

Compact mathematical formulation for Graph Partitioning
Marc BOULLE

France Telecom R&D
2, Avenue Pierre Marzin
22300 Lannion – France

marc.boulle@francetelecom.com

Abstract.
The graph partitioning problem consists of dividing the vertices of a graph into clusters, such that the weight of the
edges crossing between clusters is minimized. We present a new compact mathematical formulation of this problem,
based on the use of binary representation for the index of clusters assigned to vertices. This new formulation is almost
minimal in terms of the number of variables and constraints and of the density of the constraint matrix. Its linear
relaxation brings a very fast computational resolution, compared with the standard one.
Experiments were conducted on classical large benchmark graphs designed for comparing heuristic methods. On one
hand, these experiments show that the new formulation is surprisingly less time efficient than expected on general k-
partitioning problems. On the other hand, the new formulation applied on bisection problems allows to obtain the
optimum solution for about ten instances, where only best upper bounds were previously known.

Key words. Linear programming, Graph Partitioning, Bisection

Introduction

The graph partitioning is a classical combinatorial optimization problem. This topic has several applications in the
telecommunications field. For instance, the first step in the design of telecommunications network is to solve a
partitioning problem. The network vertices are partitioned in order to minimize the amount of traffic between clusters of
vertices. Furthermore, the graph partitioning is an appealing optimization problem, simple in its definition but NP-
complete (Garey, Johnson and Stockmeyer 1976).
Partitioning a graph defined by its vertices, its edges and an edge cost function consists of dividing the vertices into
clusters, such that the total weight of the edges whose endpoints are in different clusters is minimized. The number of
clusters and their size are constrained. We consider the balanced partition of a graph, when the difference of size
between clusters is at most one. The originality of our formulation is to use a binary representation for the index of
clusters (assigned to vertices). The constraints in the standard partitioning formulation must be deeply reformulated to
take advantage of this binary representation. The new formulation results into less number of variables, constraints and
non null constraint coefficients. It is very efficient for bisection problems and allowed to obtain the optimal solution for
several benchmark graphs not yet solved to optimality.
The remainder of the document is organized as follows:
Section one describes several new formulations and demonstrates their correctness. Section two evaluates the
compactness of the formulations, and then the third section presents experimental results obtained by directly
implementing the formulations in a mixed integer programming solver and applying them to classical large benchmark
graphs.

1. Mathematical formulation

Let G=(V, E) be a graph with vertex set V and edge set E. Let Wij be the (positive) weight of the edge (i, j) between
vertices i and j, K the maximum number of clusters k and MaxCard the maximum size of each cluster
(MaxCardKV .≤). The objective is to minimize the cut, i.e. the total weight of the edges crossing the clusters. This is

equivalent to maximizing the total weight of the edges that are inside the clusters.

1.1 Standard formulation
The standard straightforward integer programming formulation of the problem is the following.

Compact mathematical formulation for Graph Partitioning 2

Formulation A
Variables:
 . vik=1 if vertex i belongs to cluster k and 0 otherwise

 . eijk=1 if edge (i, j) belongs to cluster k and 0 otherwise
Maximize:

∑
kji

ijijkWe
,,

Subject to:
Each vertex belongs to only one cluster (1)

iv
k

ik ∀=∑ 1

Max size of clusters (2)

kMaxCardv
i

ik ∀≤∑

Linearization of quadratic variables (eijk =vik*vjk) (3)

ikijk ve ≤

jkijk ve ≤

kjivve jkikijk ,,1 ∀−+≥

Decision variables
vik binary variables

1.2 Slight compact formulation
The preceding formulation contains K variables and 3K constraints for each edge. This can be reduced to 1 variable and
2K constraints by introducing for each edge a new binary variable fij valued 1 if the edge (i,j) is inside one cluster and 0
otherwise. We show below that variables fij can be evaluated from existing vertex variables vik.

∑∑ ==
k

jkik
k

ijkij vvef

jkikij vvkf =∀⇔= /1

We can notice that 1=−⇔≠ jkikjkik vvvv . Thus, fij can be expressed in the following way:

()jkik
k

ij vvMinf −−= 1

As the problem of interest is a maximization problem in fij with positive weights, the preceding equality constraint can
be turned into an inequality constraint, and rewritten in the following way.

() jkikijjkik
k

ij vvfkvvMinf −−≤∀⇔−−≤ 1,1

This leads to the following formulation.

Formulation B
Variables:
 . vik=1 if vertex i belongs to cluster k and 0 otherwise

 . fij=1 if edge (i, j) belongs to one of the clusters and 0 otherwise
Maximize:

∑
ji

ijijWf
,

Subject to:
Each vertex belongs to only one cluster (1)

iv
k

ik ∀=∑ 1

Max size of clusters (2)

kMaxCardv
i

ik ∀≤∑

Constraints to calculate intra-cluster edge variables (3)

jkikij vvf −+≤ 1

kjivvf jkikij ,,1 ∀+−≤

Decision variables
vik binary variables

Compact mathematical formulation for Graph Partitioning 3

1.3 Application to the bisection problem
In the case of bisection, one single decision variable is enough for each vertex. Its value is 1 if the vertex belongs to the
first cluster and 0 otherwise. Formulation B can be simplified in the following way.

Formulation B2
Variables:
 . vi1=1 if vertex i belongs to first cluster and 0 otherwise

 . fij=1 if edge (i, j) belongs to one of the clusters and 0 otherwise
Maximize:

∑
ji

ijijWf
,

Subject to:
Max size of clusters (1)

∑ ≤
i

i MaxCardv 1

∑ −≥
i

i MaxCardVv 1

Constraints to calculate intra-cluster edge variables (2)

111 jiij vvf −+≤

jivvf jiij ,1 11 ∀+−≤

Decision variables
vi1 binary variables

1.4 Formulation based on binary indexing of clusters
In the general case of k-partitioning, formulations A and B need K decision variables for each vertex. These variables
theoretically enable 2K choices for each vertex, although only K clusters are available. On this basis, we will aim at a
more compact formulation, needing less variables and constraints. For each vertex i, we have to decide to which cluster
it belongs. Let ki be an integer variable corresponding to the index of the cluster assigned to vertex i (0 ≤ ki<K). In its
binary representation, variable ki can be written as a linear combination of the powers of 2. The coefficients bip of this
linear combination will be used as decision variables.

 ∑=
p

p
ipi bk 2 (0 ≤ p<log2(K))

For example, if ki=5, ki=1*20+0*21+1*22, so bi0=1=, bi1=0, bi2=1.
Starting from formulation B, we will rewrite its constraints with these new decision variables.

Each vertex belongs to only one cluster
This constraint is satisfied from the definition of ki, independently of the choice of a decimal representation (variables
ki) or a binary representation (variables bip). Each vertex must be assigned to an existing cluster. This means that ki (its
binary representation) must be less than K-1.

Max size of clusters
The size of each cluster must be derived from the binary decision variables corresponding to the cluster indexes. Let us
use again variables vik representing the assignment of vertex i to cluster k. We will show above how to calculate these
variables from the new binary variables bip.
The binary representation of index k is based on constant values Bkp:

 ∑=
p

p
kpBk 2

Variable vik equals 1 if and only if variable ki. equals k. We then have the following equivalences.
kkv iik =⇔=1

 kpipik Bbpv =∀⇔= ,1

bip \ Bkp 0 1
0 1 0
1 0 1

()() 111,1 =+−−∀⇔= ipkpipkpik bBbBpv

Compact mathematical formulation for Graph Partitioning 4

 () 1211 =+−−⇔= ∏
p

kpipkpipik BbBbv

So vik is a product of factors aip.

kpipkpipip BbBba 21 +−−= (if Bkp=0, aip=1-bip, otherwise aip=bip)

Variable vik can be evaluated with a generalization of the linearization of quadratic variables.
 ipik avp ≤∀ ,

()∑ −+≥
p

ipik av 11

Thus, the avaibility of variables vik, derived from variables bip, allows to reuse the same formula for the constraints
concerning the max size of clusters.

Constraints to calculate intra-cluster edge variables
Intra cluster edge variables equal 1 if the endpoints of the edge are in the same cluster, i.e. if the indexes of the clusters
containing the endpoints of the edge have the same binary representation.

jpipij bbpf =∀⇔= /1

()jpip
p

ij bbMinf −−= 1

As the problem of interest is a maximization problem in fij with positive weights, the preceding equality constraint can
be turned into an inequality constraint, and rewritten in the following way.

() jpipijjpip
p

ij bbfpbbMinf −−≤∀⇔−−≤ 1,1

Formulation C

Let Bkp be the coefficient of 2p in the binary representation of index k (Bkp is a constant).

Variables:
 . bip: coefficient of 2p in the binary representation of cluster index ki assigned to vertex i
 . fij=1 if edge (i, j) belongs to one of the clusters and 0 otherwise

 . vik=1 if vertex i belongs to cluster k and 0 otherwise
Maximize:

∑
ji

ijijWf
,

Subject to:
Each vertex is assigned to a cluster index less than K (1)

iKb
p

p
ip ∀−≤∑ 12

Max size of clusters (2)

kMaxCardv
i

ik ∀≤∑

Constraints to calculate intra-cluster edge variables (3)

jpipij bbf −+≤ 1

pjibbf jpipij ,,1 ∀+−≤

Linearization of variables used for vertices assignment to clusters (4)
() pkiBbBbv kpipkpipik ,,21 ∀+−−≤

()()∑ ∀−+−−+≥
p

kpipkpipik kiBbBbv ,1211

Decision variables
bip binary variables

1.5 Compact formulation based on binary indexing of clusters
Formulation C uses few decision variables, but increases the number of constraints to calculate the size of clusters. In
order to decrease the number of variables and constraints used in formulation C, we show in this section how to
calculate the size of clusters directly from the variables bip (binary representation of cluster indexes), without using
previous variables vik.

Compact mathematical formulation for Graph Partitioning 5

First, let us define the notion of masking. An index k is masking a bit p if the binary representation of k has bit p set to
1. For example, the indexes 1 (1), 3 (11) and 5 (101) are masking bit 0.
Let us now evaluate the term ∑=

i
ibsb 00 .

sb0 stands for the number of vertices assigned to a cluster whose index is masking bit 0.
Thus, ∑ ∑ ++===

i bitmaskingiskk
ki rcardClustercardClustercardClustebsb ...31

0/
00

More generally, ∑ ∑==
i pbitmaskingiskk

kipp rcardClustebsb
/

The notion of masking can be generalized to bit masks. An index k is masking a bit mask m if the binary representation
of k has all bits of the bit mask m set to 1. For example, with m=5 (101), the indexes 5 (101), 7 (111), 13 (1101) are
masking the bit mask m.
Let bmim be a binary variable, equal to 1 if cluster index ki is masking bit mask m.
Let ∑=

i
imm bmsbm .

∑=
mmaskbitmaskingiskk

km rcardClustesbm
/

For example, ...13755 +++= rcardClustercardClustercardClustesbm

This leads to the following proposition.

Proposition 1: Variables sbmm (Km <≤0) can be linearly derived from the sizes of clusters cardClusterk (Kk <≤0).

Let SBM=M.C:

=

−−−− 1

1

0

1.10.1

1110

0100

1

1

0

......

...

...

KKKK rcardCluste

rcardCluste

rcardCluste

aa

aa

aa

sbm

sbm

sbm

By definition, coefficient amk of matrix M equals 1 if the index k is masking the bit mask m.

Proposition 2: Matrix M is reversible.
Proof:
Each index k is masking the bit mask k, thus akk=1. If k is masking m, the binary representation of k is above the binary
representation of m for each binary coefficient, and thus mk ≥ . This can be summarized with the following properties:

kakk ∀=1

kmamk <∀= 0

As a conclusion, M is an upper diagonal matrix with all its diagonal terms set to 1. Hence, M is reversible.

Corollary 1: The sizes of clusters cardClusterk (Kk <≤0) can be linearly derived from the bit mask variables sbmm
(Km <≤0).

Proposition 2 demonstrates that the size of clusters can be calculated from the new bit mask variables bmim. We show in
the following how to derive these bit mask variables bmim from the decision variables variables bip.
First, in the special case of m=0, ∑ ∑ ===

i k
ki VrcardClustebmsbm 00 .

Second, we can notice that when the indexes of clusters are powers of 2, there is a correspondence between the two sets
of variables: bmim=bip for m=2p (()Kp log0 <≤).

Third, for 0>m and pm 2≠ , at least 2 bits in the binary representation of m are set to 1. Thus, m=m1+m2, where m1 is
a power of 2 (only one bit set to 1 in binary representation of m1) and m2 is strictly positive. Based on the definition of
bit mask variables bmim, we get 21 imimim bmbmbm = and 1im

bm corresponds to one of the decision variables bip.

Therefore, the new bit mask variables bmim can be calculated by recurrence from the decision variables bip. Using the
linearization of quadratic variables, three constraints are necessary to calculate each new bit mask variable from two
other variables (two decision variables, or one decision variable and one new smaller bit mask variable).

Compact mathematical formulation for Graph Partitioning 6

Let us illustrate these results with an example for K=6:

=

5

4

3

2

1

0

5

4

3

2

1

0

100000

110000

001000

001100

101010

111111

rcardCluste

rcardCluste

rcardCluste

rcardCluste

rcardCluste

rcardCluste

sbm

sbm

sbm

sbm

sbm

sbm

 sbm0=|V|
 sbm1, sbm2, sbm4 are calculated with decision variables bi0, bi1, bi2
 sbm3 and sbm5 are calculated with bit mask variables bmi3 and bmi5
 bmi3=bi0.bi1 (3=11=01+10 in binary representation)
 bmi5=bi0.bi2 (5=101=001+100 in binary representation)

Formulation D

Let Bkp be the coefficient of 2p in the binary representation of index k (Bkp is a constant).

Variables:
 . bip: coefficient of 2p in the binary representation of cluster index ki assigned to vertex i
 . bmim=1 if the cluster index index is matching the bit mask m
 . cardClusterk: size of cluster k
 . fij=1 if edge (i, j) belongs to one of the clusters and 0 otherwise
Maximize:

∑
ji

ijijWf
,

Subject to:
Each vertex is assigned to a cluster index less than K (1)

iKb
p

p
ip ∀−≤∑ 12

Equations to calculate the size of clusters (2)

VrcardCluste
k

k =∑

prcardClusteb
i pbitmaskingiskk

kip ∀=∑ ∑
/

)2(
/

p

i mmaskbitmaskingiskk
kim mmrcardClustebm ≠∀=∑ ∑

Max size of clusters (3)
kMaxCardrcardCluste k ∀≤

Constraints to calculate intra-cluster edge variables (4)

jpipij bbf −+≤ 1

pjibbf jpipij ,,1 ∀+−≤

Linearization of quadratic variables bmim (bmim=bipbmim’) (5)

ipim bbm ≤

'imim bmbm ≤

)2(,1'
p

imipim mmibmbbm ≠∀−+≥

Decision variables
bip binary variables

2. Evaluation of the size of formulations

The sizes of formulations are evaluated in table 1 on the basis of the problem dimensions:
|V|: size of V
|E|: size of E
K: number of required clusters.

Compact mathematical formulation for Graph Partitioning 7

Formulation Constraints Variables Binary

variables
Non null coefficients

A
(standard)

|V| +
3|E|K +
K

|V|K +
|E|K

|V|K 2|V|K +
7|E|K

B
(A with fewer constraints)

|V| +
2|E|K +
K

|V|K +
|E|

|V|K 2|V|K +
6|E|K

B2
(B for K=2)

2|E| +
K

|V| +
|E|

|V| |V|K +
6|E|

C
(binary representation)

|V|(1+K+Klog(K)) +
2|E|log(K) +
K

|V|(K+log(K)) +
|E|

|V|log(K) |V|(log(K)+2K+3Klog(K)) +
6|E|log(K)

D
(compact
 binary representation)

|V|(1+3(K-1-log(K))) +
2|E|log(K) +
2K

|V|(K-1) +
|E| +
K

|V|log(K) |V|(2log(K) + 8(K-1-log(K))) +
6|E|log(K) +
K(K+1)

Table 1. Size of formulations

Formulation B is slightly more compact than formulation A. In the case of bisection, formulation B2 and D are almost
identical. In this case, using only one binary variable for cluster assignment is actually the same as using the binary
representation of cluster indexes. Thus, formulation D can be seen as a generalization of formulation B2 for greater K.
Formulation C is not interesting. This is only an intermediate step to introduce formulation D.

Comparison of the size of formulations B and D
The compactness of formulations B and D varies in opposite way for |V| and |E|.

For the number of constraints:

 −

+

−

−≥⇔≤

K

K
V

KKV

E
BconstrDconstr

)log(
12

1

)log(

1
1

2

3
)()(

If |E| ≥ 3/2|V|, the number of constraints in formulation D is smaller than in formulation B, and when |E|/|V| gets larger,
the reduction factor in the number of constraints becomes close from log(K)/K.
The number of variables is similar in the two formulations. However, the number of binary variables is reduced with a
factor log(K)/K in formulation D.

For the non null coefficients:

 −

++
−

−≥⇔≤

K

K
V

K

KKV

E
BcoefDcoef

)log(
16

1

)log(

1

3

4
1)()(

If |E| ≥ |V|, the number of non null coefficients in formulation D is smaller than the number of non null coefficients in
formulation B, and when |E|/|V| gets larger, the reduction factor in the number of non null coefficients becomes close
from log(K)/K.
As a conclusion, formulation D is more compact than formulation B if |E| ≥ 3/2|V|, and when |E|/|V| gets larger, the
compactness reduction factor becomes close from log(K)/K for the number of constraints, of non null coefficients and
of binary variables.

Table 2 displays a numerical example for |V|=100, |E|=1000 and K=10. It shows a significant decrease in size in the
new formulation for every dimension of the problem.

Formulation Constraints Variables Binary variables Non null coefficients

A 30110 11000 1000 72000
B 20110 2000 1000 62000
D 9620 1910 400 28910

Table 2: Size of formulations for |V|=100, |E|=1000 and K=10

Remark: The value of the linear relaxation of formulations A, B, B2, C and D is ∑

ji
ijW

,

, i.e. the sum of the weights of

all edges of the graph.

Compact mathematical formulation for Graph Partitioning 8

3. Resolution with a solver

We compare the different formulations on the basis of numerical experiments by applying a solver on a benchmark.

3.1 Benchmark instances
The instances used for tests were introduced by (Johnson, Aragon, McGeoch and Schevon 1989). These instances fall
into two categories: random graphs (presented in table 3) and random geometric graphs (presented in table 4). In
random graphs, edges are randomly generated in order to reach an average vertex degree. In random geometric graphs,
vertices are randomly located in square [0, 1]x[0, 1] and edges are created if their length is less than a distance d (d
computed in order to reach a given average vertex degree). All weights of edges are set to 1.

|V| \ degree 2.5 5 10 20

124 G124.02 G124.04 G124.08 G124.16
250 G250.01 G250.02 G250.04 G250.08
500 G500.005 G500.01 G500.02 G500.04

1000 G1000.0025 G1000.005 G1000.01 G1000.02
Table 3. Random graphs

|V| \ degree 5 10 20 40

500 U500.05 U500.10 U500.20 U500.40
1000 U1000.05 U1000.10 U1000.20 U1000.40

Table 4. Random geometric graphs

3.2 Resolution environment
We used Cplex 6.5 library routines to solve the mixed integer formulation directly. For linear relaxation, we used the
simplex dual method that proved much faster than the simplex primal method for all formulations. For exact resolution
(mixed integer programming), we activated the rounding heuristic to set the initial value of binary variables, and the
options of memory swapping of the branch and bound tree, not to be limited by the physical memory of the machine.
The target machine is a PC Dell Workstation 400 with Pentium II 300 MHz and 256 MB RAM, operating under
Windows/NT 4.0 system. This machine is rated 12.2 in SPECint95 benchmark.

3.3 Slightly stronger formulation
We can restrict the cluster indexes of the vertices in the following way:

 the first vertex must belong to first cluster
 the second vertex must belong either to first cluster, either to second cluster
 …
 the kth vertex must belong to one of the k first clusters

These constraints can be added to each formulation:
Each vertex with index i<K is assigned to a cluster with index less than i

102 −≤≤≤∑ Kiib
p

p
ip

With these new constraints, the formulations are less degenerated because permutations of vertex assignment to clusters
are now constrained. Experiments showed that the linear relaxations of formulations were improved with only a few
percent compared with the previously established relaxation value. Exact resolutions were besides twice faster thanks to
these new constraints.

3.4 Comparison of formulations in linear relaxation resolution
The value of the bound obtained with linear relaxation is not reported here. The only criterion used for comparison is
CPU time in seconds. We used random graph G124.08 that have 124 vertices and an average vertex degree 10 (620
edges) for this comparison, whose results are displayed in table 5.

Compact mathematical formulation for Graph Partitioning 9

Formulation 3 clusters 4 clusters 5 clusters 6 clusters 8 clusters 16 clusters
A 8 19 26 42 105 604
B 6 17 39 74 190 1318
C 6 6 31 41 36 95
D 2 4 10 15 17 84

Table 5. CPU time for k-partitioning of instance G124.08 with linear relaxation

Formulation B is up to twice slower than formulation A, although it is slightly more compact. Formulation D, based on
binary representation of cluster indexes, is much faster than standard formulation A, with a CPU time reduction factor
larger than its compactness reduction factor log(K)/K

3.5 Comparison of formulations in exact resolution
Exact resolution is tractable with all formulations only with small size instances. We first evaluated all formulations on
two 2-partitioning and one 3-partitioning problem. Results displayed in table 6 show that standard formulation A is
clearly the slowest one. Formulation D, which is almost identical to formulation B2, is the fastest on bisection
problems. Surprisingly, in spite of its compactness, formulation D based on the binary representation of cluster indexes
is less efficient than formulation B on the 3-partitioning problem

Formulation Graph G124.02

2 clusters
Graph G124.02

3 clusters
Graph U500.05

2 clusters
A 10 156 1273
B 2 137 196

B2 2 - 197
C 4 2220 198
D 2 366 184

Table 6. Exact resolution CPU time for 2 and 3-partioning of instances G124.02 and U500.05

In order to confirm that trend, we proceeded with other experiments of k-partitioning and compared formulations B and
D on small random graphs with 30 to 50 vertices, tractable within reasonable CPU time. Table 7 reports the number of
binary variables and the CPU time for formulations B and D, for each k-partitioning problem. In spite of its
compactness, formulation D is always less time efficient than formulation B on general k-partitioning problems.
Tests with other solvers, using different resolution strategies, would be necessary to confirm these results.

Graph(|V|x|E|) Clusters Formulation B Formulation D
 Binary variables CPU time Binary variables CPU time

G1(24x26) 6 144 9 72 344
G1(24x26) 7 168 18 72 1140
G1(24x26) 8 192 20 72 835
G2(28x66) 3 84 5 56 12
G2(28x66) 4 112 36 56 66
G3(47x60) 3 141 7 94 13
G3(47x60) 4 188 45 94 76

Table7. Exact resolution CPU time for several k-partitioning problems on three small random graphs

3.6 Optimum solution for large graphs
Despite the disappointing results for general k-partitioning problem, the resolution times obtained with bisection
problems were promising. This was the reason for conducting new experiments to obtain as many as possible optimum
solutions on benchmark graphs. These graphs are large size graphs which are used to evaluate and to compare heuristic
solving methods. The purpose of these last experiments is not to evaluate the different formulations, but to find optimal
solutions on benchmark graphs. That is why we chose what seemed to be the fastest formulation when used with our
straightforward implementation in Cplex solver. For bisection problems, we used formulation B2, which is almost
identical to formulation D in this case. For k-partitioning problems, we chose formulation B.

Compact mathematical formulation for Graph Partitioning 10

Bisection
The best known values come from (Johnson, Aragon, McGeoch, Schevon 1989) for small instances (|V| ≤ 250) and
from (Battitti and Bertossi 1999) for large instances (|V| ≥ 500). These upper bounds correspond to the best values
obtained by any heuristic method. Resolutions with formulation B2 were conducted on part of the instances. Some of
these resolutions were performed until optimality was reached. Some other ones were stopped if optimality was
untractable. The last ones were not conducted at all when smaller similar instances were not solvable.
The results are displayed in the tables 8 and 9. The optimal cuts found with exact resolution are in bold face, with the
CPU time (seconds). For the other instances, the best known upper bounds found by heuristic methods are reported.

|V| \ degree 2.5 5 10 20

 Cut CPU Cut CPU Cut CPU Cut CPU
124 13 2 63 2168 178 449
250 29 228 114 357 828
500 49 1245 218 626 1744

1000 95 445 1362 3382
Table 8. Results for bisection of random graphs with formulation B2

|V| \ degree 5 10 20 40

 Cut CPU Cut CPU Cut CPU Cut CPU
500 2 195 26 970 178 373800 412

1000 1 1479 39 3480 222 737
Table 9. Results for bisection of random geometric graphs with formulation B2

Optimal cuts were obtained on 9 out of the 24 instances. These results obtained with formulation B2 prove the
optimality of the corresponding upper bounds previously reached by heuristic methods. These new results (proven
optimality on 9 instances) provide an absolute criterion to evaluate heuristics. It is surprising that such large instances
could be solved to optimality. The reason is that the solved instances have a very low cut, and that their linear relaxation
is in this case, very close to the optimum.
Computation time needed to prove optimality increases quickly with the size of the graphs and the value of the cut.
Random geometric graphs are easier to solve than random graphs with the integer programming formulation. These
graphs are more structured and thus the solution space is less degenerated than in the case of random graphs. This leads
to a quicker exploration of the branch and bound tree during the resolution.

K-partitioning
Optimal values were obtained only with two small random graphs, using formulation B. Results are reported in tables
10 and 11

Graph G124.02 Optimal cut CPU time
2 clusters 13 2
3 clusters 18 150
4 clusters 23 3840
5 clusters 25 133740

Table10. Results for k-partitioning of instance G124.02 with formulation B

Graph G250.01 Optimal cut CPU time
2 clusters 29 228
3 clusters 41 241200

Table 11. Results for k-partitioning of instance G250.01 with formulation B

These results provide a benchmark for the k-partitioning problem. Computation time increases extremely quickly with
the number of clusters. We used formulation B because it was more efficient than formulation D with Cplex solver.
Formulation D still remains very promising because of its reduced size (particularly its reduced number of binary
variables). We expect that using formulation D with other solvers or with a specially designed resolution method could
improve significantly the efficiency of the resolution, and therefore bring new optimum values.

Compact mathematical formulation for Graph Partitioning 11

3.7 Quality of the state of the art heuristics
The graph bisection problem has been extensively studied in the past, and many heuristics have been experimented. For
example, algorithms such as (Kernighan-Lin 1970) or (Fiduccia-Mattheyes 1982) are frequently used to locally improve
bisections. Many meta-heuristics have also been used such as simulated annealing (Kirkpatrick, Gellat and Vecchi
1983) evaluated by (Johnson, Aragon, McGeoch and Schevon 1989), genetic algorithms used by (Bui and Moon 1996)
or tabu search (Glover 1989) enhanced and adapted to bisection problem by (Battiti and Bertossi 1999). The multilevel
approach is specially fitted to very large graphs and constrained computation time. It has been presented and studied by
(Hendrickson and Leland 1995), (Monien and Diekmann 1997), (Pellegrini and Roman 1996), (Karypis and Kumar
1998). These families of heuristics represent a range of options for the trade-off between computation time and quality
of the solution. In the light of the 9 optimal solutions proven in this paper, we shortly review the results of some of the
previously presented heuristics, from the point of view of the quality of solutions. The multilevel approach that favors
extremely short computation time at the expense of the quality of solutions is not evaluated.
The first evaluation deals with the results of (Johnson, Aragon, McGeoch and Schevon 1989), that introduced the
benchmark instances studied in this paper and extensively studied heuristics based on simulated annealing. Table 12
compares optimal values with best values found by the authors in 1989 with their simulated annealing based method.
These early works allowed to reach 6 of the 9 optimum cut sizes. The 3 non optimal values are indicated with stars in
table 12.

Graph Optimal cut Best Simulated
Annealing cut size

G124.2.5 13 13
G124.05 63 63

G250.2.5 29 29
G500.2.5 49 *52
U500.05 2 *4
U500.10 26 26
U500.20 178 178

U1000.05 1 *3
U1000.10 39 39

Table 12. Optimal versus best values for annealing method

The second evaluation is based on results presented by Bui and Moon 1996 for their method based on genetic
algorithms (BFS-GBA), and Battiti and Bertossi 1999 for their method based on tabu search (RRTS). The instances
with less than 500 nodes are now considered as too easy and are not taken into account by the community. Computation
times have been scales with respect to SpecINT95 to be comparable. We compare the minimal and average cuts of 1000
heuristic runs with the optimal cut. This evaluation shows that state of the art heuristics have reached the optimal cut
sizes for these 6 instances. The average cut size of RRTS method is optimal for all instances, except for G500.2.5.
Computation time needed to prove the optimal solution with the exact resolution method is about 1000 times that of
heuristic methods.

Optimal resolution BFS-GBA RRTS, 1000 n iter Graph
Optimal CPU Min Average CPU Min Average CPU

G500.2.5 49 1245 49 53,97 0,22 *51 52,06 0,98
U500.05 2 195 2 3,65 0,29 2 2 0,83
U500.10 26 970 26 32,68 0,37 26 26 1,32
U500.20 178 373800 178 179,58 0,44 178 178 2,59

U1000.05 1 1479 1 1,78 0,67 1 1 2,05
U1000.10 39 3480 39 55,78 1,19 39 39,03 3,08

Table 13: Optimal versus best known values for two state of the art methods based on genetic algorithms and tabu
search

Conclusion

The new formulation of k-partitioning problem is more compact with an average reduction factor of log(K)/K compared
with the standard formulation. In particular, the number of binary variables used in the new formulation is exactly
reduced by a factor log(K)/K. This compact formulation is promising and could be the basis for efficient exact

Compact mathematical formulation for Graph Partitioning 12

resolution methods or bounding methods. A straightforward use of a commercial solver was conclusive for bisection
problems, but resulted into an increased computation time for the resolution of general k-partitioning problems. This
new formulation is interesting, but further work will be necessary to conduct experiments with other solvers or to design
a dedicated exact resolution method that could take advantage of the compactness of the formulation.
Experiments were conducted on some large size benchmark graphs, classically used to compare heuristic methods. For
all these instances, previous work reported best known values, i.e. upper bounds. These experiments, based on the new
formulation for bisection and on an almost standard formulation for general k-partitioning problems, allowed to obtain
more than 10 optimum values on instances up to 1000 vertices and 5000 edges. These results provide a strong
evaluation criteria to compare heuristic methods.

References

R. Battiti and A.A. Bertossi, 1999. “Greedy, Prohibition, and Reactive Heuristics for Graph Partitioning”, IEEE
Transactions on Computers, vol. 48, no. 4. pp. 361-385.

T. N. Bui and B. R. Moon, 1996. “Genetic Algorithm and Graph Partitioning”, IEEE Transactions on Computers, vol.
45, no. 7. pp. 841-855.

C. Fiduccia and R. Mattheyses, 1982. “A Linear Time Heuristic for Improving Network Partitions”, Proc. 19th
ACM/IEEE Design Automation Conf., Las Vegas, pp. 175-181.

M.R Garey, D.S. Johnson and L. Stockmeyer, 1976. “Some simplified NP-complete graph problems”, Theoretical
Computer Science, 1, pp. 237-267.

F. Glover, 1989. “Tabu Search – Part I”, ORSA I Computing, vol1, no3, pp. 190-260.

B. Hendrickson and R. Leland, 1995. “A multilevel algorithm for partitioning graphs”, Proc. Supercomputing ’95,
ACM.

D.S. Johnson, C.R. Aragon, L.A. McGeoch and C. Schevon, 1989. “Optimization by Simulated Annealing: An
Experimental Study; Part 1, Graph Partitioning”, Operations Research, vol. 37, pp. 865-892.

G. Karypis and V. Kumar. (1998). “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs”,
SIAM J. on Scientific Computing, to appear.

B. Kernighan and S. Lin, 1970. “An Efficient Heuristic Procedure for Partitioning Graphs”, Bell Systems Technical J.,
vol. 49, pp. 291-307.

S. Kirkpatrick, C.D. Gellat Jr. and M.P. Vecchi, 1983. “Optimization by Simulated Annealing”, Science, vol. 220, no.
4598, pp.671-680.

B. Monien and R. Diekmann, 1997. “A Local Graph Partitioning Heuristic Meeting Bisection Bounds”, Proc. Eighth
SIAM Conf. Parallel Processing for Scientific Computing.

F. Pellegrini and J. Roman, 1996. “Scotch: A Software Package for Static Mapping by Dual Recursive Bipartitioning of
Process and Architecture Graphs”, Proc. HPCN’96 Brussels, pp. 493-498.

