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Multivariate Data Grid Models
for Supervised Learning

Marc Boullé

France Télécom R&D Lannion,
marc.boulle@orange-ftgroup.com

Abstract. This paper introduces a new method to automatically, rapidly
and reliably evaluate the class conditional information of any subset of
variables in supervised learning. It is based on a partitioning of each input
variable, into intervals in the numerical case and into groups of values in
the categorical case. The cross-product of the univariate partitions forms
a multivariate partition of the input representation space into a set of
cells. This multivariate partition, called data grid, is a piecewise con-
stant nonparametric estimator of the class conditional probability. The
best data grid is searched using a Bayesian model selection approach and
an efficient combinatorial algorithm.

‘We present two classification techniques, exploiting the maximum a pos-
teriori data grid or an ensemble of data grids, and report results in the
Agnostic Learning vs. Prior Knowledge Challenge, where our method
achieved the best performance on one of the datasets. These experiments
demonstrate the interest of using data grid models in machine learning
tasks, for conditional density estimation, data preparation, classification
and rule based explanation.

1 Introduction

Univariate partitioning methods have been studied extensively in the past, mainly
in the context of decision trees [Kas80,BFOS84,Qui93,ZR00]. Supervised dis-
cretization methods split the numerical domain into a set of intervals and super-
vised value grouping methods partition the input values into groups. Fine grained
partitions allow an accurate discrimination of the output values, whereas coarse
grain partitions tend to be more reliable. When the size of the partition is a free
parameter, the trade-off between information and reliability is an issue. In the
MODL approach, supervised discretization [Bou06] (or value grouping [Bou05])
is considered as a non-parametric model of dependence between the input and
output variables. The best partition is found using a Bayesian model selection
approach.

In this paper, we describe an extension of the MODL approach to the bivari-
ate case for pairs of input variables [Bou07b], and introduce its generalization to
any subset of variables of any types, numerical, categorical or mixed types. Each
input variable is partitioned, into intervals in the numerical case and into groups
of values in the categorical case. The cross-product of the univariate partitions



forms a multi-dimensional data grid. The correlation between the cells of this
data grid and the output values allows to quantify the joint predictive infor-
mation. The trade-off between information and reliability is established using a
Bayesian model selection approach.

Sophisticated algorithms are necessary to explore the search space of data
grid. They have to strike a balance between the quality of the optimization and
the computation time. Several optimization heuristics, including greedy search,
meta-heuristic and post-optimization are introduced to efficiently search the best
possible data grid.

The paper is organized as follows. Section 2 summarizes the MODL method
in the univariate discretization and value grouping case. Section 3 extends the ap-
proach to the multivariatiate case, by introducing data grid models, and Section
4 presents the optimization algorithms. Section 5 evaluates the data grid mod-
els on artificial datasets and studies their limitations. Section 6 reports experi-
ments performed on the agnostic learning vs. prior knowledge challenge datasets
[GSDCO07] and analyzes their interest for classification and explanation. Finally,
Section 7 gives a summary and discusses future work.

2 The MODL Discretization and Value Grouping
Methods

This section summarizes the MODL approach in the univariate case, detailed
in [Bou06] for supervised discretization, and in [Bou05] for supervised value
grouping.

2.1 Discretization

The objective of supervised discretization is to induce a list of intervals which
partitions the numerical domain of a continuous input variable, while keeping
the information relative to the output variable. A compromise must be found
between information quality (homogeneous intervals in regard to the output
variable) and statistical quality (sufficient sample size in every interval to ensure
generalization).

In the MODL approach, the discretization is turned into a model selection
problem. First, a space of discretization models is defined. The parameters of a
specific discretization are the number of intervals, the bounds of the intervals and
the frequencies of the output values in each interval. Then, a prior distribution is
proposed on this model space. This prior exploits the hierarchy of the parameters:
the number of intervals is first chosen, then the bounds of the intervals and finally
the frequencies of the output values. The choice is uniform at each stage of the
hierarchy. Finally, we assume that the multinomial distributions of the output
values in each interval are independent from each other. A Bayesian approach
is applied to select the best discretization model, which is found by maximizing
the probability p(Model|Data) of the model given the data. Using the Bayes
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rule and since the probability p(Data) is constant under varying the model, this
is equivalent to maximizing p(Model)p(Data|Model).

Let N be the number of instances, J the number of output values, I the
number of input intervals. N; denotes the number of instances in the interval
i, and N;; the number of instances of output value j in the interval i. In the
context of supervised classification, the number of instances N and the number
of classes J are supposed to be known. A discretization model M is then defined
by the parameter set {I, {Ni}lgigl , {Nij}1§ig1,1§j§J}

Owing to the definition of the model space and its prior distribution, the
Bayes formula is applicable to exactly calculate the prior probabilities of the
models and the probability of the data given a model. Taking the negative log
of the probabilities, this provides the evaluation criterion given in Formula 1.

N+ N+ J -
logN+log< ) Zl ( >—|—ZlogN1'N12 N (1)

The first term of the criterion stands for the choice of the number of intervals
and the second term for the choice of the bounds of the intervals. The third term
corresponds to the parameters of the multinomial distribution of the output
values in each interval and the last term represents the conditional likelihood of
the data given the model, owing to a multionomial term. Therefore “complex”
models with large numbers of intervals are penalized.

Once the optimality of the evaluation criterion is established, the problem is
to design a search algorithm in order to find a discretization model that mini-
mizes the criterion. In [Bou06], a standard greedy bottom-up heuristic is used
to find a good discretization. In order to further improve the quality of the so-
lution, the MODL algorithm performs post-optimizations based on hill-climbing
search in the neighborhood of a discretization. The neighbors of a discretization
are defined with combinations of interval splits and interval merges. Overall, the
time complexity of the algorithm is O(JN log N).

The MODL discretization method for classification provides the most prob-
able discretization given the data sample. Extensive comparative experiments
report high quality performance.

2.2 Value Grouping

Categorical variables are analyzed in a way similar to that of numerical vari-
ables, owing to a partitioning model of the input values. In the numerical case,
the input values are constrained to be adjacent and the only considered parti-
tions are the partitions into intervals. In the categorical case, there are no such
constraints between the values and any partition into groups of values is possible.
The problem is to improve the reliability of the estimation of the class condi-
tional probabilities owing to a reduced number of groups of values, while keeping
the groups as informative as possible. Producing a good grouping is harder with



large numbers of input values since the risk of overfitting the data increases. In
the extreme situation where the number of values is the same as the number of
instances, overfitting is obviously so important that efficient grouping methods
should produce one single group, leading to the elimination of the variable.

Let N be the number of instances, V' the number of input values, J the
number of output values and I the number of input groups. N; denotes the
number of instances in the group 4, and N;; the number of instances of output
value j in the group ¢. The Bayesian model selection approach is applied like in
the discretization case and provides the evaluation criterion given in Formula 2.
This formula has a similar structure as that of Formula 1. The two first terms
correspond to the prior distribution of the partitions of the input values, into
groups of values in Formula 2 and into intervals in Formula 1. The two last terms
are the same in both formula.

I

I
Ni+J-1 il
logV+logB(V,I)+§ log( -1 )Jrzlogw (2)
i=1 i=1

B(V,I) is the number of divisions of V' values into I groups (with eventually
empty groups). When I =V, B(V,I) is the Bell number. In the general case,
B(V,I) can be written as B(V,I) = Zle S(V,1i), where S(V,14) is the Stirling
number of the second kind [AS70], which stands for the number of ways of
partitioning a set of V' elements into ¢ nonempty sets.

In [Bou05], a standard greedy bottom-up heuristic is proposed to find a good
grouping of the input values. Several pre-optimization and post-optimization
steps are incorporated, in order to both ensure an algorithmic time complexity
of O(JN log(N)) and obtain accurate value groupings.

3 Data Grids Models for any Subset of Variables

In this section, we describe the extension of the MODL approach to pairs of
variables introduced in [Bou07b] and generalize it to any subset of variables, in
the numerical, categorical and mixed type case. We first introduce the approach
using an illustrative example for the case of bivariate discretization, then sum-
marizes the principles of the extension in the general case, and finally present
the evaluation criterion of such models.

3.1 Interest of the joint partitioning of two input variables

Figure 1 draws the multiple scatter plot (per class value) of the input variables
V1 and V7 of the wine dataset [BM96]. This diagram allows to visualize the
conditional probability of the output values given the pair of input variables.
The V1 variable taken alone cannot separate Class 1 from Class 3 for input
values greater than 13. Similarly, the V7 variable is a mixture of Class 1 and
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Fig. 1. Multiple scatterplot (per class value) of the input variables V1 and V7 of the
wine dataset. The optimal MODL supervised bivariate partition of the input variables
is drawn on the multiple scatterplot, and the triplet of class frequencies per data grid
cell is reported in the right table

Class 2 for input values greater than 2. Taken jointly, the two input variables
allow a better separation of the class values.

Extending the univariate case, we partition the dataset on the cross-product
of the input variables to quantify the relationship between the input and output
variables. Each input variable is partitioned into a set of parts (intervals in the
numerical case). The cross-product of the univariate input partitions defines a
data grid, which partitions the instances into a set of data cells. Each data cell
is defined by a pair of parts. The connection between the input variables and
the output variable is evaluated using the distribution of the output values in
each cell of the data grid. It is noteworthy that the considered partitions can be
factorized on the input variables.

For instance in Figure 1, the V1 variable is discretized into 2 intervals (one
bound 12.78) and the V7 variable into 3 intervals (two bounds 1.235 and 2.18).
The instances of the dataset are distributed in the resulting bidimensional data
grid. In each cell of the grid, the distribution of the output values can be esti-
mated by counting. For example, the cell defined by the intervals ]12.78, +o00]
on V1 and ]2.18, +00[ on V7 contains 63 instances. These 63 instances are dis-
tributed on 59 instances for Class 1 and 4 instances for Class 3.

Coarse grain data grids tend to be reliable, whereas fine grain data grids allow
a better separation of the output values. In our example, the MODL optimal
data grid is drawn on the multiple scatter plot on Figure 1.

3.2 Principles of the Extension to Data Grid Models

The MODL approach has been studied in the case of univariate supervised par-
titioning for numerical variables [Bou06] and categorical variables [Bou05]. The
extension to the multivariate case applies the same principles as those described
in section 3.1. Each input variable is partitioned, into intervals in the numerical
case and into groups of values in the categorical case. Taking the cross-product



of the univariate partitions, we obtain a data grid of input cells, the content of
which allows to characterize the distribution of the output values.

The space of multivariate data grid models is very large and prone to over-
fitting. A Bayesian model selection approach is employed to find the best data
grid model given the data. The parameters of the data grid models are precisely
defined, and a prior is proposed that exploits the hierarchy of the parameters,
is uniform at each stage of the hierarchy, and assumes the independence of the
output distribution within each cell. We then obtain an analytic formula that
evaluates the posterior probability of each data grid model, and exploit the algo-
rithms described in section 4 to efficiently search the space of data grid models.

3.3 Evaluation Criterion for Supervised Data Grids

We present in Definition 1 a family of multivariate partitioning models and
select the best model owing to a Bayesian model selection approach. Compared
to the bivariate case, we introduce a new level in the hierarchy of the model
parameters, related to variable selection. Indeed, a multivariate data grid model
implicitly handles variables selection, where the selected variables which bring
predictive information are partitioned in at least two parts. The other variables,
the partition of which consists of one single part, can be considered as irrelevant
and discarded. We use this variable selection feature explicitly in Definition 1.

Definition 1. A data grid classification model is defined by a subset of selected
input variables, for each selected variable by a univariate partition, into intervals
in the numerical case and into groups of values in the categorical case, and by a
multinomial distribution of the output values in each cell of the data grid resulting
from the cross-product of the univariate partitions.

Notation.

— Y: output variable,

— Xi,...,Xk: input variables,

— N: number of instances,

— J: number of output values,

— K: number of input variables,

— K: set of input variables (|K| = K),

— K,,: subset of numerical input variables,

— K.: subset of categorical input variables,

— Vi, k € K.: number of values of the categorical input variable Xy,

— K,: number of selected input variables,

— Kj: subset of selected input variables (|K;| = K5),

— Ij;: number of parts (intervals or groups of values) in the univariate partition
of input variable X,

— Niyi,.. iy number of instances in the input data cell (i1,14s,...,ik),

— Nijiy..ij: number of instances of output value j in the input data cell
(il,ig, . ,iK).
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Like in the bivariate case presented in Section 3.1, any input information is
used to define the family of the model. For example, the numbers of instances
per cell N, i, i, do not belong to the parameters of the data grid models: they
are derived from the definition of the univariate partitions of the selected input
variables and from the dataset. These numbers of instances allow to constrain
the specification of the multinomial distribution of the output values in each
input cell.

We now introduce in Definition 2 a prior distribution on the parameters
of the data grid models. Applying the MODL approach, this prior exploits the
hierarchy of the parameters and is uniform at each stage of this hierarchy. For the
variable selection parameters, we reuse the prior introduced by [Bou07a] in the
case of the selective naive Bayes classifier. For the specification of each univariate
partition, we reuse the prior presented by [Bou06] for supervised discretization of
numerical variables and by [Bou05] for supervised value grouping of categorical
variables.

Definition 2. The hierarchical prior of the data grid models is defined as fol-
lows:

— the number of selected input variables is uniformly distributed between 1 and
K

7

— for a given number Kg of selected input variables, the subsets of Kg variables
are uniformly distributed (with replacement),

— the numbers of input parts, are independent from each other, and uniformly
distributed between 1 and N for numerical variables, between 1 and Vj, for
categorical variables,

— for each numerical input variable and for a given number of intervals, every
partition into intervals is equiprobable,

— for each categorical input variable and for a given number of groups, every
partition into groups is equiprobable,

— for each cell of the input data grid, every distribution of the output values is
equiprobable,

— the distributions of the output values in each cell are independent from each
other.



We apply the Bayesian model selection approach and obtain the evaluation
criterion of a data grid model M in Formula 3.

K+Ks_].
K,

N+1I,—-1
+ Z (logN+log< L1 )>+k€Kz;ﬂK (log Vi + log B(Vy, I1.))

log(K + 1) + log (

k€K, NK.,
I I I
Nijig.ig +J =1
DI IS DR
in=lig=1  ix=1 J-1
LI Ix J
FY YD (1og Nigiy i = Y 108 Niiy i
i1=liz=1  ig=1 =1

(3)

The first line in Formula 3 corresponds to the prior for variable selection. As
in the univariate case, the second line is related to the prior probability of the
discretization parameters (like in Formula 1) for the selected numerical input
variables and to that of the value grouping parameters (like in Formula 2) for
the selected categorical input variables. The binomial terms in the third line
represent the choice of the multinomial distribution of the output values in each
cell of the input data grid. The multinomial terms in the last line represent the
conditional likelihood of the output values given the data grid model.

4 Optimization Algorithm for Multivariate Data Grids

The space of data grid models is so large that straightforward algorithms almost
surely fail to obtain good solutions within a practicable computational time.
Given that the MODL criterion is optimal, the design of sophisticated optimiza-
tion algorithms is both necessary and meaningful. In this section, we describe
such algorithms. They finely exploit the sparseness of the data grids and the ad-
ditivity of the MODL criterion, and allow a deep search in the space of data grid
models with O(KN) memory complexity and O(N+v/'N log N max(K,log N))
time complexity.

4.1 Greedy Bottom-Up Heuristic

Let us first focus on the case of numerical input variables. The optimization of
a data grid is a combinatorial problem. For each input variable X}, there are
2N possible univariate discretizations, which represents (2N )K possible multi-
variate discretizations. An exhaustive search over the whole space of models is
unrealistic.

We describe in Algorithm 1 a greedy bottom up merge heuristic (GBUM) to

optimize the data grids. The method starts with the maximum data grid M4,

11
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which corresponds to the finest possible univariate partitions, based on single
value parts, intervals or groups. It evaluates all the merges between adjacent
parts, and performs the best merge if the evaluation criterion decreases after
the merge. The process is reiterated until no further merge can decrease the
criterion.

Algorithm 1 Greedy Bottom-Up Merge heuristic (GBUM)

Require: M {Initial data grid solution}
Ensure: M™ c(M”*) < ¢(M) {Final solution with improved cost}
1. M*— M
2: while improved solution do
3 {Evaluate all the merges between adjacent parts}
4 ¢’ —oo,m* «— 0
5: for all Variable X, € K do
6: for all Merge m between two adjacent parts of variable X do
7.
8

M’ — M* +m {Evaluate merge m on data grid M*}
if ¢(M’) < ¢* then

9: c —c(M'),m* —m
10: end if

11: end for

12: end for

13:  {Perform best merge}
14:  if ¢* < ¢(M") then
15: M* — M* +m”
16:  end if

17: end while

Each evaluation of a data grid requires O(N¥) time, since the initial data
grid model M4, contains N¥ cells. Each step of the algorithm relies on O(N)
evaluations of interval merges times the number K of variables. There are at
most O(K N) steps, since the data grid becomes equal to the null model M
(one single cell) once all the possible merges have been performed. Overall, the
time complexity of the algorithm is O(K2N2N¥) using a straightforward im-
plementation of the algorithm. However, the GBUM algorithm can be optimized
in O(K2N log N) time, as shown in next section and demonstrated in [Bou08]
in the bivariate case.

4.2 Optimized Implementation of the Greedy Heuristic

The optimized algorithm mainly exploits the sparseness of the data and the
additivity of the evaluation criterion. Although a data grid may contain O(N¥)
cells, at most N cells are non empty. Thus, each evaluation of a data grid can
be performed in O(N) owing to a specific algorithmic data structure.

The additivity of the evaluation criterion means that the criterion can be
decomposed according to Definition 3 on the hierarchy of the components of the
data grid: grid size, variables, parts and cells.



Definition 3. An evaluation criterion ¢(M) of a data grid model M is additive
if it can be decomposed as a sum of terms according to

K K I
o(M) =D (D) + Y V) (X, ) + ) Z o(P) ( B(f))
k=1

k=1ir=1
11 12 IK
C
+ E E E et )(Cilig...iK)
i1=11ia=1 ip=1

where

— the grid criterion ¢\%) (T) relies only on the sizes T = {I1, I, ..., Ik} of the
univariate partitions of the data grid,

— the variable criterion ¢V) (Xk, It) relies only on features of the input variable
X and on the number of parts Iy, of its partition,

— the part criterion ¢(F) (Pi(kk)) for each part Pi(]f) of the univariate partition
of the input variable Xy, relies only on features of the part,

— the cell criterion ¢(©) (Ciyig..ixe) for each cell C; 4, i) of the data grid relies
only on features of the cell, and is null for empty cells.

One can easily check that the evaluation criterion introduced in Formula 3
is an additive criterion. Using this additivity property, all the merges between
adjacent parts can be evaluated in O(N) time. Furthermore, when the best
merge is performed, the only impacted merges that need to be reevaluated for
the next optimization step are the merges that share instances with the best
merge. Since the data grid is sparse, the number of partial reevaluations of the
criterion is limited by the number of instances, not by the number of cells in the
data grids. Sophisticated algorithmic data structures and algorithms, detailed in
[Bou08], are necessary to exploit these optimization principles and guarantee a
time complexity of O(K?N log N).

4.3 Post-Optimization

The greedy heuristic is time efficient, but it may fall into a local optimum.
First, the greedy heuristic may stop too soon and produce too many parts for
each input variable. Second, the boundaries of the intervals may be sub-optimal
since the merge decisions of the greedy heuristic are never rejected. We propose
to reuse the post-optimization algorithms described in [Bou06] in the case of
univariate discretization.

In a first stage called ezhaustive merge, the greedy heuristic merge steps
are performed without stopping condition until the data grid consists of one
single cell. The best encountered data grid is then memorized. This stage allows
escaping local minima with several successive merges and needs O(K?2N log N)
time.

In a second stage called greedy post-optimization, a hill-climbing search is
performed in the neighborhood of the best data grid. This search alternates

13
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the optimization on each input variable. For each given input X, we freeze
the partition of all the other input variables and optimize the partition of Xj.
Since a multivariate additive criterion turns out to be an univariate additive
criterion once all except one univariate partitions are frozen, we reuse the post-
optimization algorithms described in [Bou06] for univariate discretizations. This
process is repeated for all variables until no further improvement can be obtained.
This algorithm converges very quickly in practice and requires only a few steps.
We summarize the post-optimization of data grids in Algorithm 2.

Algorithm 2 Post-optimization of a Data Grid

Require: M {Initial data grid solution}

Ensure: M™;c(M*) < ¢(M) {Final solution with improved cost}
1: M™* « call ezhaustive merge (M)
2: while improved solution do

3 for all Variable X € K do

4 Freeze the univariate partition of all the variables except Xy
5: M* «— call univariate post-optimization (M™) for variable X},
6 end for

7: end while

4.4 Meta-Heuristic

Since the GBUM algorithm is time efficient, it is then natural to apply it re-
peatedly in order to better explore the search space. This is done according to
the wvariable neighborhood search (VNS) meta-heuristic introduced by [HMO1],
which consists in applying the primary heuristic to a random neighbor of the
solution. If the new solution is not better, a bigger neighborhood is considered.
Otherwise, the algorithm restarts with the new best solution and a minimal size
neighborhood. The process is controlled by the maximum length of the series of
growing neighborhoods to explore.

For the primary heuristic, we choose the greedy bottom-up heuristic followed
by the post-optimization heuristic. In order to “purify” the randomly generated
solutions given to the primary heuristic, we also incorporate a pre-optimization
heuristic, that exploits the same principle as the post-optimization heuristic.

This meta-heuristic is described in Algorithm 3. According to the level of
the neighborhood size [, a new solution M’ is generated close to the current
best solution. We define the structure of neighborhood by exploiting at most
Koz = logy N new variables. For each exploited variable, a random discretiza-
tion is obtained with the choice of random interval bounds without replacement,

with at most Ipjee = N Ratar intervals. This heuristic choice for the maximum
neighborhood size results from the analysis of Formula 3. In the case of two
equidistributed output values, if we have Kz, selected variables with Ipzq.
intervals per variable and exactly one instance per input cell, the cost of the



model is slightly worse than that of the null model with no selected variable.
This means that too sparse data grids are not likely to be informative according
to Formula 3.

The VNS meta-heuristic only requires the number of sizes of neighborhood as
a parameter. This can easily be turned into an anytime optimization algorithm,
by calling iteratively the VNS algorithm with parameters of increasing size and
stopping the optimization only when the allocated time is elapsed. In this paper,
all the experiments are performed by calling the VNS algorithm with successive
values of 1,2,4,...,27 for the parameter MaxLevel.

In order to improve the initial solution, we choose to first optimize the uni-
variate partition of each variable and to build the initial solution from a cross-
product of the univariate partitions. Although this cannot help in case of strictly
bivariate patterns (such as XOR for example), this might be helpful otherwise.

Algorithm 3 VNS meta-heuristic for data grid optimization

Require: M {Initial data grid solution}
Require: MaxLevel {Optimization level}
Ensure: M*,¢(M* < ¢(M) {Final solution with improved cost}
1: Level +1
2: while Level < MaxLevel do
3:  {Generate a random solution in the neighborhood of M*}

4: M" «— random solution with K, = % log, N new selected variables and

1 . .
Level  N'K; pew intervals per selected variable

MazLevel
5 M — M*uUM”
6:  {Optimize and evaluate the new solution}
7. M’ « call Pre-Optimization(M")
8: M’ « call Greedy Bottom-Up Merge(M'")
9: M’ « call Post-Optimization(M")
10:  if ¢(M') < ¢(M*) then

11: M* — M’

12: Level — 1

13: else

14: Level <+ Level + 1
15: end if

16: end while

4.5 The case of Categorical Variables

In the case of categorical variables, the combinatorial problem is still worse for
large numbers of values V. The number of possible partitions of the values is
equal to the Bell number B(V) = 1377, ’2—‘,/ which is far greater than the
O(2") possible discretizations. Furthermore, the number of possible merges be-
tween parts is O(V?2) for categorical variables instead of O(N) for numerical
variables. Specific pre-processing and post-processing heuristics are necessary to

15
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efficiently handle the categorical input variables. Mainly, the number of groups
of values is bounded by O(v/N) in the algorithms, and the initial and final group-
ings are locally improved by exchange of values between groups. This allows to
keep an O(N) memory complexity per variable and bound the time complexity
by O(N vV Nlog N ) per categorical variable, with an overall time complexity of
O(K2N+/Nlog N) for the complete greedy heuristic.

4.6 Summary of the Optimization Algorithms

The optimization of multivariate data grid models can be summarized as an
extension of the univariate discretization and value grouping algorithms to the
multivariate case.

The main heuristic is a greedy bottom-up heuristic, which starts from an ini-
tial fine grain data grid and iteratively performs the best merges between two ad-
jacent parts of any input variable. Post-optimizations are carried out to improved
the best data grid, by exploiting a local neighborhood of the solution. The main
optimization heuristic (surrounded by pre-optimization and post-optimization
steps) is run from several initial solutions, coming from the exploration of a
global neighborhood of the best solution owing to a meta-heuristic.

These algorithms are efficiently implemented, on the basis of two main prop-
erties of the problem to optimize: the additivity of the criterion, which consists
of a sum of independent terms related to the dimension of the data grid, the
variables, the parts and the cells, and the sparseness of the data grids, which
contain O(NX) cells for at most N non empty cells. Furthermore, in the meta-
heuristic, we restrict to data grids with at most K s> = logy N variables, which
reduces the time complexity of the main greedy heuristic.

Sophisticated algorithms, detailed in [Bou08], are necessary to make the most
of these problem properties and to reach the following algorithmic performance:

— O(KN) memory complexity for K variables and N instances,

— O(K N log N max(K,log N)) if all the input variables are numerical,

— O(KN+N log N max(K,log N)) in the general case of numerical variables
and categorical variables having large number of input values (V' > v/N).

5 Experiments on Artificial Datasets

In the bivariate case, the data grid models have been intensely experimented on
artificial and real datasets in [BouO7b]. In this section, we evaluate the multi-
variate data grid models on artificial datasets, where the true data distribution
is known. T'wo patterns are considered: noise and multivariate XOR.

5.1 The Noise Pattern

The purpose of the noise pattern experiment is to evaluate the noise resistance
of the method, under variation of the sample size and number of input vari-
ables. The noise pattern consists of an output variable independent from the



input variables. The expected data grid contains one single cell, meaning that
the output distribution is independent from the input variables. The output vari-
able is equidistributed on two values. The experiment is performed on a set of
sample sizes ranging from 2 to 1000 instances, for 1, 2 and 10 numerical input
variables uniformly distributed on the [0, 1] numerical domain. The evaluated
criterion is the number of cells in the data grid. In order to obtain reliable re-
sults, the experiment is performed one million times on randomly generated train
datasets for each sample size and number of input variables. In order to study
the impact of variable selection in the prior distribution of the models (terms
log(K + 1) + log (K+II<<:71) in Formula 3), we repeat the experiment with and
without the variable selection terms. Figure 2 presents the mean cell number for
each sample size and number of input variable, with and without the prior for
variable selection.

% informative Without variable selection prior % informative With variable selection prior
data grids data grids

13 173
o
0.01 \ 0.01
0.001 0.001 3
0.00001 Sample 0.00001 Sample

Size Size
1 10 100 1000 1 10 100 1000

Fig. 2. Percentage of informative data grids having more than one cell, for 1, 2 and 10
numerical input variable independent from the target variable, with and without prior
for variable selection.

The results demonstrate the robustness of the approach: very few data grids
are wrongly detected as informative, and the percentage of false detection rapidly
decreases with the sample size. However, without prior for variable selection,
the percentage of false detection grows almost linearly with the number of input
variables. This makes sense since a set of K variables can be detected as an
informative multivariate data grid if at most one of the K variables is detected
as an informative univariate discretization.

When the prior for variable selection is accounted for, the percentage of
wrongly informative models falls down by a one hundred factor, and the rates of
false detection are rapidly consistent for the different numbers of input variables.
The selection prior significantly strengthens the robustness of the method and
makes it almost independent from the number of variables in the representation
space.
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5.2 The Multivariate XOR Pattern

The purpose of the XOR, pattern experiment is to evaluate the capacity of the
method to detect complex correlations between the input variables. The pattern
consists of an output variable which depends upon the input variables according
to a XOR schema, as illustrated in Figure 3. All the input variables are uniformly
distributed on the [0, 1] numerical domain. For each input variable, we compute
a Boolean index according to whether the input value is below or beyond 0.5,
and the output value is assigned a Boolean value related to the parity of the
sum of the input indexes, which corresponds to a XOR pattern.

We first present a theoretical threshold of detection for the XOR pattern,
then illustrate the behavior of the algorithms for this pattern, and finally report
experimental results on this complex pattern detection problem.

Fig. 3. Multivariate XOR pattern in dimension 2 and 3.

Theoretical Detection Threshold Let us consider K input variables, K
of which represent a multivariate XOR pattern related to the output variable.
The expected multivariate discretization for this pattern consists of a data grid
model Mg with K selected input variables, each of which is discretized into
two intervals. The data grid model Mg contains G = 2% cells. In order to
obtain a closed formula, let us assume that these cells contain the same number
Ng = N/G of instances. Let us evaluate the null model My, reduced to one
single cell, and the expected XOR data grid model M¢. According to Formula
3, we get

N!
c(My) =log(K + 1) +log(N + 1) + log NN (4)
K+ K;—-1
e(Mg) = log(K + 1) + log ( ;; " ) (5)

K log N + K log(N + 1) + Glog(Ng + 1).

For Ng = 1, the null model is always preferred: one instance per cell is not
enough to detect the multivariate pattern.



For small values of K and for K, = K, we perform a numerical simulation to
compute the minimum cell frequency Ng such that the cost ¢(M¢g) of the multi-
variate XOR model is lower than that of the null model. The results, reported in
Figure 4, indicate that at least ten instances per cell, representing overall forty
instances, are necessary to detect the bi-dimensional XOR pattern. This cell fre-
quency threshold decreases with the number of input variables, and falls down
to two instances per cell when the number of input variables is beyond ten. Let
us notice that in spite of a very small cell frequency threshold, the whole dataset
frequency threshold still grows exponentially with the the number of variables.

Min cell frequency

oL NMwsE OO N ® o3

Number of input variables

Fig. 4. Min cell frequency necessary to detect a multivariate XOR pattern owing to
a data grid model. For example, for a 5-dimensional XOR, 6 instances per cell, or
192 = 2° % 6 instances in the sample, allow to detect the pattern using a data grid of
32 cells.

We now extend these simulation results in the asymptotic case, assuming
that each cell contains exactly Ng = N/G instances. From Equations 4 and 5,
we get

K+Ks_1

(M) = c(M@>+1og( o

This implies that for Ng > 2, the multivariate XOR model has an asymp-
totically lower cost than that of the null model, even when the total number K
of input variables exceeds the number K of informative input variables.

Overall, about 2%*! instances are sufficient to detect K-dimensional infor-
mative patterns, which correspond to 2 instances per cell. Since this is close from
the theoretical detection threshold, this means that for a dataset consisting of
N instances, it might be difficult to detect patterns exploiting more than log, N
informative dimensions.

Empirical Analysis of the Algorithms Let us first analyze the behavior of
the greedy bottom-up heuristic presented in Section 4.1. This heuristic starts
with the maximum data grid, which contains O(N*) cells for at most N non-
empty cells. During the whole merge process, O(K N) merges are necessary to

>+(2K51) log N—N (log 27NL log(Ng+1))+O(log N).
G
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transform the maximum data grid with N* elementary cells into the null data
grid with one single cell. During the first (K — 1) N merges, most of the merges
between adjacent intervals concern merges between two empty adjacent cells or
merges between one non-empty cell and one empty cell. When the data grid is
too sparse, most interval merges do not involve “collisions” between non-empty
cells. According to Formula 3, the only cell merges that have an impact on the
likelihood of the data grid model are the “colliding” cell merges. This means
that at the beginning of the greedy bottom-heuristic, the earlier part merges
are guided only by the prior distribution of the models, not by their likelihood.
These “blind” merges are thus likely to destroy potentially interesting patterns.

To illustrate this behavior, we perform an experiment with the basic greedy
heuristic described in Algorithm 1 on a bi-dimensional XOR pattern. According
to Formulas 4 and 5, about 40 instances are sufficient to detect the pattern.
However, the greedy bottom-heuristic fails to discover the XOR pattern when
the number of instance is below 1000.

The algorithms presented in Section 4 enhance the basic greedy heuristic
using a random initialization, a pre-processing step, the greedy bottom-up merge
heuristic and a post-processing step, as illustrated in Figure 5. The random
initialization produces a dense enough data grid with at least one instance per cell
on average. This is achieved by selecting at most K = log, N input variables and
NY¥Es parts per variable. The purpose of the pre-processing step is to “purify”
the initial solution, since a random solution is likely to be blind to informative
patterns. This pre-processing consists in moving the boundaries of the initial
data grid, in order to get “cleaner” initial cells, as illustrated in Figure 5. The
greedy merge heuristic is then applied on this dense cleaned data grid, and the
merges are guided by the data, since the data grid is dense enough. The role
of the post-processing step is to improve the final solution, by exploring a local
neighborhood of the solution consisting of interval splits, merges and moves of
interval boundaries.

Initial random data grid Pre-optimized data grid Greedy optimized data grid Post-optimized data grid
X2 X2 X2 X2
1 * 1 x 1 x 1 x
o X © S o %o
o X x x x o X x o X x
X ¥ x | x * X
5 x x X x 6 o X x o o X x
X x *lx ¥ ox X ox oo ¥ ox Xox oo Xox X ox
o o o o
05 X 05 x 0.5 < * 05 kd X
X X
° x o x °
X o X X ° X o
° o o
X X X
— *X © %0 xS *X 0 %0 T Xx 0% 60
X X X XX X XX o X XX S
o x1 o X1 0 x1 o x1
0 05 1 o s 1 o 05 1 0 05 1

Fig. 5. Main steps in the optimization algorithm: a random initial solution is first
generated to start with a dense enough data grid, then cleaned during a pre-processing
step, optimized with the greedy bottom-up merge heuristic and improved during the
post-processing step.



All these steps are repeated several times in the VNS meta-heuristic described
in Section 4.4, which generates several random initial data grids of varying size.
The only optimization parameter relates to the number of iterations in the meta-
heuristic, which controls the intensity of the search.

All the algorithmic components are useful to achieve an effective search of
the space of data grids and efficiently detect informative patterns. Using these
algorithms, the empirical threshold for the detection of simple XOR patterns
reaches the theoretical threshold, even with one single iteration in the meta-
heuristic. For example, bi-dimensional randomly generated patterns require only
40 instances to be detected, and 5-dimensional XOR pattern only 200 instances.
In the next sections, we study the detection of more complex XOR patterns,
which require more intensive search.

Detection of a Complex Patterns with Few Instances In this experiment,
we study the detection of a 10-dimensional XOR pattern in a 10-dimensional in-
put space. The experiment is performed on a set of sample sizes ranging from
1000 to 10000 instances, and repeated 100 times for each sample size. We evaluate
the empirical detection threshold for the VNS meta-heuristic, with optimization
parameters T, where VNS(T') performs around 27 iterations of the algorithm
from a variety of random initial data grids. Figure 6 reports the average compu-
tation time for each sample size and for parameters of the VNS meta-heuristic
ranging from T = 1 to T = 12. We also report the threshold related to the
sample size and computation time, among which the XOR pattern is detected
in 50% of the cases.

Computation
time
10000 |

XOR(10) in 10 dimensions

—e—VNS1
—e—VNS5
—8—VNS9
1000 ==50% detection

100

1 Sample size
1000 2000 3000 4000 5000 6000 7000 8000 9000

Fig. 6. Study of the algorithm for the detection of the 10-dimensional XOR pattern.

The results show that the empirical detection threshold is close to the theo-
retical threshold: the pattern is never detected with 1000 instances but frequently
detected with only 1500 instances, which is less than 2 instances per cell of the
10-dimensional XOR pattern. However, when the instance number is close from
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the theoretical threshold, the problem of finding the correct 10 variable splits
among N!0 possible XOR patterns and (27V)1? potential multivariate discretiza-
tions is very hard. In this case, detecting the pattern requires much more time
for detection than when the instance number is large enough or when the pattern
is simpler. For example, detecting the pattern with only 1500 instances require
about one hundred times more computation time than with 4000 instances

Finding a Needle in a haystack In this experiment, we study the detection
of a 5-dimensional XOR pattern in a 10-dimensional input space. We use the
same protocol as in the previous case, and report the results in Figure 7.

Computation XOR(5) in 10 dimensions

100 1
/ —e—VNs1
—e— VNS5
—e—VNS9
| =0=50% detection

X

01 Sample size
100 1000 10000

Fig. 7. Study of the algorithm for the detection of the 5-dimensional XOR pattern,
hidden in a 10-dimensional input space.

The results show that about 200 instances are sufficient to detect this pat-
tern, which is consistent with the theoretical threshold. However, whereas the
5-dimensional XOR pattern is easily detected even within one or two iterations in
the VNS meta-heuristic, the search in that 10-dimensional input space requires
much more intensive search.

Apart from of the problem of finding the correct XOR boundaries, which is
a difficult task, the problem of variable selection hardens the detection of the
pattern. The optimization algorithm is restricted to the exploration of dense
data grids, which consist of K, < max(logy N, K) dimensions. Finding the XOR
pattern requires to select a subset of K, input variables among K, which is
a superset of the K, informative variables. The probability that such a subset
contains the informative variable is (?ES) / ( II((S) For example, for the detection
of a 5-dimensional XOR (K, = 5) with 256 instances (K, = log, 256 = 8), the
probability of finding a potentially good subset is 100% for K = 5, 22% for
K =10, 0.36% for K = 20 and 0.04% for K = 30.

We performed an experiment to detect the 5-dimensional XOR in 20 dimen-
sions with samples of size 256. The result confirms that there is enough instances



for a reliable detection of the pattern, but the computational time necessary to
detect the pattern in 50% of the cases amounts to about one hundred times that
in 10 dimensions. This result, consistent with the ratio 22/0.36, illustrates the
problem of finding a needle in a haystack.

Overall, the evaluation criterion given in Formula 3 is able to reliably differ-
entiate informative patterns from noise with very small numbers of instance. The
detection of complex patterns is a combinatorial problem, hard to solve when the
number of instance is close to the detection threshold, or when the informative
patterns are hidden in large dimensional input spaces. Our optimization algo-
rithm manages to reliably and efficiently detect information, with performance
close from the theoretical detection threshold.

6 Evaluation on the Agnostic Learning vs. Prior
Knowledge Challenge

In this section, we first summarize the evaluation protocol of the challenge, then
describe how classifiers are built from data grid models, and finally report the
results from a performance and understandability point of view.

6.1 The Agnostic Learning vs. Prior Knowledge Challenge

The purpose of the challenge [Guy07,GSDCO07] is to assess the real added value of
prior domain knowledge in supervised learning tasks. Five datasets coming from
different domains are selected to evaluate the performance of agnostic classifiers
vs. prior knowledge classifiers. These datasets come into two formats, as shown
in Table 1. In the agnostic format, all the input variables are numerical. In the
prior knowledge format, the input variables are both categorical and numerical
for three datasets and have a special format in the two other datasets: chemical
structure or text.

Name Domain Num. ex. Prior Agnostic
train/valid /test features  features
Ada Marketing 4147/415/41471 14 48
Gina Handwritting reco. 3153/315/31532 784 970
Hiva Drug discovery 3845/384/38449 Chem. struct. 1617
Nova Text classification  1754/175/17537 Text 16969
Sylva Ecology 13086,/1309/130857 108 216

Table 1. Challenge datasets with their prior and agnostic format.

We use all the datasets in their agnostic format and only three of them
in their prior format (we have neither domain knowledge nor time within the
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challenge schedule to exploit the chemical structure in the Hiva dataset or the
native text format in the Nova dataset).

In the case of the Sylva dataset in its prior format, we replace each subset
(per record) of 40 binary SoilType variables by one single categorical variable
with 40 values. The resulting dataset has only 30 variables instead of 108.

6.2 Building Classifiers from Data Grid Models

In this section, we describe two ways of building classifiers from supervised data
grid models.

Data Grid In this evaluation of data grid models, we consider one individual
data grid, the MAP one. We build a classifier from a data grid model by first re-
trieving the cell related to a test instance, and predicting the output conditional
probabilities of the retrieved cell. For empty cells, the conditional probability
used for the prediction is that of the entire grid.

Data grid models can be considered as a feature selection method, since
the input variables whose partition reduces to a single part can be ignored. The
purpose of this experiment is to focus on understandable models and evaluate the
balance between the number of selected variables and the predictive performance.

Data Grid Ensemble In this evaluation, we focus on the predictive perfor-
mance rather than on understandability, by the means of averaging the predic-
tion of a large number of classifiers. This principle was successfully exploited in
Bagging [Bre96] using multiple classifiers trained from re-sampled datasets. This
was generalized in Random Forests [Bre01], where the subsets of variables are
randomized as well. In these approaches, the averaged classifier uses a voting
rule to classify new instances. Unlike this approach where each classifier has the
same weight, the Bayesian Model Averaging (BMA) approach [HMRV99] weights
the classifiers according to their posterior probability. The BMA approach has
stronger theoretical foundations, but it requires both to be able to evaluate the
posterior probability of classifiers and to sample their posterior distribution.

In the case of data grid models, the posterior probability of each model is
given by an analytic criterion. Concerning the problem of sampling the posterior
distribution of data grid models, we have to strike a balance between the quality
of the sampling and the computation time. We adopt a pragmatic choice by just
collecting all the data grids evaluated during training, using the optimization
algorithms introduced in Section 4. We keep all the local optima encountered
in the VNS meta-heuristic and eliminate the duplicates. An inspection of the
collected data grids reveals that their posterior distribution is so sharply peaked
that averaging them according to the BMA approach almost reduces to the
MAP model. In this situation, averaging is useless. The same problem has been
noticed by [BouO7a] in the case of averaging Selective Naive Bayes models. To
find a trade-off between equal weights as in bagging and extremely unbalanced
weights as in the BMA approach, we exploit a logarithmic smoothing of the



posterior distribution called compression-based model averaging (CMA), like
that introduced in [Bou0O7al.

To summarize, we collect the data grid models encountered during the data
grid optimization algorithm and weight them according to a logarithmic smooth-
ing of their posterior probability to build a data grid ensemble classifier.

Post-processing The data grid techniques are able to predict the output con-
ditional probabilities for each test instance. When the evaluation criterion is the
classification accuracy, predicting the class with the highest conditional proba-
bility is optimal. This is not the case for the BER criterion used in the challenge.
We post-process each trained classifier by optimizing the probability threshold
in order to maximize the BER. This optimization is performed directly on the
train dataset.

6.3 Evaluation Results

Our four submissions related to supervised data grid models are named Data
Grid (MAP) and Data Grid (CMA) in the prior or agnostic track and dated from
February 27, 2007 for the challenge March 1st, 2007 milestone. The classifiers are
trained with the any time optimization algorithm described in Section 4 using
VNS(12) parameter. About 4000 data grids are evaluated, needing around one
hour optimization time per dataset. Table 2 and Table 3 report our results in
the agnostic and prior track.

Dataset Winner Best BER Data Grid (CMA) Data Grid (MAP)

Ada  Roman Lutz 0.166 0.1761 0.2068
Gina  Roman Lutz 0.0339 0.1436 0.1719
Hiva Vojtech Franc 0.2827 0.3242 0.3661
Nova Mehreen Saeed 0.0456 0.1229 0.2397
Sylva  Roman Lutz  0.0062 0.0158 0.0211

Table 2. Best challenge results vs. our data grid methods results for the datasets in
the agnostic track.

Dataset Winner Best BER Data Grid (CMA) Data Grid (MAP)

Ada Marc Boullé 0.1756 0.1756 0.2058
Gina Vladimir Nikulin 0.0226 0.1254 0.1721
Sylva Roman Lutz 0.0043 0.0228 0.0099

Table 3. Best challenge results vs. our data grid methods results for the Gina, Hiva
and Nova datasets in the prior track.
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The data grid classifiers obtain good results on the Ada and Sylva datasets,
especially on the prior track, with a winning submission for the Ada dataset.
The other datasets contain very large numbers of variables, which explains the
poor performance of the data grid models. Since individual data grid models
are essentially restricted to about log, N selected variable, they cannot exploit
much of the information contained in the representation space. This is analyzed
in Section 6.4.

The data grid ensemble classifiers confirm the benefits of compression-based
model averaging. They obtain a very significant improvement of the BER cri-
terion compared to the individual data grid classifiers. This focus on predictive
performance is realized at the expense of understandability, since each trained
data grid ensemble averages several hundreds of elementary data grid models.

However, even data grid ensembles fail to achieve competitive performance for
datasets with large numbers of variables. A close inspection reveals that although
about 4000 data grids are evaluated for each dataset, only a few hundreds (=
500) of different solutions are retrieved. Removing the duplicates significantly
improves the performances, but there is still too much redundancy between the
data grids to produce an efficient ensemble classifier. Furthermore, a few hundred
of redundant classifiers, each with only ~ log, N variables, is not enough to
exploit all the variables (think of Nova with 17000 variables for example). In
future work, we plan to improve our meta-heuristic in order to better explore
the search space and to collect a set of data grid solutions with better diversity.

6.4 Benefit for Understandability

Let us now focus on understandability and inspect the number of selected vari-
ables in each trained data grid model. In the agnostic track, the MAP data grid
exploits only 5 variables for Ada, 5 for Gina, 4 for Hiva, 8 for Nova and 8 for
Sylva. In the prior track, the MAP data grid exploits 6 variables for Ada, 7 for
Gina and 4 for Sylva. These numbers of variables are remarkably small w.r.t the
BER performance of the models.

In Table 4, we summarize the MAP data grid trained using the 4562 train+valid
instances of the Ada dataset in the prior track. This data grid selects six variables
among 14 and obtains a 0.2068 test BER. The selected variables are relation-
ship, occupation, education number, age, capital gain and capital loss, which are
partitioned into 2, 2, 2, 2, 3 and 3 groups or intervals. The relationship variable
is grouped into Married = {Husband, Wife} vs. Not Married = {Not-in-family,
Own-child, Unmarried, Other-relative}, and the occupation into Low = {Craft-
repair, Other-service, Machine-op-inspct, Transport-moving, Handlers-cleaners,
Farming-fishing, Priv-house-serv} vs. High = {Prof-specialty, Exec-managerial,
Sales, Adm-clerical, Tech-support, Protective-serv, Armed-Forces}. Overall, the
data grid contains 144 = 2x2x2x2x3x%3 cells, but 57 of them are non empty and
the twelve most frequent cells reported in Table 4 contains 90% of the instances.

Each cell of the data grid can directly be interpreted as a decision rule. For
example, the most frequent cell is described by Rule 1, with a support of 736
instances.



ID|relationship occupation education age capital capital|frequency % class 1
number gain  loss
1| Married Low <12 > 27 <4668 <1805 736 22.1%
2 |Not married Low <12 > 27 <4668 < 1805 577 3.1%
3 [Not married  High <12 >27 <4668 <1805 531 5.8%
4 | Married High <12 > 27 <4668 <1805 489 41.3%
5| Married High >12 > 27 <4668 < 1805 445 68.5%
6 |Not married Low <12 <27 <4668 < 1805 425 0.2%
7 |[Not married  High <12 < 27<4668 <1805 316 0.6%
8 |Not married  High > 12 > 27 <4668 < 1805 268 20.5%
9 [Not married  High > 12 <27 <4668 < 1805 112 0.9%
10| Married Low <12 <27 <4668 <1805 96 5.2%
11| Married High > 12 > 27 > 5095 < 1805 93 100.0%
12| Married Low >12 > 27 <4668 < 1805 50 24.0%

Table 4. Most frequent cells in the best individual data grid model for the Ada dataset
in the prior track.

Rule 1: IF relationship € Married = {Husband, Wife}
occupation € Low = {Craft-repair, Other-service, Machine-op-inspct,...}
education number < 12
age > 27
capital gain < 4668
capital loss < 1805
THEN P(class=1) = 22.1%

The whole data grid forms a set of rules [Mit97] which forms a partition (not
a coverage) of the training set. Since all the rules exploit the same variables with
the same univariate partitions, interpretation is much easier. For example, rule
5 (ID cell=5 in Table 4) has a large support of 445 instances with 68.5% of class
1. Rule 4 with 41.3% of class 1 only differs in the education number variable
(< 12 vs. > 12), and rule 8 with 20.5% of class 1 in the relationship variable
(Not married vs. Married).

7 Conclusion

The data grid models introduced in this paper are based on a partitioning model
of each input variable, into intervals for numerical variables and into groups of
values for categorical variables. The cross-product of the univariate partitions,
called a data grid, allows to quantify the conditional information relative to
the output variable. We have detailed this technique in the multivariate case,
with a Bayesian approach for model selection and sophisticated combinatorial
algorithms to efficiently search the model space.

In extensive artificial experiments, we have shown that our technique is able
to reliably detect complex patterns. Our experiments allow to quantify the limits
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of the approach, with data grid models limited to about log, variables, and
provides insights on the relation between the complexity of the patterns and the
required computation time necessary to detect them.

We have introduced two ways of building classifiers from data grids and
experimented them on the Agnostic Learning vs. Prior Knowledge challenge.
This preliminary evaluation looks promising since our method was first on one of
the datasets. The analysis of the results demonstrates that the data grid models
are of considerable interest for data understandability and data preparation.

In future research, we plan to investigate on how to better exploit the poten-
tial of these models to build more powerful classifiers. Apart from improving the
optimization algorithms and building ensemble classifiers based on a wider diver-
sity of data grid models, we intend to further explore the problem of conditional
density estimation. Whereas the naive Bayes strategy [LIT92] is to factorize the
multivariate density estimation on univariate estimations, our strategy with the
data grid models is to directly estimate the multivariate joint density, which
encounters a limit in the number of considered variables. Between these two
opposite strategies, other approaches have been considered, based on a relax-
ation of the naive Bayes assumption. This is the case for example in semi-naive
Bayesian classifiers [Kon91] or in Bayesian networks classifiers [FGG97]. In this
context, we expect data grid models to be promising building bricks of future
better multivariate density estimators.
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Multivariate Data Grid Models
for Unsupervised Learning and Coclustering
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France Télécom R&D Lannion,
marc.boulle@orange-ftgroup.com

Abstract. Exploratory analysis is a key step in any data mining project,
which consists in inspecting the available data prior to modeling. In this
paper, we extend supervised data grid models to the unsupervised case
and present their benefit for data exploration. Unsupervised data grid
models are based on a partitioning of each variable, in intervals in the
numerical case and in groups of values in the categorical case. The cross-
product of the univariate partitions forms a multivariate partition of the
representation space into a set of cells. This multivariate partition, called
data grid, allows to evaluate the correlation between the variables. The
best data grid is searched owing to a Bayesian model selection approach
and to combinatorial algorithms.

We show that unsupervised data grid models offer a variety of techniques
for exploratory analysis, such as non parametric correlation or joint den-
sity estimation, visualization, association rule mining, variable selection
or coclustering of instances and variables. We also report results in the
Agnostic Learning vs. Prior Knowledge Challenge, where we achieved
very competitive results with our coclustering method exploited in a
semi-supervised learning context.

1 Introduction

The data mining process [CCK™00] consists in six steps: business understanding,
data understanding, data preparation, modeling, evaluation and deployment.
Whereas most the emphasis in the literature is on the modeling step, the data
preparation step, which represents 80% of the problem [Pyl99,MamO06], is both
time consuming and critical for the quality of the modeling. The issue is to
reduce as much as possible the need of hand-crafted solutions for any particular
task.

In this paper, we introduce a new method to automatically, rapidly and
reliably evaluate the joint probability distribution of any subset of variables,
numerical or categorical. We extend the supervised data grid models introduced
in Chapter 1 to the supervised case. Each variable is partitioned into a set of
intervals (or groups of values), and the cross-product of the univariate parti-
tions forms a data grid of cells. The instances are distributed in the cells of
the grid according to a multinomial distribution. Such models describe the joint
distribution between the variables. Applying the MODL approach presented in



Chapter 1, a prior is defined on the model parameters, and the maximum a
posterior (MAP) data grid is optimized using the same search algorithms as in
the supervised case.

In the supervised case, we have a set of input variables and the data grid
model consists in partitioning the input space in cells, with a local description
of the output distribution in each cell. In the unsupervised case, we consider all
the variables as output variables and our task is to describe jointly all of them.
The principle of our approach is that unsupervised data grid models are able to
describe the redundancy between the variables, so that the description of each
variable given the model of redundancy is more compact.

The rest of the paper is organized as follows. Section 2 introduces unsuper-
vised data grid models in the bivariate case for two numerical variables, and
Section 3 for two categorical variables. Section 4 generalizes the approach to any
subset of variables of any type, numerical or categorical, and Section 5 summa-
rizes the optimization algorithms exploited to search the MAP data grid. Section
6 shows how unsupervised data grid models can be applied to the problem of
coclustering of the instances and variables of a dataset, and how to exploit this
for supervised learning owing to a semi-supervised approach. Section 7 reports
experiments performed on the agnostic learning vs. prior knowledge challenge
datasets [GSDCO07] and analyzes their interest for explanatory analysis tasks,
such as correlation study, density estimation, visualization or rule set mining.
In the case of text classification, we show that our coclustering technique is of
high interest, with both understandable insights on the text corpus and remark-
able classification performance. Finally, Section 8 gives a summary and discusses
future work.

2 Bivariate Discretization of Numerical Variables

In this section, we focus on the case of two numerical variables and introduce
unsupervised bivariate data grid models and their evaluation criterion. We then
show how such models can be interpreted as nonparametric models of the cor-
relation between the ranks of each variable.

2.1 Presentation

The purpose of unsupervised learning is to identify dense clusters of instances. It
is closely related to density estimation, which aims at modeling the true density
of the data. In order to illustrate this problem with two numerical variables, we
present in Figure 1 the scatter-plot of the iris dataset [Fis36] considered for the
estimation of the joint density of the petal length and sepal length variables. The
figure shows a dense cluster on the bottom-left and a dense diagonal region on
the right. We propose to exhibit the dense regions of the dataset by discretizing
both variables. For example, the grid with sixteen cells presented on the left of
Figure 2 allows to summarize the dense regions of the datasets, which can be
seen as clusters in an unsupervised approach. They also allow to approximate
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the underlying density of the dataset, owing to the cell frequencies, presented

on the right of Figure 2.
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Fig. 1. Scatter-plot of the iris dataset considered for the problem of estimating the

joint density of the petal length and sepal length variables.
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Fig. 2. Bivariate data grid with sixteen cells for the petal length and sepal length

variables of the iris dataset.

The issue is to find a trade-off between the precision of the density estimation
and the generalization ability, on the basis of the grain level of the discretization
grid. Fine grain grids allow a precise density estimation, whereas coarse grain

data grids tend to be more robust.

2.2 Formalization

Let us formalize this problem using a Bayesian model selection approach. First

of all, we make the two important choices below:



1. modeling the rank, not the values,
2. modeling the finite data sample.

With the first choice, we seek a model which is independent of any monotonic
transformation of the variables. We thus focus on the intrinsic correlation be-
tween the variables, ignoring any potential scaling effect and being more robust
to outliers. With the second choice, our purpose is to model the data with as
few instances as possible.

Given these modeling choices, we introduce the family of unsupervised data
grid models in Definition 1.

Definition 1. An unsupervised bivariate discretization model is defined by:

— a number of intervals for each variable,
— the distribution of the instances among the cells of the resulting data grid.

Notations 1 !

— Y1,Y5: variables (both considered as output variables)

N: number of training instances

D ={D;,Ds,...,Dn}: training instances

— J1, Jo: number of intervals for each variable

G = J1Jo: number of cells in the resulting data grid

Nj, : number of instances in the interval j1 of variable Y;

— Nj,: number of instances in the interval jo of variable Y

— Nj, j,: number of instances in the cell (ji1,j2) of the data grid

An unsupervised data grid model is entirely characterized by the parameters
J1, J2, {Nj j» hi<ji<Ji1<js<J,- The number of instances in each interval can
be deduced by adding the cell frequencies in the rows or columns of the grid,
according to N;, = Zj;zl Nj,j, and Nj, = Z]Jllzl Njjs-

Our aim is to select the best model given the available data, i.e. the most
likely model given the data. Adopting a Bayesian approach, it comes to maxi-
mize:

_ p(M)p(D|M)
p(D)
The data distribution p(D) being constant whatever the model M, it comes to
maximize p(M)p(D|M) which can be written:

p(M|D)

p(M)p(D|M) = p(J1, J2)p({Nj,j, }J1, J2)p(D|M).

To be able to evaluate a given model, we have to choose a prior distribution
for the model parameters and a likelihood function. In Definition 2, we formalize
our choices by using the independence assumption and proposing a uniform
distribution at each stage of the prior parameter structure and of the likelihood
function.

! By abuse of notation, we employ N;, and Nj;, (instead of N;ll) and N]f) for example)
to denote the numbers of instances in the intervals of Y7 and Ya.
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Definition 2. The prior for the parameters of an unsupervised bivariate dis-
cretization model and the likelihood function of the data given a model are chosen
hierarchically and uniformly at each level:

— the numbers of intervals J1 and Jo are independent from each other, and
uniformly distributed between 1 and N,

— for a data grid of given size (Ji,Jz), every distribution of the N instances
on the G = Jy, Ja cells of the grid is equiprobable,

— for a given interval of a given variable, every distribution of the ranks of the
values is equiprobable.

Taking the negative log of the probabilities, this provides the evaluation
criterion given in Theorem 1.

Theorem 1. An unsupervised bivariate discretization model distributed accord-
ing to a uniform hierarchical prior is Bayes optimal if its evaluation according
to the following criteria is minimal

N+G-1
210gN+10g< G_1 )
h s T J2 (1)
+ log N! — Z Z log Nj, j,! + Z log N;, ! + Z log Nj,!
j1=1jo=1 J1=1 j2=1

Proof. The first hypothesis introduced in Definition 2 gives that p(Jy,J2) =
p(J)p(J2) = -

The second hypothesis is that all the distributions of the N instances into
G = JyJs cells are equiprobable for given J; and J,. Dividing the IV instances
into G cells is equivalent to decompose the number N as the sum of the INV;, ;,
frequencies of the cells. Using combinatorics, we can prove that this number of
choices for the parameters of this multinomial distribution is equal to (N Jcri_ 1).
Using the equiprobability assumption, we finally obtain

1
p({Nj1j2}|J17J2) = TNFG—1\°
("&o)

The prior terms being explicited, it remains to evaluate the likelihood of the
data, i.e. the probability of observing the data in the data grid cells knowing the
multinomial distribution model. The number of ways of observing N instances
distributed according to such multinomial law is given by the multinomial term

N!
T 7. :
ij:l Hj;:l lejz!

To finish, according to the last hypothesis, for a given interval of a given
variable, every distribution of the ranks of the values are equiprobable. Using
Nj, = Z;;:l Nj,j, and N;, = Zjllzl Nj,j», we compute the frequency in each
interval for each variable. The number of distribution of the ranks of N, in-
stances is IV;, !, which leads to the last terms.

By taking negative logarithms, we obtain the above Formula 1.




2.3 Interpretation

Since negative log of probabilities can be interpreted as code length according
to [Shadg], the evaluation criterion presented in Formula 1 can also be obtained
from the minimum description length (MDL) principle of [Ris78]. Maximizing the
posterior probability p(M)p(D|M) is equivalent to minimizing the code length
(M) + l(D|M) of the model plus that of the data given the model.

In the light of the MDL approach, the terms 2log N in Formula 1 encodes
the choice of the numbers of intervals for each variable. The term log (N gfl_ 1)
represents the parameters of the multinomial distribution of the instances on
the cells of the data grid. The term log N!— Zjllzl ;.]22:1 log Nj, ;,! encodes the
position of the instances in the Jgrid given the multinomial distribution. Finally,
the terms Z}szl log Nj, !+ >257_ ) log Nj,! describe the rank of each instance
locally to each interval. As the intervals are ordered within the data grid, the
global rank of each instance is thus completely described.

In the case of the null model My containing one single cell, Formula 1 reduces
to

c¢(Mp) = 2log N + 2log N!,

which mainly corresponds to N! ways of specifying the rank of N instances for
each variable.

In the case of the maximum model M ;.. containing N intervals per variable
and N2 cells, we obtain

N+ N2-1

c(Mpgaz) =21log N + log ( N2 _1

)—HogN!,

N-1
=2log N + Z log(N? +n),
n=0

>2log N + 2N log N,

which shows that the null model always has a greater posterior probability than
the maximum model.

Intermediate models allow to describe dense regions in cells where the ranks of
the variables are correlated. In the case of two independent variables, describing
jointly the rank of both variables reduces to describing independently the rank of
each variable, as in the null model. The data grid models allow a non parametric
description of the correlation between the ranks of the variables. The penalization
of the model cost is balanced by a shorter description of each variable rank given
the model. The best trade-of is searched owing to a Bayesian (or MDL) model
selection approach.

FEzxample with two identical numerical variables. Let us consider two identical
numerical variables Y7 = Y3, and data grid models M; based on J (J = J; = Jo)
equidistributed intervals, as illustrated in Figure 3.
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Y2

Fig. 3. Bivariate discretization data grid with ten equidistributed intervals for two
identical variables Y7 = Y5.

For each variable, the frequency of each interval is N/J. Among the G = J>
cells of the data grid, the J diagonal cells each contain N/J instances, and the
other cells are empty. The evaluation criterion ¢(M ) of the grid is thus equal to

N+J2-1

c(My) =2log N + log < 721

) +log NI — Jlog(N/J)! + 2J log(N/J)\.
For a fixed value of J and using the asymptotic approximation log N! =
N(log N — 1) based on Stirling formula, we obtain ¢(M;) ~ 2N log N and

c(My) ~ c(My) + (J* —1)log N — Nlog J. (2)

Formula 2 shows that in the considered case of a perfect correlation between
the two variables, the data grid model has an asymptotic cost which decreases
with the size of the grid. In the non asymptotic case, we have showed in a
numerical experiment (not reported in the paper) that the optimal data grid is

obtained for J ~ @

3 Bivariate Value Grouping of Categorical Variables

In this section, we focus on the case of two categorical variables and introduce
unsupervised bivariate data grid models and their evaluation criterion. We then
show how such models can be interpreted as nonparametric models of the cor-
relation between the values of each variable.

3.1 Presentation

Our objective is to provide a joint description of two categorical variables Y;
et Y5, as illustrated in Figure 4. In the case of categorical variables with many
values, the contingency table between the variables is sparse and does not al-
low to identify reliable correlations. Standard statistical tests rely on approxi-
mations which are valid only asymptotically. For example, the chi-square test



D|D|e|D|e
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Fig. 4. Example of joint density for two categorical variables Y7 having 4 values a,
b, ¢, d and Y2 having 4 values A, B, C, D. The initial contingency table on the left
contains instances only on one half on the cells (tagged as ®), and the remaining cells
are empty. After the bivariate value grouping, the preprocessed contingency table on
the right provides a synthetic description of the correlation between Yi et Y.

requires an expected frequency of at least 5 in each cell of the contingency table
[Cocb4,CLO03], which does not permit its application in case of sparsity. Group-
ing the values of each variable allows to raise the cell frequencies (at the expense
of potentially mixing interesting patterns), and to be more confident in the ob-
served correlation. However, since many grouping models might be considered,
there is a risk of overfitting the data. The issue is to find a trade-off between the
quality of the density estimation and the generalization ability, on the basis of
the grain level of the grid.

3.2 Formalization

Like in the numerical case, we introduce a family of unsupervised data grid model
to describe the joint distribution of the data. In the numerical case, describing
the data reduces to describing the rank of the instances for each variable. In
the categorical case, this turns into describing the value of the instances for
each variable. We still consider partitioning models, in groups of values in the
categorical case instead of intervals of ranks in the numerical case. This family
of models is formalized in Definition 3.

Definition 3. An unsupervised bivariate value grouping model is defined by:

— a number of groups for each variable,

— for each variable, the repartition of the values into the groups of values,

— the distribution of the instances of the data sample among the cells of the
resulting data grid,

— for each wvariable and each group, the distribution of the instances of the
group on the values of the group.

Notations 2

— Y1, Y5 variables (both considered as output variables)

— V1, Va: number of values for each variable (assumed as prior knowledge)
N: number of training instances

D ={D;,Ds,...,D,}: training instances

— J1, Jo: number of groups for each variable
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— G = J1Jo: number of cells in the resulting data grid

— j1(v1), j2(ve): index of the group containing value vi (resp. va)
— my,,mj,: number of values in group j1 (resp. j2)

— Ny, , Ny, - number of instances for value vy (resp. va)

— Nj, : number of instances in the group ji of variable Y;

— Nj,: number of instances in the group ja of variable Y,

— Ny, j, - number of instances in the cell (j1,j2) of the data grid

We assume that the numbers of values V7 and V5 per categorical variable are
known in advance and we aim at modeling the joint distribution of the finite data
sample of size IV on these values. The family of models introduced in Definition
3 is completely defined by the parameters describing the partition of the values
into groups of values

Ji, J2, {71(v1) <o <vi s {02(V2) }i<va<vi,

by the parameters of the multinomial distribution of the instances on the data
grid cells

{Nj1jo J<ii < 1< 2 < s

and by the parameters of the multinomial distribution of the instances of each
group on the values of the group

{n'Ul }1SU1§V1 ) {nvz}lﬁvzﬁvz'

The numbers of values per groups m;, and m;, are derived from the specifica-
tion of the partitions of the values into groups: they do not belong to the model
parameters. Similarly, the number of instances in each group can be deduced
by adding the cell frequencies in the rows or columns of the grid, according to
Nj, = Y522y Ny, and Ny, = 3270 N;

jo=1 ji=1 1j2°
In order to select the best model, we apply a Bayesian approach, using the

prior distribution on the model parameters described in Definition 4.

Definition 4. The prior for the parameters of an unsupervised bivariate value
grouping model are chosen hierarchically and uniformly at each level:

— the numbers of groups J1 and Jo are independent from each other, and uni-
formly distributed between 1 and Vi for Y1, between 1 and Vs for Ys,

— for a given number of groups J1 of Y1, every partition of the Vi wvalues into
J1 groups is equiprobable,

— for a given number of groups Jo of Ya, every partition of the Va values into
Jo groups is equiprobable,

— for a data grid of given size (J1,Ja), every distribution of the N instances
on the G = Ji, Ja cells of the grid is equiprobable,

— for a given group of a given variable, every distribution of the instances of
the group on the values of the group is equiprobable.

Taking the negative log of the probabilities, this provides the evaluation
criterion given in Theorem 2.



Theorem 2. An unsupervised bivariate value grouping model distributed accord-
ing to a uniform hierarchical prior is Bayes optimal if its evaluation according
to the following criteria is minimal

log V1 + log Vo + log B(V1, J1) + log B(Va, Ja)

Jl J2
N+G-1 N, +mj;, —1 Nj, + mj, —1
1 E 1 Ji J1 2:1 J2 J2
+Og< G-1 )+ Og( mjl_l >+ Og( mjz_l )

Ji=1 jo=1
Ji Ja
+log N! — Z Z log Nj, ;,!
J1=1j2=1
Jy J2 Vi Vo
+ Z log N;, ! + Z log N;,! — Z log n,, ! — Z log ny,!
ji=1 Jo=1 v1=1 vo=1

(3)

The first line in Formula 3 relates to the prior distribution of the group
numbers J; et Jo and to the specification the partition of the values in groups for
each variable. These terms are the same as in the case of the MODL supervised
univariate value grouping method [Bou05]. B(V, J) is the number of divisions of
V values into J groups (with eventually empty groups). When J =V, B(V,J)
is the Bell number. In the general case, B(V,J) can be written as B(V,J) =
231:1 S(V,7), where S(V,j) is the Stirling number of the second kind [AST70],
which stands for the number of ways of partitioning a set of V' elements into j
nonempty sets.

The second line in Formula 3 represents the specification of the parameters of
the multinomial distribution of the IV instances on the G cells of the data grid,
followed by the specification of the multinomial distribution of the instances of
each group on the values of the group. The third line stands for the likelihood
of the distribution of the instances on the data grid cells, by the mean of a
multinomial term. The last line corresponds to the likelihood of the distribution
of the values locally to each group, for each variable.

3.3 Interpretation

In the case of the null model My containing one single cell, Formula 3 reduces
to
N+VWV -1 N+V,—1
c(My) =logV;y + log Vo + log + W + log TV
-1 Vo—1
(4)
! N!

N!
+10gﬁ+10g

Ny My o.My, Ny My 1oy !

which corresponds to the posterior probability of the multinomial model for the
distribution of the instances on the values, for each variable. This means that
each variable is described independently.
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Like in the numerical case, the data grid models allow a non parametric
description of the correlation between the variables and the best trade-of is
searched owing to a Bayesian (or MDL) model selection approach.

FEzxzample with two identical categorical variables. Let us consider two identical
categorical variables Y7 = Y5 and the maximum data grid model M., with
as many groups as values (J; = V1), as illustrated in Figure 5. The evaluation
criterion of the grid is equal to

N
c(Mpgaz) = 2log Vi + 21log B(V1, V1) + log (

d|0[0|0|e
cl|0]e|
b((|e|0|(
ale0|0[0

alb|c|d

Fig. 5. Bivariate value grouping data grid with as many groups as values for two
identical categorical variables Y7 = Y3, having four values a, b, ¢ and d.

If we compare ¢(Mpy) in Formula 4 to ¢(Msq,) in Formula 5 in the case of
two identical categorical variables, we observe an overhead in the prior terms
of the maximum model (specification of the value grouping with Bell numbers
and specification of the distribution of the N instances on the V;? cells of the
grid). On the opposite, the likelihood term is divided by a factor two: since the
correlation between the variables is perfectly detected owing to the data grid
model, describing the joint distribution of the data given the model reduces to
describing the distribution of one single variable.

To fix the ideas, let us compare Formulae 4 and 5 in the asymptotic case.
The multinomial term for the distribution of the values of a categorical variable
can be approximated with

N!

log——————
gnvln [ 7
1 V2 1

~ NH(Y:),

where H(Y7) is the Shannon entropy of variable Y7 [Sha48]. In the case of the
null model having one single cell, we get

c(Mp) =~ 2(Vy — 1)log N + 2NH(Y7).
In the case of the maximum model with as many groups as values, we obtain

C(MMa:c) ~ (V12 - 1) 1OgN+NH(Y1).



The maximum model, which detects the correlation between the variables, will
thus be preferred as soon as there are enough instances compared to the number
of values. It is noteworthy that Formulae 4 and 5 allow to select the best model
in the non asymptotic case.

4 Unsupervised Data Grids for any Subset of Variables

In this section, we extend unsupervised bivariate data grids to the multivariate
case.

4.1 Evaluation Criterion for Unsupervised Data Grids

The purpose of the unsupervised data grid model is to describe the joint dis-
tribution of all the variables. When a variable is partitioned into at least two
parts, it can be considered as selected, and discarded in case of one single part.
Like in the supervised case presented in Chapter 1, we use this variable selection
explicitly by introducing in Definition 5 a new level in the model parameters.

Definition 5. An unsupervised data grid model is defined by:

— a subset of selected variables,

— a number of parts (groups or intervals) for each selected variable,

— for each categorical variable, the repartition of the values into the groups of
values,

— the distribution of the instances of the data sample among the cells of the
data grid,

— for each categorical variable and each group, the distribution of the instances
of the group on the values of the group.

Notations 3

K : number of variables

K ={Y1,Ys,...,Yk}: set of variables

— K, : subset of numerical variables

K.: subset of categorical variables

— Vi, k € K.: number of values of categorical variable Xy,

— N: number of training instances

— K: number of selected variables

— K;: subset of selected variables (K| = K;)

— Ji: number of parts (intervals or groups) of the univariate partition of vari-
able Yy,

- G= Hle Ji: number of cells in the data grid

— my,, k € Kc: number of values in group ji of categorical variable Yy

— Ny, k € Kc: number of instances for value vy, of categorical variable Yy,

— Nj,, k € K: number of instances in part (interval or group) ji of variable Yy

— Nj,j,...jx - number of instances in cell (j1,%2,...,jk) of the data grid
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We extend to the multivariate case the prior introduced in Section 2 for
bivariate unsupervised numerical data grids and in Section 3 for bivariate unsu-
pervised categorical data grids. For the variable selection parameters, we reuse
the prior described in Chapter 1 in the case of supervised data grid models. We
apply the Bayesian model selection approach and obtain the evaluation criterion
of a data grid model M in Formula 6.

K+ Ks—1
log(K + 1) + log ( + >
K
+ Z log N + Z log Vi + Z log B(Vy, Jk)
kEK,NK,, k€K NK, k€K NK,
N =1
+10g< G- ) ZZ]Og( g+ M )
keK, je=1 mj, — 1 (6)
Ji g Ji

Hlog N = >0 " log Ny

Jji=1j2=1 jr=1

J \Z
+ Z i log N;, ! — Z zk: log ny, !

keK jr=1 keK, vp=1

4.2 Interpretation

In the case where no variable is selected, the resulting data grid contains one
single cell and Formula 6 reduces to

log(K+1)+ ) _ log (N Vi - ) > log N+ Y log—" (7)

kEKe keK,, kK. Vi

which corresponds to the specification of the ranks for each numerical variable
and the specification of the values for each categorical variable owing to a multi-
nomial model.

The number of cells G = H,If:l Ji of a multivariate data grid grows exponen-
tially with the number of selected variables. For example, for a number of selected
variables K, ~ log, N, the resulting data grid contains G > 2% ~ N cells with
an average number of instance per cell below one. The description length for the
multivariate correlation model becomes a limiting factor. The variable selection
determines a subset of correlated variables, which joint description is shorter
owing to the unsupervised data grid model. Unselected variables are described
independently like in Formula 7.



5 Optimization algorithm

The evaluation criterion can be decomposed as a sum of terms related to the
grid, the variables, the parts and the cells according to

K K Ji
(M) =D (T)+ >V (Vi Je) + ) > P ()
k=1 k=1jr=1

Ji J2 JK

+ Z Z Z 9 (Cj1j2~-~jx)

Jj1=1j2=1 Jr=1
where

— the grid criterion ¢(%) () relies only on the sizes J = {J1,Ja,..., Jx} of
the univariate partitions of the data grid and on global features of the data
sample,

— the variable criterion ¢(V) (Y, Ji) relies only on features of the variable Yy
and on the number of parts Jj of its partition,

— the part criterion ¢(") (P;,) for each part P;, of the univariate partition of
the variable Y}, relies only on features of the part,

— the cell criterion ¢(V) (G}, j,. i, ) for each cell Cj, j, . i, of the data grid relies
only on features of the cell, and is null for empty cells.

We adopt the algorithm described in Chapter 1 to optimize such additive
criterion. The main heuristic is a greedy bottom-up heuristic, which starts from
a random data grid and iteratively merges the parts as long as the criterion
improves. This heuristic is enhanced with pre-processing and post-processing
optimization steps, and embedded into a meta-heuristic which repeats the opti-
mization starting from different random solutions.

The main loop of this algorithm has a time complexity of

O(KNVN log N max(K,log N)),

where N is the number of instances and K the number of variables. The algo-
rithm can be used as an anytime algorithm: the more time you spend, the better
the solution.

6 Coclustering of Instances and Variables

We first introduce the application of unsupervised data grids to the coclustering
problem, then describe how to build a classifier on the basis of coclustering.

6.1 Coclustering

A coclustering [Har72] is the simultaneous clustering of the rows and columns
of a matrix. In case of binary sparse datasets, coclustering is an appealing data
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preparation technique to identify correlation between clusters of instances and
clusters of variables. Let us notice that continuous variables can be transformed
into binary variables according to whether their value is null or non null.

Let us consider a sparse binary dataset with N instances, K variables and
V non-null values. A sparse dataset can be represented in tabular format, with
two columns and V' rows. This corresponds to a new dataset with two variables
named “Instance ID” and “Variable ID” where each instance is a couple of values
(Instance ID, Variable ID), like in Figure 6.

Instancel D Variablel D

Vi Vo Va Vi Vs I Vs
I;/0|1]0]0|0|. I Vs
I|0|0|1]|1|0]. I Vi
Is|0|1]0]|0|0]. — I3 Va
I400{0|0 |1 |1]. 14 Va

I Vs

Fig. 6. Sparse binary dataset: from the sparse (instances x variables) table to the dense
bivariate representation.

Bivariate unsupervised data grid models are applied to form groups of in-
stances I Ds and groups of variable I Ds, so as to maximize the correlation be-
tween instances and variables. We expect to find “natural” patterns both in the
space of instances and in the space of variables. It is noteworthy that the clusters
retrieved by data grid models are non-overlapping, since they form a partition
of the whole dataset.

6.2 Application to Supervised Learning

We apply a semi-supervised learning approach [CSZ06] to exploit all the data
from the train, validation and test datasets. In a first step, all the instances
are processed without any output label to identify the “natural” clusters of
instances owing to the data grid coclustering technique. In a second step, the
available labeled instances are used to describe the output distribution in each
cluster of instances. The label of a test instance is then predicted according to
the output distribution of its cluster.

Preprocessing the data with semi-supervised coclustering makes sense under
the assumption that the “natural” clusters are correlated with the output values
(predefined clusters). We expect that this assumption is true for some datasets,
especially in the pattern recognition domain.



7 Evaluation of Data Grid Models

In the section, we evaluate the unsupervised data grid models using the datasets
of the agnostic learning vs. prior knowledge challenge [Guy07,GSDCO07]. We first
illustrate the interest of bivariate and multivariate unsupervised data grid models
for data exploration. We then report the results obtained with our coclustering
method in the supervised context of the challenge.

7.1 The Agnostic Learning vs. Prior Knowledge Challenge Datasets

The purpose of the challenge is to assess the real added value of prior domain
knowledge in supervised learning tasks. Five datasets coming from different do-
mains are selected to evaluate the performance of agnostic classifiers vs. prior
knowledge classifiers. These datasets come into two formats, as shown in Table 1.
In the agnostic format, all the input variables are numerical. In the prior knowl-
edge format, the input variables are both categorical and numerical for three
datasets and have a special format in the two other datasets: chemical structure
or text.

Name Domain Num. ex. Prior Agnostic Representation
train/valid/test features  features #cat. #num.
Ada Marketing 4147/415/41471 14 48 8 6
Gina Handwritting reco. 3153/315/31532 784 970 0 784
Hiva Drug discovery 3845/384/38449 Chem. struct. 1617 1617 0
Nova Text classification  1754/175/17537 Text 16969 19616 0
Sylva Ecology 13086,/1309/130857 108 216 2 28

Table 1. Challenge datasets with the number of categorical and numerical features in
our representation.

We use all the datasets in their prior format, except in the case of the Hiva
dataset for which we have neither domain knowledge nor time to exploit the
chemical structure. We preprocess the Nova text format by keeping all words of
at least three characters, converting them to lowercase, truncating them to at
most seven characters, and keeping the most frequent resulting words (> 8) so as
to get a manageable bag-of-words representation (with less than 20000 words).
In the case of the Sylva dataset, each instance is composed of two records of 54
variables belonging to the same class. We replace each subset (per record) of 40
binary SoilType variables by one single categorical variable with 40 values. The
resulting dataset contains only 30 variables instead of 108.

In our experiments, we use the datasets with small numbers of variables (Ada
and Sylva) to illustrate the interest of data grid for bivariate and multivariate
correlation analysis. We consider the three other datasets (Gina, Hiva and Nova)
as sparse binary datasets to conduct an instances*variables coclustering analysis.

47



48

Chapter 2.

In the case of the Gina dataset, the binary representation is obtained by replacing
each non zero value by 1.

7.2 Bivariate Analysis

In this section, we show how unsupervised bivariate data grid models allow
to perform correlation analysis and density estimation. Using all the unlabeled
instances (train4valid+test), we compute the best bivariate data grid model for
each pair of input variables. We first introduce a normalized indicator to evaluate
each pair, then illustrate the bivariate analysis on the Ada and Sylva datasets.

Compression To compare the pairs of variables by decreasing correlation, we
propose to use the evaluation criterion ¢(M) given in Formula 6 (restricted to two
variables for bivariate correlation analysis). This criterion is related to the prob-
ability that an unsupervised data grid model M explains the variables jointly. In
order to provide a normalized indicator, we consider the following transformation
of ¢(M):
¢ (M)

where Mj is the null data grid model, which explains each variable independently
(see Section 4.2). The indicator g (M) can be interpreted as a compression gain,
since negative log of probabilities are no other than coding lengths [Sha48]. The
compression gain g(M) holds its values between 0 and 1, since the null model
is always considered in our optimization algorithm. It has value 0 for the null
model and is maximal when the best possible correlation between the variables
is achieved.

Ada Results For each of the 91 = 14 % 13/2 pairs of input variables of the Ada
dataset, we compute the best data bivariate data grid model using the 46033
unlabeled instances. Table 2 reports the ten most correlated pairs of variables,
with the data grid size (number of parts per variable and number of non empty
cells).

According to this analysis, the most correlated variables are maritalStatus
and relationship, which are two categorical variables. The correlation is illus-
trated in Figure 7 owing to a bivariate histogram, which exhibits hight densities
for some pairs of values. The second most correlated variables are education
(categorical) and educationNum (numerical). It turns out that the education
variable is a label related to the number of year of education. This is detected
by the data grid, which is diagonal one: each on 16 non empty cells is related to
a singleton group for the education variable (from preschool to doctorate) and
to one elementary interval (from 1 to 16 years of education). The redundancy
between the two variables is correctly detected.



Variable 1 Variable 2  Compression # parts 1 # parts 2 # cells

maritalStatus relationship 0.2625 5 5 20
education educationNum  0.1693 16 16 16
relationship sex 0.1282 5 2 10
nativeCountry race 0.0745 8 4 31
maritalStatus sex 0.0598 5 2 10
education occupation 0.0505 10 9 90
occupation sex 0.0342 7 2 14
occupation workclass 0.0326 13 6 73
occupation relationship 0.0201 11 5 55
age maritalStatus 0.0198 15 3 44

Table 2. Most correlated pairs of variables in the Ada dataset.

Fig. 7. Bivariate value grouping data grid for the relationship (X axis) and marital-
Status (Y axis) variables of the Ada dataset. The Z axis represents the percentage of
the data sample that falls in each cell of the data grid. For example, about 45% of
the instances have a husband or wife relationship and a married (group of two values)
maritalStatus. The instances with the never-married marital status fall into four cells,
two of which represent more than 10% of the instances (not-in-family or own-child
relationship).

Sylva Results For each of the 435 = 30 % 29/2 pairs of input variables of
the Sylva dataset, we compute the best data bivariate data grid model using
the 145252 unlabeled instances. Table 3 reports the most correlated pairs of
variables.

As detailed in Section 7.1, each instance in the Sylva dataset is composed of
two records of the same class, so that the variables come twice. It is noteworthy
that our method automatically rediscovers this, by identifying the most corre-
lated pairs in either the first or the second record. Furthermore, as can be seen
in Table 3, the level of correlation (compression indicator) and the shape of the
data grid is very similar for the pairs of variable belonging to each record.
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Variable 1 Variable 2~ Compression # parts 1 # parts 2 # cells
Aspectea Hillshade9ams 0.0559 142 35 1856
Aspecty Hillshade9am; 0.0556 140 33 1754
Aspecty Hillshade3pm;1 0.0541 189 69 5421
Aspecteo Hillshade3pma 0.0540 184 71 5722

Elevations SoilTypesa 0.0426 24 30 397

Elevation SoilType; 0.0422 29 22 376
Aspecty HillshadeNoon 0.0415 210 48 5574
Aspectsa HillshadeNoons 0.0412 202 46 5162

Hillshade3pm; Hillshade9am; 0.0404 61 58 2016
Hillshade3pma Hillshade9ams 0.0404 62 58 2109
RawahWildernessArea;  SoilType; 0.0363 2 11 19
RawahWildernessAreas  SoilTypes 0.0362 2 9 16
HillshadeNoons Slopes 0.0329 57 31 1115
HillshadeNoon; Sloper 0.0329 56 30 1055
Hillshade3pm; Slopey 0.0302 81 29 1542
Hillshade3pma Slopes 0.0302 86 28 1608

Table 3. Most correlated pairs of variables in the Sylva dataset. It is noteworthy that
each pair belong to either record; or records of the Sylva representation.

According to Table 3, the most correlated variables are Aspecto and Hillshade9ams,

which are two numerical variables of the second record. The correlation is illus-
trated in Figure 8 owing to a bivariate diagram, which shows how the data grid
models the joint density of the two variables, with intervals of varying width.

Using our non parametric approach is a clear advantage to identify and de-
scribe such complex correlation. Furthermore, since our method is fully auto-
matic, hundreds to thousands of pairs of variables can be analyzed and sorted
by decreasing correlation. This allows the data analyst to explore large datasets
and focus only on the most relevant correlations.

7.3 Multivariate Analysis

In this section, we show how unsupervised multivariate data grid models allow
to identify subsets of highly correlated variables. Using all the unlabeled in-
stances (train4valid+test), we compute the best multivariate data grid model
and comment the results on the Ada and Sylva datasets.

Ada Results For the Ada dataset, we get a data grid with six selected variables:
education, educationNum, maritalStatus, occupation, relationship and sex. The
education and educationNum variables are partitioned into 11 parts instead of
16 in the bivariate case: the numbers of years of education are grouped together
for low levels (below 4 years) and higher levels (above 14 years) of education.
Since the multivariate data grid model is more complex, a trade-off is found
by providing a coarser grain of partition for each variable, but including more
variables. The maritalStatus variable is divided into two groups of values (instead
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Fig. 8. Bivariate discretization data grid for the Aspects (X axis) and Hillshade9ams
(Y axis) variables of the Sylva dataset. The dispersion diagram is drawn on the left
and summarized on the right by the bivariate data grid (each disk is centered on its
data grid cell, with a surface proportional to the cell frequency).

education ed.Num maritalStatus occupation relationship sex |Frequency
HS-grad 9 Married Low Husband  Male 4018
HS-grad 9 Not married Medium Other  Female| 2876
HS-grad 9 Not married Low Other Male 2637
Some-college 10 Not married Medium Other  Female| 2455
Bachelors 13 Married High Husband  Male 1988
Some-college 10 Married Low Husband Male 1653
HS-grad 9 Married Medium  Husband Male 1368
Some-college 10 Not married Medium Other Male 1176
HS-grad 9 Not married Medium Other Male 1160
Some-college 10 Not married Low Other Male 1137
Bachelors 13 Not married High Other  Female| 1067
Some-college 10 Married Medium  Husband Male 1056

Table 4. Most frequent cells in the best data grid summarizing the Ada dataset.

of five): married versus not married. The occupation variable is partitioned into
three groups (instead of nine):

Low: Craft-repair, Machine-op-inspct, Transport-moving, Handlers-cleaners,
Farming-fishing, Protective-serv, Armed-Forces,

Medium: Adm-clerical, Sales, Other-service, Tech-support, Priv-house-serv,

High: Prof-specialty, Exec-managerial.

The relationship variable is partitioned into three groups (instead of five): hus-
band, wife, and others. It is noteworthy that the two values husband and wife
were grouped together in the bivariate data grid relationship vs. maritalStatus
pictured in Figure 7. In the multivariate data grid, these two values are separated
so as to capture the correlation with the sex variable (male, female).

We can notice that these six variables are involved in the most correlated
pairs of variables, as shown in Table 2. The multivariate data grid contains
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6534 = 11 % 11 %2 % 3 % 3 x 2 cells, but only 181 of them are non empty; which
indicates high density cells. Table 4 describe the twelve most frequent cells of the
data grid, which amount to about 50% of the instances of the dataset. Each cell
can be interpreted as a cluster, which is conceptually described by an association
rule [AIS93]. For example, the most frequent cell is described by Rule 1, with a
support of 4018 instances.

Rule 1: education = HS-grad
educationNum = 9
maritalStatus € Married = {Married-civ-spouse, Married-AF-spouse}
occupation € Low = {Craft-repair, Machine-op-inspct, Transport-moving,...}
relationship = Husband
sex = Male

Sylva Results For the Sylva dataset containing 145252 instances and 30 vari-
ables, we retrieve a data grid with five numerical variables, Aspectq, HillshadeNoons,
Hillshade3pmsy, Hillshade9ams and Slopes, discretized respectively with 14, 10,
10, 10 and 6 intervals. These five variables all belong to records of the Sylva rep-
resentation, which is consistent with the dataset specifications. They jointly form
a subset of highly correlated variables, which confirms the bivariate analysis sum-
marized in Table 3. The multivariate data grid contains 84000 = 14%10+10x10%6
cells, but less than one percent (only 710) of them are non empty and the 90
most frequent cells summarize more than 50% of the dataset instances. This
means that the five dimensional manifold is well approximated by the data grid,
which discretizes the representation space so as to identify hight density regions.
Interestingly, the second most probable data grid identified by our search
heuristic is related to the fives variables Aspecty, HillshadeNoon;, Hillshade3pm,,
Hillshade9am; and Slope;. This is exactly the same subset of correlated vari-
ables, in record; of the representation instead of records for the MAP data grid.
The multivariate data grids retrieved by our method can be visualized using
a scatter plot matrix. Such technique presents all the pairwise scatter plots
between the variables selected in the data grid, so as to analyze all the pairwise
interactions. Since our method is able to automatically detect subsets of highly
correlated variables, it is an efficient way of preprocessing the set of all variables
in order to feed the visualization techniques with informative subsets of variables.

7.4 Coclustering Analysis

We apply the semi-supervised coclustering method introduced in Section 6 on
the Gina, Hiva and Nova datasets, using the representation presented in Section
7.1.

Coclustering Results The coclustering method exploits all the available un-
labeled data to represent the initial binary matrix (instances x variables) which
is potentially sparse into a denser matrix with clusters of instances related to



clusters of variables. It is noteworthy that the space of coclustering models is
very large. For example, in the case of the Nova dataset, the number of ways of
partitioning both the text and the words, based on the Bell number, is greater
than to 10129990, To obtain the best possible coclusterings according to our MAP
approach, we allocated several days of computation time to our anytime opti-
mization heuristic.

Dataset Initial representation Coclustering representation
Inst. Var. Size Sparseness|Inst. cl. Var. cl. Size Sparseness
Gina [35000 784 2.74 107 19.2% 480 125 6.00 10*  79.1%
Hiva [42673 1617 6.90 107 9.1% 1230 210 2.58 10° 52.2%
Nova 17537 19616 3.44 10® 0.6% 207 1058 2.19 10° 84.3%

Table 5. Properties of the (instances*variables) matrix for the Gina, Hiva and Nova
datasets, in their initial and coclustering representation.

In Table 5, we recall the properties of each dataset in its initial representation
and present its preprocessed representation after the coclustering. The datasets
are initially represented using very larges matrices, with up to hundreds of mil-
lions of cells. Their sparseness vary according to the dataset from less than 1%
to about 20%. The number of their non-null elements (one variable activated for
one instance) is about five millions for Gina, six millions for Hiva and two mil-
lions for Nova. Once the coclustering is performed, we get dense representations
with numbers of cells reduced by a one hundred to one thousand factor.

Impact on Supervised Classification In order to evaluate the quality of
the representation, and assuming that the “natural clusters” of instances in the
unsupervised context are correlated with the labels in the supervised context,
we train classifiers using the train and validation labeled instances to learn the
distribution of the labels in each cluster of instances. In the case where a test
instance belongs to a cluster with no labeled instance, we iteratively merge this
unlabeled cluster so as to keep the coclustering evaluation criterion as low as
possible, until at least one labeled cluster is encountered.

Dataset Prior track Agnostic track Coclustering
Winner Best BER Winner Best BER BER
Gina |Vladimir Nikulin 0.0226 Roman Lutz 0.0339 0.0516
Hiva | Chloé Azencott 0.2693 | Vojtech Franc 0.2827 0.3127
Nova | Jorge Sueiras 0.0659 |Mehreen Saeed 0.0456 0.0370

Table 6. Best challenge results vs. our coclustering method results for the Gina, Hiva
and Nova datasets.
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We recall in Table 6 the BER results of the challenge winner in the agnos-
tic and prior track [GSDCO07], and present our results obtained with the semi-
supervised coclustering method (submission named “Data Grid(Coclustering)”,
dated 2007-02-27 for Gina and Hiva and 2007-09-19 for Nova). The results show
that the supervised coclustering method obtains good predictive performance,
competitive with that of most of the challenge participants and not far from
that of the top results. In the case of the Nova dataset, the predictive perfor-
mance significantly outperforms that of the winners, which is remarkable since
our clusters were learnt without using any class label.

Impact on Interpretation The assumption that the “natural” patterns iden-
tified owing to coclustering are correlated with the classes looks true in the chal-
lenge datasets. Since we obtain many more patterns than classes, it is interesting
to provide an interpretation of our coclusters.

The Gina dataset comes from the MNIST dataset [LC98]. The task, which is
handwritten digit recognition, consists in predicting the value of a digit from an
image representation of 28 x 28 pixels. The coclustering method identifies about
one hundred clusters of pixels (regions) and five hundred clusters of images
(“natural” shapes), each of them distributed similarly on the regions.

In the case of the Hiva, further investigation with a domain specialist would
be necessary to understand the meaning of the clusters of instances and variables.

The Nova dataset comes from the 20-Newsgroup dataset [Mit99]. The original
task is to classify the texts into 20 classes (atheism, graphics, forsale, autos,
motorcycles, baseball, hockey, crypt, electronics, med, space, religion.christian,
politics.guns, politics.mideast, politics.misc, religion.misc). In the challenge, the
classification task was a binary one, with two groups of classes (politics or religion
vs. others). The coclustering method identifies about one thousand of clusters of
words (vocabulary themes) and two hundred clusters of texts (“natural” topics),
each of them distributed similarly on the themes.

1000 1000

100 100

Number of texts per cluster
Number of words per cluster

Index of
word
cluster

Index of
text
1 cluster 1
0 100 200 0 100 200 300 400 500 600 700 800 900 1000 1100

Fig. 9. Distribution of the sizes of the clusters of texts and words in the Nova dataset.

The distribution of the 17537 texts in the 207 clusters of texts (topics) is
reasonably balanced. On the opposite, the repartition of the 19616 words in the



1058 clusters of words (themes) is not at all balanced, as shown in Figure 9.
About 150 themes are singletons, like for example the, and, for, that, this, have,
you. These are frequent words with low semantic, and even slightly different
distribution of the topics on these singleton themes are significant and might
be helpful for classification. For example, observing one of the singleton themes
say, why or who approximately doubles the conditional probability of being in
the challenge positive class (politics or religion).

A correlation study between the themes and the 20 original labels available
on the train dataset reveals that the most informative themes are:

— hockey, playoff, nhl, penguin, devils, pens, leafs, bruins, islande, goalie, mario,
puck,...

— team, season, league, fans, teams, rangers, detroit, montrea, wins, scored, coach,...
— clipper, encrypt, nsa, escrow, pgp, crypto, wiretap, privacy, cryptog, denning,...

— dod, bike, motorcy, ride, riding, bikes, ama, Tider, helmet, yamaha, harley, moto,...
— basebal, sox, jays, giants, mets, phillie, indians, cubs, yankees, stadium, cardina,...
— bible, scriptu, teachin, biblica, passage, theolog, prophet, spiritu, testame, revelat,...
— christi, beliefs, loving, rejecti, obedien, desires, buddhis, deity, strive, healed,...

— windows, dos, apps, exe, novell, ini, borland, ver, lan, desquie, tsr, workgro, sdk,...
— pitcher, braves, pitch, pitchin, hitter, inning, pitched, pitches, innings, catcher,...
— car, cars, engine, auto, automob, mileage, autos, cactus, pickup, alarm, sunroof,...

About one third of the theme are detected as informative with respect to
the original labels. The partition of the words is very fine grained, so that many
themes are hard to interpret, whereas other ones clearly capture semantics, such
as:

— book, books, learnin, deals, booksto, encyclo, titled, songs, helper

— cause, caused, causes, 0CCuT, OCCUTS, Causing, persist, ercessi, occurin

— importa, extreme, careful, essenti, somewha, adequat

— morning, yesterd, sunday, friday, tuesday, saturda, monday, wednesd, thursda,...
— receive, sent, placed, returne, receivi, sends, resume

Overall, our coclustering preprocessing method is able to produce a precise
and reliable summary of the corpus of texts, which is demonstrated by the very
good classification performance reported in Table 6.

8 Conclusion

The data grid models introduced in this paper are based on a partitioning model
of each variables, in intervals for numerical variables and in groups of values for
categorical variables. The cross-product of the univariate partitions, called a
data grid, allows to quantify the joint density between the variables.

We have shown that this technique apply to a variety of tasks of data ex-
ploration, such correlation study, density estimation, visualization or association
rule mining. We have also demonstrated that unsupervised data grid models are
able to produce coclusterings of instances of variables, with valuable insights on
the data and striking performance obtained on challenge datasets.
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Like in the supervised case introduced in Chapter 1, we observed empiri-
cally that the number G of data grid cells is always below the number N of
instances. This means that the number K of selected variables, each consisting
of at least two parts, is always belows logy N. The best subsets of correlated
variables discovered by our method summarize one aspect of the dataset and
estimate the joint density up to maximum number of variables. Our method
automatically finds a trade-off between precision and reliability by focusing on a
variable subspace, which illustrates how it manages the curse of dimensionality.

To overcome this limitation related to the number of selected variables, we
plan in future work to explore two complementary approaches. In the first one,
we intend to exploit the posterior distribution of data grid models to estimate
the joint density on the whole variable space owing to an ensemble method. In
the second one, our objective is to better approximate the whole multivariate
probability distribution by exploiting the naive Bayes independence assumption
[LIT92] or its relaxed extensions like in semi-naive Bayesian classifiers [Kon91]
or in Bayesian network classifiers [FG96].
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