Thus, our recommendation is to use MiSeRe coupled
with either SNB or RF. Since, SNB is Bayesian and parameter-
free, meeting the characteristics of our framework, we will use
SNB-MiSeRe for further inductive performance comparisons
with state-of-the-art rule based classifiers below. Results for
MiSeRe coupled with another classifier are available from [18].

C. Effectiveness and efficiency of MiSeRe

Our mining method MiSeRe is controlled by a running
time constraint during which a certain number of rules are
mined. This section studies the predictive performance of SNB-
MiSeRe classification system w.r.t. the number of extracted
rules. Figure 5 shows the performance in terms of accuracy
of SNB-MiSeRe based on ρ rules (ρ = 2α;α ∈ [0; 14]). From
this figure, it can be observed that the predictive performance
increases with the number of rules. Then, it becomes rather
stable beyond few hundred of rules. Finally, we can conclude
that the accuracy generally reache a plateau with about a few
hundreds of mined rules for most of the data sets.

Fig. 5. Evolution of accuracy results per data set w.r.t. number of rules mined

D. SNB-MiSeRe versus state-of-the-art

This section presents a comparative study of the perfor-
mance of MiSeRe and state-of-the-art competitive rule mining
algorithms with several classification methods. We compare the
set of rules mined by MiSeRe with four baseline algorithms:
(1) cSPADE [27], (2) SCII [9], (3) Gokrimp [32], and (4)



DeFFeD [10]. The parameters were set for each algorithm as
indicated in the original papers. Afterwards, these algorithms
extract sequential rules from each training data. Then, we
employ six classifiers previously mentioned on the benchmark
data sets recorded using sequential classification rules obtained
with MiSeRe, cSPADE, SCII, Gokrimp and DeFFeD. Figure 6
shows the average accuracy results per data set obtained with
stratified 10-fold cross-validation when we combine SNB with
all the extraction methods. The difference of performance
between SNB-MiSeRe and other methods is clearly noticeable
because SNB-MiSeRe always has the highest accuracy.

Fig. 6. Comparisons of accuracy results w.r.t. various several extraction
methods.

Another experiment was conducted for comparing the per-
formance of SNB-MiSeRe classifier with four state-of-the-art
competitive rule-based classifiers: SCII Match, SCII CBA [9],
BayesFM [11] and CBS [8]. In this experiment we found that
there is a difference of performance between SNB-MiSeRe and
the other competitors as SNB-MiSeRe always scores the highest
accuracy [18].

VI. CONCLUSION AND FUTURE WORK

This paper focuses on the important problem of mining
sequential rule patterns for classification purpose. We present a
new interestingness measure (level) that allows us to naturally
mark out interesting and robust classification rules. We develop
a parameter-free algorithm that efficiently mines interesting
and robust rules. Using the extracted rules as new features
in a classification process has demonstrated strong predictive
performance. The empirical experiments show that our system
demonstrates highly competitive inductive performance com-
pared with state-of-the-art rule-based classifiers while being
highly resilient to spurious patterns. As future work, we plan to
extend our approach for a labeled multidimensional sequential
data set.
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