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Abstract. Collaborative filtering aims at helping users find items they
should appreciate from huge catalogues. In that field, we can distinguish
user-based, item-based and model-based approaches. For each of them,
many options play a crucial role for their performances, and in particular
the similarity function defined between users or items, the number of
neighbors considered for user- or item-based approaches, the number of
clusters for model-based approaches using clustering, and the prediction
function used.
In this paper, we review the main collaborative filtering methods pro-
posed in the litterature and compare them on the same widely used real
dataset called MovieLens, and using the same widely used performance
measure called Mean Absolute Error (MAE). This study thus allows us
to highlight the advantages and drawbacks of each approach, and to pro-
pose some default options that we think should be used when using a
given approach or designing a new one.

1 Introduction

Recommender systems [1] have known a growing interest in the last two decades,
since the appearance of the first papers in the mid-1990s [2]. The aim of such
systems is to help users find products (called more generally items) they should
appreciate from huge catalogues. To do this, three types of approaches are com-
monly used:

1. collaborative filtering,
2. content-based filtering,
3. and hybrid filtering.

In the first case, the input of the system is a set of ratings of users on sets
of items, and the approach used to predict the rating of a given user on a given
item is based on the ratings of a set of users who have already rated the given
item and whose tastes are similar to the ones of the given user.

In the second case, the item descriptions are used to construct user thematic

profiles (such as “like comedy and dislike war” when items are movies), and the
prediction of interest of a user on a given item is based on the similarity between
the item description and the user profile. In the third case of hybrid filtering,
both information, collaborative and content-based, are used.

In this paper, we focus on the first type of techniques, because it is the most
widely considered in the field of recommender systems, and yet many different



collaborative filtering approaches are worth to be compared. Besides, in many
cases, well-structured item descriptions are hard to get, whereas collecting user
ratings on items is easier, yet some real rating datasets are available for tests. We
chose the most widely used one, called MovieLens, for our study. This dataset
contains 1,000,209 ratings collected from 6,040 users on 3,699 items that repre-
sent movies. Then two ways for evaluating the performances of a collaborative
filtering method can be used [3]:

1. evaluate its error rate in cross-validation,
2. or evaluate user satisfaction in the system.

We focus in this paper on the first approach that is the most widely used one.
Many measures can then be used to compare the results of different collaborative
filtering methods. The most widely used ones are:

1. Mean Absolute Error (MAE),
2. Root Mean Squared Error (RMSE),
3. and Precision and Recall.

The two first measures evaluate the capability of a method to predict if a user
will like or dislike an item, whereas the third measure evaluates its capability
of providing an ordered list of items that a user should like. So these measures
carry different meanings [4]: in the first two cases, the method needs to be able
to predict dislike, but there is no need for ordering items, whereas in the third
case, the method only focuses on items users will like, but the order in which
these items are ranked is important. In this paper, we focus on the MAE, that
is the most widely used measure.

The rest of the paper is organized as follows: section 2 presents an overview of
the principal approaches for collaborative filtering; we then report in section 3 the
results of extensive experiments conducted using various collaborative filtering
methods and various alternatives of each, on the MovieLens dataset using cross-
validation and the MAE measure for comparison; finally, section 4 concludes the
paper and proposes some default options that we think should be used when
using a given collaborative filtering method, or designing a new one.

2 Collaborative filtering approaches

Let U be a set of users and I a set of items. vui denotes the rating of user u ∈ U
on item i ∈ I, and Su ⊆ I stands for the set of items that user u has rated.
We assume all ratings are integers ranging from 1 to 5, which is the case for
MovieLens.

2.1 User-based approaches

For user-based approaches [2], the prediction of rating pai of user a (active) on
item i is computed using the sum of the user mean rating and the weighted



sum of deviations from their mean rating of users that have rated item i. More
formally, pai is computed as follows:

pai = va +

∑

{u∈U|i∈Su}
w(a, u) × (vui − vu)

∑

{u∈U|i∈Su}
|w(a, u)|

(1)

vu represents the mean rating of user u:

vu =

∑

i∈Su
vui

|Su|
(2)

And w(a, u) stands for the similarity between users a and u, computed using
pearson correlation in [2], that corresponds to the cosine of the users deviation
from their mean:

w(a, u) =

∑

i∈Sa∩Su
(vai − va)(vui − vu)

√

∑

i∈Sa∩Su
(vai − va)2

∑

i∈Sa∩Su
(vui − vu)2

(3)

The influence of this similarity measure in the performances of this approach
is very important. So many other measures have been considered in the littera-
ture [5, 6]. Let us introduce two of them:

– simple cosine:

w(a, u) =

∑

i∈Sa∩Su
vai × vui

√

∑

i∈Sa∩Su
v2

ai

∑

i∈Sa∩Su
v2

ui

(4)

– and constraint pearson correlation, that corresponds to the cosine of users
deviation from the mean rating, denoted by M , and equal to 3 for a rating
scale ranging from 1 to 5:

w(a, u) =

∑

i∈Sa∩Su
(vai − M)(vui − M)

√

∑

i∈Sa∩Su
(vai − M)2

∑

i∈Sa∩Su
(vui − M)2

(5)

Finally, a neighborhood for each user can be considered. In such a case, the
neighborhood size is then a system parameter that needs to be defined, and only
the neighbors of the active user are considered for predictions.

2.2 Model-based approaches

Since predicting the rating of a given user on a given item requires the compu-
tation of the similarity between the given user and all its neighbors that have
already rated the given item, its execution time may be long for huge datasets.
In order to reduce such execution time, model-based approaches have been pro-
posed [7]. The general idea is to derive off-line a model of the data in order to
predict on-line ratings as fast as possible.



The first types of models that have been proposed consist in grouping the
users using clustering and then predicting the rating of a given user on a given
item using only the ratings of the users that belong to the same cluster. Then
probabilistic clustering algorithms have been used in order to allow users to
belong, at some level, to different groups of users [8, 9]. Hierarchies of clusters
have also been proposed, so that if a given cluster of users does not have opinion
on a given item, its super-cluster can be considered [10].

In such approaches, the choice of the distance measure used to compare users
is important. Let us present two widely used of them:

1. normalized manhattan distance:

dist(a, u) =

∑

{i∈Sa∩Su}
|vai − vui|

|{i ∈ Sa ∩ Su}|
(6)

2. and normalized euclidian distance:

dist(a, u) =

√

∑

{i∈Sa∩Su}
(vai − vui)2

|{i ∈ Sa ∩ Su}|
(7)

The number of clusters is also of key importance. In many cases, different
numbers of clusters are tested, and the one that led to the lowest error rate
in cross-validation is kept. Clusters Ck are then generally represented by their
centroid −→µk:

µki =

∑

{u∈Ck|i∈Su}
vui

|{u ∈ Ck|i ∈ Su}|
(8)

Then the predicted rating of a user to an item can be directly derived from
the rating of its nearest centroid, or it can be computed using a sum on the
ratings of all centroids, weighted by the distance between the given user and the
centroids.

For this study, we implemented four clustering algorithms:

– K-means, the well-known full-space clustering algorithm based on the evo-
lution of K centroids that represent the K clusters to be found,

– Bisecting K-means [11], based on the recursive use of (K=2)-means, by se-
lecting at each step for next split the cluster that maximizes its inertia,

– LAC [12], that is based on K-means and adds a weight to each attribute,
depending on the deviation of the cluster members from its mean,

– and SSC [13], that is a probabilistic clustering algorithm, based on a mixture
of gaussians and the EM algorithm.

All these methods need to be run many times with random initial solutions
in order to avoid local minimum solutions. We set the default number of runs to
10 in these experiments.

Finally, models based on item associations have also been considered. Bayesian
models have been proposed to model dependencies between items [7]. The clus-
tering of items have been studied in [14, 15]. And models based on association
rules have been studied in [16, 17].



2.3 Item-based approaches

Then item-based approaches have known a growing interest [18]. Given a simi-
larity measure between items (like cosine or pearson correlation presented earlier
for user-based approaches), item-based approaches predict the rating of a given
user on a given item using the ratings of the user on the items considered as
similar to the target item. In [18], a weighted sum is used to predict the rating
of active user a on item i, given sim(i, j) a similarity measure between items:

pai =

∑

{j∈Sa|j 6=i} sim(i, j)× vaj
∑

{j∈Sa|j 6=i} |sim(i, j)|
(9)

Two specific similarity measures have been proposed in [19, 20] for item-based
collaborative filtering methods:

– adjusted cosine, that corresponds to the cosine of items deviation from the
user mean rating:

sim(i, j) =

∑

{u∈U|i∈Su&j∈Su}(vui − vu)(vuj − vu)
√

∑

{u∈U|i∈Su&j∈Su}
(vui − vu)2

∑

{u∈U|i∈Su&j∈Su}(vuj − vu)2

(10)
– and a probabilistic similarity measure, that corresponds to the co-occurrence

frequence of both items i and j, normalized by user frequences in order
to enhance the contribution of users who have rated fewer items, and then
normalized by the product of the frequences of both concerned items:

sim(i, j) =

∑

{u∈U|i∈Su&j∈Su}
vuj/|Su|

|{u ∈ U |i ∈ Su}| × |{u ∈ U |j ∈ Su}|
(11)

Finally, as for user-based approaches, a neighborhood for each item can be
considered. In such a case, the neighborhood size is then a system parameter that
needs to be defined, and only the neighbors of the target item are considered for
predictions.

2.4 Complementary approaches

Different default prediction techniques can also been considered, in particular
when a method is not able to predict any rating, if a user has no rating, if it has
no neighbor, if there is no rating on an item or if an item has no neighbor:

– mean item rating,
– mean user rating,
– majority item rating.

– and majority user rating.



We also propose an alternative approach where we consider the recommenda-
tion problem as a standard classification problem with two input variables, user
u and item i, and one output variable, rating r. We apply the standard Naive

Bayes approach, assuming that users and items are independent conditionally to
the ratings. This approach is based on the following Bayes rule used to compute
the probability of rating r for a given user u on a given item i:

P (r|u, i) =
P (r|u) × P (r|i)

P (r)
×

P (u) × P (i)

P (u, i)
(12)

P (r|u) stands for the probability of rating r for user u, P (r|i) the probability
of rating r on item i, and P (r) the global probability of rating r. The last three
probabilities P (u), P (i) and P (u, i) can be ignored since they are the same for
all users and items. From these probabilities, we then propose three prediction
scheemes:

– predict the most probable rating, which corresponds to the Maximum A

Posteriori (MAP) approach:

pai = Argmax5
r=1P (r|a, i) (13)

– compute the weighted sum of ratings, that corresponds to minimizing the
expectation of Mean Squared Error (MSE):

pai =

5
∑

r=1

r × P (r|a, i) (14)

– or select the rating that minimizes the expectation of Mean Absolute Error

(MAE):

pai = Argmin5
r=1

5
∑

n=1

P (n|a, i) × |r − n| (15)

Model-based approaches can be combined with different default approaches,
or with any user- or item-based approach. This is done by constructing local
models from the different sub-datasets created using clustering.

Finally, since in many real datasets ratings are integer values, we can choose
to round the predicted ratings instead of using their real values. Such a process
improves the results when MAE is used, but not when RMSE is used.

3 Experiments

3.1 Parameters

Considering only the principal collaborative filtering approaches already leads
us to a lot of choices and parameters. When implementing a user- or item-based
approach, one may choose:



– a similarity measure: pearson (equation 3), cosine (4), constraint pearson
(5), adjusted cosine (10), or probabilistic (11),

– a neighborhood size,
– and how to compute predictions: using a weighted sum of rating values (9),

or using a weighted sum of deviations from the mean (1).

For model-based approaches, the following parameters need to be defined:

– the distance measure used: manhattan (6) or euclidian (7),
– the number of clusters,
– how to compute predictions in one cluster: using the mean rating of the

cluster members on an item, using another default approach, or using a
local user- or item-based approach,

– and how to compute predictions for one user: returning the prediction of its
nearest cluster, or the weighted sum of predictions of each cluster.

Finally, in all cases, we can choose to round the results or not. As a default
prediction scheeme, if no prediction can be done for a given approach, the global
mean item rating is returned, and if the item is not known by the system, then
the mean user rating is returned.

3.2 Protocol

We conduct these experiments using MovieLens dataset. We divided it into 10
parts in order to perform 10-fold cross-validations, training the chosen model
using 9 parts and testing it on the last part. In all experiments, the division into
10 parts of the dataset is always the same, so that all approaches are evaluated
under exactly the same conditions.

Given T = {(u, i, r)} the set of (user,item,rating) triplets used for test, the
Mean Absolute Error Rate (MAE) and Root Mean Squared Error (RMSE) are
used to evaluate the performances of the algorithms:

MAE =
1

|T |

∑

(u,i,r)∈T

|pui − r| (16)

RMSE =

√

√

√

√

1

|T |

∑

(u,i,r)∈T

(pui − r)2 (17)

We also report the time spent for the model construction and for predictions.

3.3 Results

Let us start with the results of the default approaches presented in table 1.
We can thus already observe that the results are better when default ratings

are based on item information than when they are based on user information, and
that using the mean rating is better than using the majority rating. But default



MeanItem MeanUser MajoItem MajoUser ProbablBayes WeightBayes MinBayes

MAE(1) 0.7821 0.8286 0.7702 0.8363 0.7159 0.7279 0.6829

MAE(2) 0.7501 0.7939 0.7702 0.8363 0.7159 0.6899 0.6829

RMSE(1) 0.9791 1.0350 1.0924 1.1991 1.0658 0.9247 0.9894

RMSE(2) 1.0182 1.0741 1.0924 1.1991 1.0658 0.9684 0.9894
Table 1. Default approaches results measured using MAE and RMSE, when rounding
(2) or not (1) the predicted ratings.

ratings using Bayes models lead to much better results. For such approaches, the
MAE is minimized with the MinBayes scheeme (equation 15), but the RMSE is
minimized with the WeightBayes sheeme (14). Rounding the predicted ratings
improves the results when the MAE is used, but not when the RMSE is used.
These two observations confirm the theory. In the following, we only report
results using MAE and after the predicted ratings have been rounded. Figure 1
reports such results using different user-based approaches.

We can thus observe that the results are improved when many neighbors
are considered. But of course the execution time is higher when more neigh-
bors are used. The similarity measure that leads to the best results is pearson,
according to figure 1(a). Predicting using weighted sum of deviations from the
mean leads to better results than predicting using simple weighted sum accord-
ing to figure 1(b). Rounding the predicted ratings improved the MAE from 2 to
4 percent. Figure 2 then reports the results using item-based approaches.

We observe again from figure 2(b) that predicting using weighted sum of
deviations from the mean leads to a lower MAE than predicting using simple
weighted sum, no matter which similarity measure is used. But in that case,
considering too much neighbors degrades the results and the probabilistic simi-
larity leads to the lowest MAE, according to figure 2(a). Rounding the predicted
ratings improved the MAE from 3 to 4 percent. Finally, figure 3 reports the
results obtained using Kmeans-based approaches.

According to figure 3(a), we see that there is not a high difference in using
manhattan or euclidian distance, although euclidian distance leads to slightly
better results. In both cases, the optimal number of clusters is 6. On the contrary,
predicting using MinBayes leads to better results than when MeanItem rating is
used, according to figure 3(b), and in that case, the optimal number of clusters is
4. Those reported results concern predictions based on the nearest cluster rather
than based on a weighted sum of predictions of each cluster because that first
scheeme led to better results. Figure 4 presents results using other clustering
algorithms than K-means, and shows that K-means outperforms LAC and SSC,
but that Bisecting K-means can lead to better results when more clusters are
considered.

Finally, table 2 summarizes the results of the best of each approach, including
execution time.
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Fig. 1. User-based approaches results using different neighborhood sizes (K), similarity
measures and prediction scheemes.
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Fig. 2. Item-based approaches results using different neighborhood sizes (K), similarity
measures and prediction scheemes.
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Fig. 3. Model-based approaches results using different numbers of clusters.
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Fig. 4. Results of model-based approaches using different clustering algorithms.

BestDefault BestUserBased BestItemBased BestModelBased

model construction
1 730 170 254

time (in sec.)

prediction time
1 31 3 24

(in sec.)

MAE 0.6829 0.6688 0.6382 0.6736

Table 2. Summary of the best approaches.



The BestDefault is MinBayes: the default approach based on Bayes rule mini-
mizing MAE (equation 15). The BestUserBased is the user-based approach based
on pearson similarity (3) and 1500 neighbors. The BestItemBased is the item-
based approach based on probabilistic similarity (11) and 400 neighbors. Both
use predictions using weighted sum of deviations from the mean (1). Finally,
the BestModelBased is the model-based approach using K-means with euclidian
distance (7), 4 clusters and predictions scheeme based on the nearest cluster and
Bayes model minimizing MAE.

The best overall results are reached by the best item-based approach. It needs
170 seconds to construct the model and 3 seconds to predict 100,021 ratings.
Then the best user-based approach has slightly lower MAE than model-based
or default approaches, but for a model construction time of 730 seconds and
prediction time of 31 seconds. On the other side, the best default approach only
needs 2 seconds for both model construction and predictions, for a difference in
MAE of only 0.0141.

Finally, we also tested the use of local item-based models constructed on the
different user groups identified by clustering, but such approach degrades the
results of a global item-based approach.

4 Conclusion

According to our first results on default approaches, it seems that using Bayes
model for default predictions is relevant, since it has reasonable error rate for very
low execution time. Besides, another important advantage of such a technique is
that it is easily updatable since it is incremental, whereas the other approaches
need to relearn their entire model in order to take into account new data.

For all experiments, rounding the predicted ratings led to an improvement
ranging from 2 to 4 percent of the MAE. Besides, rounding ratings is natural in
practice, since real users generally prefer rating scales based on natural numbers
than on real numbers.

Computing predictions using weighted sum of deviations from the mean also
led to better results than using simple weighted sum for both user- and item-
based approaches. The lowest error rates were reached using pearson similarity
for user-based approaches and probabilistic similarity for item-based approaches.

Using Bayes default approach in order to predict ratings inside a given cluster
leads to better results than when the mean rating of the cluster members is
used. Considering the prediction of the nearest cluster is better than computing
a weighted sum of the predictions of each cluster. Finally, K-means had better
results than more sophisticated algorithms like LAC or SSC.

More generally, item-based approaches seem the bests in our experiments.
But these results need to be taken with precaution. Indeed, although in many
cases the number of users is much more important than the number of items, in
cases where there are more items than users, user-based approaches could lead
to better results. On the same way, if there are some demographic information
on users, results of user-based approaches can be improved [21]. On the other



side, if some content information on items are available, results of item-based
approaches can also be improved [22].

Besides their very good results, item-based approaches have other advan-
tages: they seem to need fewer neighbors than user-based approaches, and such
models are also appropriate for the navigation in item catalogues even when no
information about the current user is available, since it can also present to a
user the nearest neighbors of any item he is currently interested in.

For future work, it seems now interesting to study how these methods can
be adapted to scale well when faced with huge datasets. The dataset provided
by Netflix [23], a popular online movie rental service, can be used for such tests
since it contains 100,480,507 movie ratings from 480,189 users on 17,770 movies.

In that field, let us cite [24] that proposed a user selection scheeme for
user-based approaches, [11] that proposed to create super-users by running a
user-based approach considering as users the centroids found using a bisect-
ing K-means clustering algorithm, [25] that proposed to use Principal Compo-

nents Analysis (PCA) or [26] that proposed to use Singular Value Decomposition

(SVD) in order to reduce the initial rating matrix size.

Unfortunately, such dimensionality reduction techniques then prevent us
from presenting understandable results to the users because of the rating matrix
transformation. So instead, we think it is interesting to study how bagging [27]
could be used in collaborative filtering, and if using local item-based approaches
in each cluster found using K-means still fails with huge datasets such as Netflix’s
one.
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