

Le présent document contient des informations qui sont la propriété de la R&D de France Télécom. L’acceptation de ce
document par son destinataire implique, de la part de ce dernier, la reconnaissance du caractère confidentiel de son
contenu et l’engagement de n’en faire aucune reproduction, aucune transmission à des tiers, aucune divulgation et aucune
utilisation commerciale sans l’accord préalable écrit de la R&D de France Télécom.

 Copyright France Télécom 2008

Bivariate Data Grid Models for Supervised Learning

Note technique

Référence : NSM/R&D/TECH/EASY/TSI/4/MB
Autre référence :
Version : 1.0
Date d'édition : 13/02/2008

Vérifié par : Fabrice Clérot

Affiliation : TECH/EASY

Le : 13/02/2008

Auteurs :

 Boullé Marc

TECH/EASY

Approuvé par : Patrice Soyer

Affiliation : TECH/EASY

Le : 13/02/2008

Résumé :
In the domain of data preparation for supervised learning, filter methods for variable ranking are time
efficient. However, their intrinsic univariate limitation prevents them from detecting redundancies or
constructive interactions between variables. This paper introduces a new method to automatically, rapidly
and reliably evaluate the predictive information of a pair of variables. It is based on a partitioning of each
input variable, in intervals in the numerical case and in groups of values in the categorical case. The
resulting input data grid allows to evaluate the correlation between the two input variables and the output
variable. The best joint partitioning is searched owing to a Bayesian model selection approach. Intensive
experiments demonstrate the benefits of the approach, especially the significant improvement of accuracy
for classification tasks.
This paper is divided into two chapters. Chapter 1 introduces the method, the bivariate evaluation criterion
and reports the results of extensive experiments on artificial and real datasets. Chapter 2 focuses on the
optimization algorithms with a detailed analysis of their computational complexity.
Mots clés : Data Mining, Data Analysis, Data Preparation, Discretization, Value Grouping, Bayesianism,
Model Selection, Naive Bayes
Thème : 7800 - Intelligence artificielle - IA

13/02/2008 Bivariate Data Grid Models for Supervised Learning

 Copyright France Télécom 2008 NSM/R&D/TECH/EASY/TSI/4/MB Version : 1.0

Chapter 1: Optimal Bivariate Evaluation for Supervised Learning

Chapter 2: Optimization Algorithms for Bivariate Data Grid Models

Chapter 1

Optimal Bivariate Evaluation
for Supervised Learning
using Data Grid Models

3

Optimal Bivariate Evaluation
for Supervised Learning
using Data Grid Models

Marc Boullé

France Télécom R&D Lannion,
marc.boulle@orange-ftgroup.com

Abstract. In the domain of data preparation for supervised learning,
filter methods for variable ranking are time efficient. However, their in-
trinsic univariate limitation prevents them from detecting redundancies
or constructive interactions between variables. This paper introduces a
new method1 to automatically, rapidly and reliably evaluate the predic-
tive information of a pair of variables. It is based on a partitioning of
each input variable, in intervals in the numerical case and in groups of
values in the categorical case. The resulting input data grid allows to
evaluate the correlation between the two input variables and the out-
put variable. The best joint partitioning is searched owing to a Bayesian
model selection approach. Intensive experiments demonstrate the bene-
fits of the approach, especially the significant improvement of accuracy
for classification tasks.

1 Introduction

In a data mining project, the data preparation phase aims at constructing a data
table for the modeling phase [Pyl99,CCK+00]. The data preparation is both time
consuming and critical for the quality of the mining results. It mainly consists
in a search of an efficient data representation, based on variable selection. The
purpose of variable selection is three-fold: improve the classifier accuracy, reduce
the training and deployment time, and ease the comprehensibility of the classifier
[GE03,GGHD06]. Two main approaches, filter and wrapper [KJ97], have been
studied in the literature. Filter methods evaluate the correlation between the in-
put variables and the output variable, independently of any modeling technique.
Wrapper methods search the best subset of variables for a given classification
technique, used as a black box. Wrapper methods, which are very time consum-
ing, are restricted to the modeling phase of data mining, as a post-optimization
of a classifier. Filter methods are better suited to the data preparation phase,
since they do not rely on modeling assumptions. In this paper, we focus on the
filter approach.

1 French patent N◦ 06 01499

4 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

1.1 Univariate filter methods

Univariate filter methods, also called ranking methods, evaluate each input vari-
able individually. They allow to identify informative variables among a very
large set of candidate variables. The input variables are ranked according to the
method criterion and a subset of the variables can be selected once a thresh-
old is chosen. The simplest way to determine this threshold is to keep as many
variables as the modeling technique (often constrained by scalability issues) can
handle. Another classical approach is to train the model with several subsets of
increasing size. The best subset is chosen according to a tradeoff between the
performance of the classifier and the size of the subset.

The most commonly used ranking methods are based on statistical tests
[Sap90], such as the chi-square test for categorical input variables, or Student
or Fisher-Snedecor tests for numerical input variables. These statistical tests are
easy to apply, but they suffer from serious limitations. They are restricted to
a Boolean discrimination between dependent and independent variables, which
does not provide an accurate ranking of the input variables. They are also subject
to strong constraints (minimum expected frequency in each cell of the contin-
gency table for categorical variable, Gaussian distribution for numerical vari-
ables). Many alternative measures of associations between two variables have
been studied in the context of decision trees [Kas80,BFOS84,Qui93,ZR00]. These
criteria are based on a partition of the values of the input variable to evalu-
ate the dependence between the input parts and the output values. Supervised
discretization methods split the numerical domain into a set of intervals and
supervised value grouping methods partition the input values into groups. Fine
grained partitions allow an accurate discrimination of the output values, whereas
coarse grained partitions tend to be more reliable. When the size of the parti-
tion is a free parameter, the trade-off between information and reliability is an
issue. In the MODL (Minimum Optimized Description Length) approach, su-
pervised discretization [Bou06a] (or value grouping [Bou05]) is considered as a
non-parametric model of dependence between the input and output variables.
The best partition is found using a Bayesian model selection approach, which
provides a measure of association that is both accurate and reliable.

1.2 Multivariate filter methods

Filter methods suffer from their univariate limitation, being unable to reveal
interactions between input variables. For example, redundant variables, which
bring the same predictive information, cannot be detected. On the opposite,
input variables might be uninformative in univariate evaluations and strongly
informative in a joint evaluation. These two cases are illustrated in Figure 1, us-
ing multiple scatterplots where each point is drawn in a different shape according
to its output value. The left diagram shows the case of two redundant variables.
The right diagram corresponds to an XOR pattern: each input variable taken
alone is a random mixture of the output values, whereas the two variables taken
jointly allow a perfect discrimination of the output values.

5

0

0.5

1

0 0.5 1

X1

X2

0

0.5

1

0 0.5 1

X1

X2

Fig. 1. Multiple scatterplots for two input variables X1 and X2, and two output values
(small and large circles). The left diagram shows the case of two redundant variables
and the right diagram the case of two jointly informative variables

In the case of two numerical input variables, multiple scatterplots are a pop-
ular visualization technique to detect interactions between the input and output
variables. Scatterplot matrices [CLNL87] extend this technique to sets of input
variables and allow to show all pairwise interactions between the variables. These
methods are widely used in exploratory data analysis, but they do not provide
an evaluation of the joint information contained in the variable pairs. Further-
more, these methods do not apply in the case of large numbers of variables: 100
input variables lead to 4950 = 100∗99/2 scatterplots, which cannot be managed
by the data analyst.

An automatic evaluation of variable interactions is needed due to the increas-
ing number of variables in datasets. The concept of mutual information between
two attributes has been extended to the multivariate case [McG54,Han80] to
quantify k-way interactions between variables. The approach is based on com-
paring the joint information of k variables and that of any subset of at most
(k − 1) variables. The problem with this approach comes from the evaluation
of the joint information, which is the same as evaluating the joint probability
distribution function (PDF). In the case of categorical variables, the joint PDF
is usually evaluated using the empirical distribution of the data, by counting the
number of data instances for each combination of the values. In problems with
many variables or with many values per variable, the joint PDF becomes sparse
and its empirical evaluation unreliable. The main approach to avoid sparseness
of the data is to assume partial independence between variables, which enables
to estimate the joint PDF using factorization. The popular naive Bayes classifier
[LIT92] relies on the assumption that input variables are independent given the
output values. This assumption has been relaxed in semi-naive Bayesian clas-
sifiers [Kon91] or in Bayesian network classifiers [FGG97]. Experiments show
that these methods improve the naive Bayes accuracy. However, these methods
need to analyze dependencies between at least three variables (two input vari-
ables and one output variable) and are thus still subject to sparseness of the
data. Furthermore, they apply only to categorical data: numerical variables are
discretized using a supervised discretization method (MDLPC: Minimum De-
scription Length Principal Cut [FI92] is used in [WBW05] for example), which

6 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

may destroy the dependencies between input variables. Another approach to
avoid sparseness is to use latent variables. For example in [MC99,VR03], a clus-
tering of the instances is performed for each output value and the discovered
clusters are used as latent variables.

1.3 Our contribution

In this paper, we extend the MODL approach to the bivariate case for all pairs
of input variables, numerical, categorical or mixed types. Each input variable
is partitioned, in intervals in the numerical case and in groups of values in the
categorical case. This joint partitioning defines a distribution of the instances in
a bi-dimensional input data grid. The correlation between the cells of this data
grid and the output values allows to quantify the joint predictive information.
The tradeoff between information and reliability is established using a Bayesian
model selection approach. This provides an evaluation criterion for any joint
partitioning of the input variables. Several optimization heuristics, including
pre-optimization and post-optimization are proposed to search the best possible
joint-partitioning in a super-linear computation time.

Our method combines several interesting properties. It is able to manage both
numerical and categorical input variables. It focuses on the conditional PDF only,
is non parametric and non asymptotic. It is regularized to tackle the sparseness
issue and optimally strike the balance between informative and reliable models.
The models are efficiently optimized in super-linear computation time. Finally, it
also provides a filter criterion for the selection of pairs of variables and it builds
easily understandable models.

The paper is organized as follows. Section 2 summarizes the MODL method
in the univariate case. Section 3 introduces the extension of the approach to the
bivariate case and presents the resulting evaluation criterion. Section 4 summa-
rizes the optimization algorithms, which are detailed in Chapter 2. Section 5
evaluates the effectiveness of the method on artificial datasets, where the joint
PDF is known in advance. Section 6 demonstrates the benefits of the approach
on real datasets, both for the data preparation and data modeling phases of data
mining. Finally, section 7 gives a summary.

1.4 Related work

Multivariate discretization or similar techniques have already been proposed in
various contexts. For example, the joint partitioning of the lines and rows of con-
tingency table has been studied in the general case [NG05] for data exploration,
or in the case of decision trees for the joint partitioning of one input variable
and the output variable [ZRES05]. Multivariate discretization has also been de-
veloped in the case of association rule mining [Bay01], learning the structure of
Bayesian network [SJ04] or for decision rule induction [KK99].

One main difference with these approaches is that our method models the
conditional PDF only, not the distribution of the input data. Other major differ-

7

ences are our Bayesian approach for the evaluation criterion and our optimization
algorithm with super-linear computation time.

2 The MODL univariate supervised evaluation methods

This section summarizes the MODL approach for supervised discretization [Bou06a]
and value grouping [Bou05].

2.1 The MODL discretization method

The objective of supervised discretization is to induce a list of intervals which
splits the numerical domain of a continuous input variable, while keeping the in-
formation relative to the output variable. A compromise must be found between
information quality (homogeneous intervals with regard to the output variable)
and statistical quality (sufficient sample size in every interval to ensure general-
ization). For example, we present on the left of Figure 2 the number of instances
of each class of the Iris dataset [BM96] w.r.t. the sepal width variable. The prob-
lem is to find the partition of the numerical domain in intervals which gives us
optimal information about the distribution of the data between the three output
values.

0

2

4

6

8

10

12

14

2.0 2.5 3.0 3.5 4.0
Sepal width

In
st

an
ce

s

Versicolor
Virginica
Setosa

]-∞, 2.95[[2.95, 3.35[[3.35, +∞[

Versicolor 34 15 1

Virginica 21 24 5

Setosa 2 18 30

Total 57 57 36

Fig. 2. MODL discretization of the Sepal Width variable for the classification of the
Iris dataset in 3 classes

In the MODL approach [Bou06a], the discretization is turned into a model
selection problem. First, a space of discretization models is defined. The param-
eters of a specific discretization are the number of intervals, the bounds of the
intervals and the output frequencies in each interval. Then, a prior distribution
is proposed on this model space. This prior exploits the hierarchy of the param-
eters: the number of intervals is first chosen, then the bounds of the intervals
and finally the output frequencies. The choice is uniform at each stage of the
hierarchy. Finally, we assume that the multinomial distributions of the output
values in each interval are independent from each other. A Bayesian approach
is applied to select the best discretization model, which is found by maximizing

8 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

the probability p(Model|Data) of the model given the data. Using the Bayes
rule and since the probability p(Data) is constant under varying the model, this
is equivalent to maximizing p(Model)p(Data|Model).

Let N be the number of instances, J the number of output values, I the
number of intervals for the input domain. Ni. denotes the number of instances
in the interval i, and Nij the number of instances of output value j in the interval
i. In the context of supervised classification, the number of instances N and the
number of classes J are supposed to be known. A discretization model is then
defined by the parameter set

{
I, {Ni.}1≤i≤I , {Nij}1≤i≤I,1≤j≤J

}
.

It is noteworthy that the data partition obtained by applying such a dis-
cretization model is invariant by any monotonous variable transformation since
it only depends on the variable ranks.

Owing to the definition of the model space and its prior distribution, the
Bayes formula is applicable to exactly calculate the prior probabilities of the
models and the probability of the data given a model. Taking the negative log
of the probabilities, this provides the evaluation criterion given in formula 1.

log N +log
(

N + I − 1
I − 1

)
+

I∑
i=1

log
(

Ni. + J − 1
J − 1

)
+

I∑
i=1

log
Ni.!

Ni1!Ni2! . . . NiJ !
(1)

The first term of the criterion stands for the choice of the number of intervals
and the second term for the choice of the bounds of the intervals. The third term
corresponds to the choice of the output distribution in each interval and the last
term represents the conditional likelihood of the data given the model. Therefore
“complex” models with large numbers of intervals are penalized.

Once the optimality of the evaluation criterion is established, the problem is
to design a search algorithm in order to find a discretization model that mini-
mizes the criterion. In [Bou06a], a standard greedy bottom-up heuristic is used
to find a good discretization. In order to further improve the quality of the so-
lution, the MODL algorithm performs post-optimizations based on hill-climbing
search in the neighborhood of a discretization. The neighbors of a discretization
are defined with combinations of interval splits and interval merges. Overall, the
time complexity of the algorithm is O(JN log N).

The MODL discretization method for classification provides the most prob-
able discretization given the data sample. Extensive comparative experiments
report high quality performance. In the Iris example, the three intervals of the
MODL discretization are shown on the left of Figure 2. The contingency table
on the right gives us comprehensible rules such as ”for a sepal width less than
2.95, the probability of occurrence of the Versicolor class is 34/57 = 0.60”.

2.2 The MODL value grouping method

Categorical variables are analyzed in a way similar to that of numerical variables,
owing to a partitioning model of the input values. In the numerical case, the input

9

values are constrained to be adjacent and the only considered partitions are
the partitions in intervals. In the categorical case, there are no such constraints
between the values and any partition in groups of values is possible. For instance,
Figure 3 illustrates the grouping of the values of the Cap Color variable of
the Mushroom dataset [BM96]. The initial input values provide a fine grained
estimation of the class conditional probabilities. The problem is to improve the
reliability of this estimation owing to a reduced number of groups of values, while
keeping the groups as much informative as possible. Producing a good grouping
is harder with large numbers of input values since the risk of overfitting the
data increases. In the extreme situation where the number of values is the same
as the number of instances, overfitting is obviously so important that efficient
grouping methods should produce one single group, leading to the elimination
of the variable.

Value edible poisonous Frequency

BROWN 55.2% 44.8% 1610

GRAY 61.2% 38.8% 1458

RED 40.2% 59.8% 1066

YELLOW 38.4% 61.6% 743

WHITE 69.9% 30.1% 711

BUFF 30.3% 69.7% 122

PINK 39.6% 60.4% 101

CINNAMON 71.0% 29.0% 31

GREEN 100.0% 0.0% 13

PURPLE 100.0% 0.0% 10

RED
YELLOW
BUFF
PINK

BROWN

GRAY

GREEN
PURPLEWHITE

CINNAMON

G_RED G_BROWN

G_GRAY

G_GREEN
G_WHITE

Fig. 3. MODL grouping of the values of the Cap Color variable for the classification
of the Mushroom dataset in 2 classes

Let N be the number of instances, V the number of input values, J the
number of output values and I the number of groups. Ni. denotes the number
of instances in the group i, and Nij the number of instances of output value
j in the group i. The Bayesian model selection approach is applied like in the
discretization case and provides the evaluation criterion given in formula 2. This
formula has a similar structure as that of formula 1. The two first terms corre-
spond to the prior distribution of the partitions of the input values, in groups
of values in formula 2 and in intervals in formula 1. The two last terms are the
same in both formula.

log V + log B (V, I) +
I∑

i=1

log
(

Ni. + J − 1
J − 1

)
+

I∑
i=1

log
Ni.!

Ni1!Ni2! . . . NiJ !
(2)

B (V, I) is the number of divisions of the V values into I groups (with even-
tually empty groups). When I = V , B (V, I) is the Bell number. In the general
case, B (V, I) can be written as a sum of Stirling numbers of the second kind.

10 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

In [Bou05], a standard greedy bottom-up heuristic is proposed to find a good
grouping of the input values. Several pre-optimization and post-optimization
steps are incorporated, in order to both ensure an algorithmic time complexity
of O(JN log(N)) and to obtain accurate value groupings.

3 Extension to supervised bivariate evaluation

In this section, we extend the MODL methods to the supervised evaluation of
pairs of input variables. We first introduce the approach using an illustrative
example and then present the bivariate evaluation criterion in the case of two
numerical variables. We generalize the criterion to any case of pairs of input
variables and finally introduce the compression gain, a normalized version of the
criteria.

3.1 Interest of the joint partitioning of two input variables

Figure 4 draws the multiple scatter plot (per class value) of the input variables
V1 and V7 of the Wine dataset [BM96]. This diagram allows to visualize the
conditional probability of the output values given the pair of input variables. The
V1 variable taken alone cannot separate Class 1 from Class 3 for input values
greater than 13. Similarly, the V7 variable is a mixture of Class 1 and Class 2
for input values greater than 2. Taken jointly, the two input variables allow a
better separation of the class values.

0

1

2

3

4

5

6

11 12 13 14 15

V1

V7

Class 1
Class 2
Class 3

]2.18, +∞[(0, 23, 0) (59, 0, 4)

]1.235, 2.18] (0, 35, 0) (0, 5, 6)

]-∞, 1.235] (0, 4, 11) (0, 0, 31)

V7xV1]-∞, 12.78]]12.78, +∞[

Fig. 4. Multiple scatterplot (per class value) of the input variables V1 and V7 of the
Wine dataset. The optimal MODL supervised bivariate partition of the input variables
is drawn on the multiple scatterplot, and the triplet of class frequencies per data grid
cell is reported in the right table

Extending the univariate case, we partition the dataset on the cross-product
of the input variables to quantify the relationship between the input and output
variables. Each input variable is partitioned into a set of parts (intervals in the
numerical case and groups of values in the categorical case). The cross-product of
the univariate input partitions defines a data grid, which partitions the instances

11

into a set of data cells. Each data cell is defined by a pair of parts. The connection
between the input variables and the output variable is evaluated owing to the
distribution of the output values in each cell of the data grid. It is noteworthy
that the considered partitions can be factorized on the input variables.

For instance in Figure 4, the V1 variable is discretized into 2 intervals (one
bound 12.78) and the V7 variable into 3 intervals (two bounds 1.235 and 2.18).
The instances of the dataset are distributed in the resulting bidimensional data
grid. In each cell of the grid, the distribution of the output values can be esti-
mated by counting. For example, the right table in Figure 4 shows that the cell
defined by the intervals]12.78,+∞[on V1 and]2.18,+∞[on V7 contains 63
instances. These 63 instances are distributed on 59 instances for Class 1 and 4
instances for Class 3.

Coarse grained data grids tend to be reliable, whereas fine grained data
grids allow a better separation of the output values. In our example, the MODL
optimal data grid is drawn on the multiple scatter plot on the left of Figure 4.

3.2 Evaluation criterion for pairs of numerical variables

We extend the MODL approach to find the best tradeoff between information
and reliability. We introduce in Definition 1 a family of bivariate partitioning
models and select the best model owing to a Bayesian model selection approach.
We first focus on numerical input variables, before generalizing to any pair of
input variables, categorical or mixed types.

Definition 1. A data grid model is a bivariate partitioning model defined by
a partition of each input variable in a set of intervals and by a multinomial
distribution of the output values in each cell of the data grid resulting from the
cross-product of the univariate partitions.

Notations.
– Y : output variable,
– X1, X2: input variables,
– N : number of instances,
– J : number of output values,
– I1, I2: number of intervals for each input variable,
– Ni1..: number of instances in the interval i1 of variable X1,
– N.i2.: number of instances in the interval i2 of variable X2,
– Ni1i2.: number of instances in the input data cell (i1, i2),
– Ni1i2j : number of instances of output value j in the input data cell (i1, i2).

A data grid model describes the distribution of the output values given the
input values. It is completely defined by the numbers of intervals I1 and I2, the
bounds of the intervals {Ni1..} and {N.i2.} and the distribution of the output
values {Ni1i2j} in each cell (i1, i2) of the data grid . It is noteworthy that the
numbers of instances per cell {Ni1i2.} do not belong to the parameters of the
data grid models: they are derived from the definition of the two univariate
partitions and from the dataset.

12 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

Any input information is used to define the family of models introduced in
Definition 1. The bounds of the univariate partition come from the input values
and the frequencies of the input data cells come from the dataset. In that sense,
the data grid models are data dependent. What is described in the model is the
connection between the input variables and the output variable.
We now introduce in Definition 2 a prior distribution on the parameters of the
data grid models. This prior exploits the hierarchy of the parameters and is
uniform at each stage of this hierarchy.

Definition 2. The hierarchical prior of the data grid models is defined as fol-
lows:

– the numbers of input intervals are independent from each other, and uni-
formly distributed between 1 and N ,

– for each input variable and for a given number of intervals, every partition
in intervals is equiprobable,

– for each cell of the data grid, every distribution of the output values is
equiprobable,

– the distributions of the output values in each cell are independent from each
other.

We apply the Bayesian model selection approach and obtain the evaluation
criterion of a data grid model M in formula 3.

c(M) = log N + log
(

N + I1 − 1
I1 − 1

)
+ log N + log

(
N + I2 − 1

I2 − 1

)
+

I1∑
i1=1

I2∑
i2=1

log
(

Ni1i2. + J − 1
J − 1

)
+

I1∑
i1=1

I2∑
i2=1

log
Ni1i2.!

Ni1i21!Ni1i22! . . . Ni1i2J !

(3)

As in the case of univariate discretization (formula 1), the two first terms
correspond to the prior probability of the parameters (number of intervals and
choice of the bounds) of the discretization of the input variable X1. Similarly,
the two following terms correspond to the prior probability of the discretization
of the input variable X2. The binomial term in the first double sum represents
the choice of the multinomial distribution of the output values in each cell. The
multinomial term in the last double sum represents the conditional likelihood of
the output values given the data grid model.

3.3 Evaluation criterion for any pair of variable

In the case of two categorical variables X1 and X2 with V1 and V2 input values,
we apply the same approach. The X1 variable is partitioned into I1 groups of
values (instead of intervals in the numerical case) and the X2 variable into I2

groups. The distribution of the output values is described in each cell of the
data grid resulting from the joint partitioning of the input variables. Compared
to the numerical case, the only change is the prior distribution of each univariate

13

partition. The impact in formula 3 is to replace the terms related to the prior
distribution of the partition into intervals (two first terms of the univariate dis-
cretization of formula 1) by the corresponding value grouping terms (two first
terms of the univariate value grouping of formula 2). The resulting evaluation
criterion of a data grid model M for two categorical input variables is given in
formula 4.

c(M) = log V1 + log B (V1, I1) + log V2 + log B (V2, I2)

+
I1∑

i1=1

I2∑
i2=1

log
(

Ni1i2. + J − 1
J − 1

)
+

I1∑
i1=1

I2∑
i2=1

log
Ni1i2.!

Ni1i21!Ni1i22! . . . Ni1i2J !
(4)

In the mixed case of one categorical variable X1 with V1 values and one
numerical variable X2, the first variable is grouped and the second one is dis-
cretized. The resulting evaluation criterion of a data grid model M for mixed
type input variables is given in formula 5.

c(M) = log V1 + log B (V1, I1) + log N + log
(

N + I2 − 1
I2 − 1

)
+

I1∑
i1=1

I2∑
i2=1

log
(

Ni1i2. + J − 1
J − 1

)
+

I1∑
i1=1

I2∑
i2=1

log
Ni1i2.!

Ni1i21!Ni1i22! . . . Ni1i2J !

(5)

3.4 Compression gain

The evaluation criterion c(M) given in formulas 3, 4, 5 is related to the prob-
ability that a data grid model M explains the output variable. The criterion
c(M) can also be interpreted as the ability of a data grid model to encode the
output values given the input values, since negative log of probabilities are no
other than coding lengths [Sha48]. Let M∅ be the null model with only one part
for each univariate partition and one cell in the data grid. c(M∅) represents the
coding length of the output values when no input information is used, and is
asymptotically equal to N times the Shannon’s entropy of the output variable.
More complex data grid models may better compress the output values, since
the entropy of the output values is defined locally to each input cell. Fine grained
cells allow to identify input regions where the output entropy is low (unbalanced
mixture of the output values), but too complex data grid models with many cells
are penalized with an increasing coding length of the model parameters.

Given these probabilistic and compression interpretations, we propose to use
the evaluation criterion c(M) to build a relevance criterion for each pair of input
variables. The variable pairs can be sorted by decreasing probability of explaining
the output variable. In order to provide a normalized indicator, we consider the
following transformation of c(M):

g (M) = 1− c (M)
c (M∅)

. (6)

14 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

The compression gain g(M) holds its values between 0 and 1 for models
which are better than the null model (g(M) is negative otherwise). It has value
0 for the null model and is maximal when the best possible explanation of the
output values conditionally to the pair of input variables is achieved.

4 Optimization algorithms

The space of data grid models is so large that straightforward algorithms almost
surely fail to obtain good solutions within a practicable computational time.
Given that the MODL criterion is optimal, the design of sophisticated optimiza-
tion algorithms is both necessary and meaningful. Such algorithms are described
in Chapter 2. They finely exploit the sparseness of the data grids and the addi-
tivity of the MODL criterion, and allow a deep search in the space of data grid
models with O(N) memory complexity and a O(N log N) time complexity.

In this section, we give an overview of the data grid optimization algorithms
which are fully detailed in Chapter 2.

Let us first focus on the case of two numerical input variables. The optimiza-
tion of a data grid is a combinatorial problem. For each input variable X1 and X2,
there are 2N possible univariate discretizations, which represents

(
2N

)2 possible
bivariate discretizations. An exhaustive search through the whole space of mod-
els is unrealistic. We describe in algorithm 1 a greedy bottom up merge heuristic
(GBUM) to optimize the data grids. The method starts with the maximum data
grid MMax, which corresponds to the finest possible univariate discretizations,
with single value intervals. It evaluates all the merges between adjacent inter-
vals, and performs the best merge if the evaluation criterion decreases after the
merge. The process is reiterated until no further merge decreases the criterion.

Algorithm 1 Greedy Bottom Up Merge heuristic (GBUM)
Require: M {Initial data grid solution}
Ensure: M∗, c(M∗) ≤ c(M) {Final solution with improved cost}
1: M∗ ←M
2: while improved solution do
3: for all Merge m between two parts of variable X1 or X2 do
4: M ′ ←M∗ + m {Evaluate merge m on data grid M∗}
5: if c(M ′) < c(M∗) then
6: M∗ ←M ′

7: end if
8: end for
9: end while

Each evaluation of a data grid requires O(N2) time, since the initial data
grid model MMax contains N2 cells. Each step of the algorithm relies on O(N)
evaluations of interval merges, and there are at most O(N) steps, since the data

15

grid becomes equal to the null model M∅ once all the possible merges have
been performed. Overall, the time complexity of the algorithm is O(N4) using
a straightforward implementation of the algorithm. However, the method can
be optimized in O(N log N) time, as demonstrated in Chapter 2. The optimized
algorithm mainly exploits the sparseness of the data and the additivity of the
evaluation criterion. Although a data grid may contain O(N2) cells, at most N
cells are non empty. Thus, each evaluation of a data grid can be performed in
O(N) owing to a specific algorithmic data structure. The additivity of the eval-
uation criterion means that the criterion can be decomposed on the hierarchy of
the components of the data grid: variables, parts and cells. Using this additiv-
ity property, all the merges between adjacent parts can be evaluated in O(N)
time. Furthermore, when the best merge is performed, the only impacted merges
that need to be reevaluated for the next optimization step are the merges that
share instances with the best merge. Since the data grid is sparse, the number of
reevaluations of data grids is small on average. Sophisticated algorithmic data
structures and algorithms are necessary to exploit these optimization principles
and guarantee a time complexity of O(N log N).

The optimized version of the greedy heuristic is time efficient, but it may fall
into a local optimum. First, the greedy heuristic may stop too soon and produce
too many parts for each input variable. Second, the boundaries of the intervals
may be sub-optimal since the merge decisions of the greedy heuristic are never
rejected. The post-optimization algorithms described in [Bou06a] in the case of
univariate discretization are applied alternatively to each input variable, for a
frozen partition of the other input variable.

While post-optimizations may help to refine a good solution, the main heuris-
tic may be unable to obtain such an initial good solution. This problem is tackled
using the VNS meta-heuristic [HM01], which mainly benefits from multiple runs
of the algorithms with different random initial solutions.

In the case of categorical variables, the combinatorial problem is still worse
for large numbers of values V . The number of possible partitions of the val-
ues is equal to the Bell number B(V) = 1

e

∑∞
k=1

kV

k! which is far greater than
the O(N2) possible discretizations. Furthermore, the number of possible merges
between adjacent parts is O(V 2) for categorical variables instead of O(N) for
numerical variables. Specific pre-processing and post-processing heuristics are
necessary to efficiently handle the categorical input variables. Mainly, the num-
ber of groups of values is bounded by O(

√
N) in the algorithms, and the initial

and final groupings are locally improved by exchange of values between groups.
This allows to keep an O(N) memory complexity and bound the time complexity
by O(N

√
N log N) for categorical variables.

5 Evaluation on artificial datasets

In this section, the bivariate analysis method is evaluated using the optimiza-
tion algorithms described in Chapter 2. The evaluation is performed on artificial
datasets, where the true data distribution is known. Three patterns are consid-

16 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

ered: noise, chessboard and Gaussian mixture. An empirical study of the time
complexity of the optimization algorithms is also reported.

5.1 Noise pattern

The purpose of the noise pattern experiment is to evaluate the noise resistance of
the method, under variation of the sample size. The noise pattern dataset consists
of an output variable independent from the input variables. The expected data
grid contains one single cell, meaning that the class conditional information is
independent from the input variables.

The output variable is equidistributed on two values. In the case of numerical
input variables, the input values are uniformly distributed on the [0, 1] numerical
domain. In the case of categorical input variables, the input values are equidis-
tributed on V input values. Six families of noise datasets are considered: one for
numerical input variables and five for categorical input variables with 2, 8, 32,
128 and 512 values. The experiment is performed on a large range of sample sizes
ranging from 2 to 100,000 instances, in a geometric progression. Small sample
sizes allow to study non-asymptotic behavior whereas large sample sizes focus
on scalability issues.

The evaluated criterion is the number of cells in the data grid. In order to
obtain reliable results, the experiment is performed on 100 randomly generated
train datasets for each sample size. Figure 5 presents the mean cell number, for
each dataset family and each sample size.

1

1.2

1.4

1.6

1.8

2

1 10 100 1000 10000 100000
Sample size

M
ea

n
ce

ll
nu

m
be

r

Categorical(2)
Categorical(8)
Categorical(32)
Categorical(128)
Categorical(512)
Numerical

Fig. 5. Mean cell number for the noise pattern datasets, for sample size ranging from
2 to 100,000

Below sample size 4, there are not enough instances to constitute any pattern.
Between sample size 10 and 100, a pattern is detected in about 10% of the cases
for numerical input variables and for categorical input variables having less than
two values. For larger sample sizes, or larger numbers of categorical input values,
the noise pattern is almost always correctly detected.

5.2 Chessboard pattern

The purpose of the chessboard pattern experiment is to evaluate the ability
of the method to identify complex bivariate patterns, that cannot be detected

17

using univariate analysis. A chessboard pattern of size 2 corresponds to an XOR
pattern, as pictured in the right scatterplot of Figure 1. We generalize this XOR
pattern using chessboards having S columns and S rows. Each input value is
given an index between 1 and S, and the output value results from the parity of
the sum of the indexes of the two input values.

In case of numerical input variables, the input values are uniformly dis-
tributed on the [0, S] numerical domain and rounded to the closest ceiling integer
to obtain the input indexes. In case of categorical variables, S input values are
considered, which directly provide the input indexes. Five sizes of chessboard
patterns are considered (2x2, 8x8, 32x32, 128x128, 512x512) both for numerical
or categorical input variables. The evaluation protocol is the same as for the
noise pattern.

Figure 6 presents the mean cell number for each dataset in the numerical
family and for each sample size. The expected data grid contains S2 cells, re-
sulting from two univariate discretizations of S intervals. The results exhibit the
same behavior for all sizes of numerical chessboards. Below a given threshold,
the number of instances is not sufficient to detect the pattern, and beyond this
threshold, the expected number of cells is rapidly and accurately detected. About
16 instances are necessary to detect the 2x2 pattern, 250 instances for the 8x8
pattern, 2000 instances for the 32x32 pattern, 16000 for the 128x128 pattern and
150000 for the 512x512 pattern. Interestingly, large sample sizes allow to detect
very complex patterns with a remarkably small average number of instances per
data grid cell. About 4 instances per cell are necessary to detect the 2x2 pattern,
and only 0.5 instance per cell on average for the 512x512 pattern.

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000
Sample size

M
ea

n
ce

ll
nu

m
be

r Numerical(2)
Numerical(8)
Numerical(32)
Numerical(128)
Numerical(512)

Fig. 6. Mean cell number for the numerical chessboard pattern datasets, for sample
size ranging from 2 to 100,000

Figure 7 presents the mean cell number for each dataset in the categorical
family and for each sample size. The expected data grid reduces to an XOR
pattern with 4 cells, resulting from two univariate groupings of the S values
into two groups (according the the parity of the value indexes). Compared to
the numerical case, the univariate partitions are more complex to describe, but
the output distribution can be described with only 4 cells (instead of S2). The
results exhibit the same kind of behavior as in the numerical case, but the pattern

18 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

detection thresholds are much smaller. Only 500 instances are sufficient to detect
128x128 pattern and 4000 for the 512x512 pattern, which is remarkably small.

1

2

3

4

5

1 10 100 1000 10000 100000
Sample size

M
ea

n
ce

ll
nu

m
be

r Categorical(2)
Categorical(8)
Categorical(32)
Categorical(128)
Categorical(512)

Fig. 7. Mean cell number for the categorical chessboard pattern datasets, for sample
size ranging from 2 to 100,000

5.3 Gaussian mixture pattern

The purpose of the Gaussian mixture pattern is to evaluate the limits of the
method, when applied to a dataset which is far from its learning bias. Although
data grid models are non parametric and able to approximate any distribution
provided that there are enough instances, they are biased in favor of constant
conditional probabilities in each cell and of partition boundaries which are par-
allel to the axis. The true distribution in a Gaussian mixture pattern does obvi-
ously not fit this bias.

The pattern in the experiment contains two equidistributed output values.
For each output value, the input values are distributed according to a bidimen-
sional Gaussian vector with independent variables, as shown in Figure 8.

The evaluation protocol is similar to that of the noise pattern. We also evalu-
ate the root mean square error (RMSE) in order to compare the true conditional
probability p, known from the Gaussian mixture parameters, to the estimated
conditional probability q, computed from the trained data grid. In each non
empty cell (i1, i2) of the trained data grid, the conditional probability q of the
output value j is estimated with Ni1i2j+ε

Ni1i2.+Jε , where ε = 1
N is used to avoid zero

values. For empty cells, the conditional probability is taken as that of the whole
dataset according to N..j+ε

N+Jε . A test dataset DTest containing 100,000 instances
is generated once for all the experiments, to evaluate the RMSE, according to
formula 7.

RMSE =
√ ∑

(x,y)∈DT est

(p(y|x)− q(y|x))2 (7)

Figure 9 presents the mean cell number and Figure 10 the average RMSE
value of the trained data grid models for each sample size. We also report the

19

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Gaussian (-1,-1) Gaussian (1,1)

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Gaussian (-1,-1) Gaussian (1,1) Data grid

Fig. 8. Gaussian mixture for two Gaussian distributions centered on (−1,−1) and
(+1, +1) with standard deviation of 2. The scatterplot displays 2000 instances, and
the optimal data grid which contains 16 cells is presented on the right

RMSE results obtained by a basic parametric model, which assumes that there
is exactly one Gaussian vector with independent variables for each output value.
This parametric model estimates the means and variances of the Gaussian vec-
tors (overall eight parameters) from the empirical data, which corresponds to a
maximum likelihood estimate.

1

10

100

1 10 100 1000 10000 100000
Sample size

M
ea

n
ce

ll
nu

m
be

r

Fig. 9. Mean cell number for the Gaussian mixture pattern dataset, for sample size
ranging from 2 to 100,000

The results allow to “quantify” the non asymptotic behavior of the method.
Although data grids are non parametric models of conditional density estimation,
only 8 instances are sufficient to detect that the data comes more probably from
a pattern than from noise. The number of cells steadily grows with the sample
size to better approximate the Gaussian mixture pattern. The quality of the
approximation, estimated by the RMSE, is of course better with the parametric

20 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

method, which needs to estimate only 8 parameters instead of more than 100
for data grid models and sample size 100,000.

Let us now focus on the trade-off between the precision (as many cells as
possible) and the reliability of the approximation (as many instances per cell as
possible). In the case of this Gaussian pattern, the average number of cells is
about

√
N/8 and the average number of instances per cell is about

√
8N , re-

sulting in a RMSE ≈ N−1/4 (compared to a RMSE ≈ N−1/2 for the straight-
forward parametric model). Although these results are only experimental, they
provide a quantitative insight on the behavior of the data grid models.

0.001

0.01

0.1

1

1 10 100 1000 10000 100000
Sample size

M
ea

n
R

M
S

E

Data Grid
Gaussian

Fig. 10. Mean RMSE value for the Gaussian mixture pattern dataset, for sample size
ranging from 2 to 100,000. The results are reported both for the data grid non para-
metric estimator and the Gaussian mixture parametric estimator

Overall, the method is both resilient to noise and able to detect complex fine
grained patterns. It is able to approximate any conditional data distribution as
close as requested, provided that there are enough instances in the train dataset.

5.4 Evaluation of the optimization algorithms

The objective of this section is to evaluate the computational efficiency of the
data grid optimization heuristics and to investigate the main components of the
algorithms introduced in Chapter 2: greedy bottom-up merge heuristic, meta-
heuristic and post-optimization.

The evaluation is performed on a PC with Intel P4 2.5 Ghz processor and 1
Go RAM. Figure 11 reports the average computation time w.r.t the sample size
for four types of numerical patterns extracted from the experiments on artificial
datasets. The results confirm that the algorithmic complexity is O(N log N), as
shown by the corresponding slope drawn on the figure.

Figure 12 reports the same kind of results in the case of categorical patterns.
According to the algorithmic study in Chapter 2, the computation time should
be comprised between O(N log N) for small numbers of input categorical values
and O(N

√
N log N) for numbers of values beyond

√
N . This is confirmed by

Figure 12, which also shows that the computation time depends both on the
number of input values and on the number of instances.

21

0.001

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000
Sample size

C
om

pu
ta

tio
n

tim
e

(in
 s

)

RandomCC
GaussianMixture
Chessboard(32)
Chessboard(512)
N log(N) slope

Fig. 11. Computation time for numerical bivariate patterns

0.001

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000
Sample size

C
om

pu
ta

tio
n

tim
e

(in
 s

) Random(32)
Random(512)
Chessboard(32)
Chessboard(512)
N log(N) slope
N sqrt(N) log(N) slope

Fig. 12. Computation time for categorical bivariate patterns

We finally focus on the contribution of each algorithmic component described
in Chapter 2 to the quality of the optimized data grids. We perform a compar-
ative experiment using the numerical XOR pattern (cf. numerical chessboard
pattern of size 2 x 2). The first heuristic evaluated is the greedy bottom-up
merge heuristic (GBUM), which is at the heart of the optimization algorithms.
The second one is the VNS meta-heuristic which runs the GBUM algorithm sev-
eral times starting from random data grids of varying size. The third one is the
same meta-heuristic, equipped with a post-optimization(VNS+PostOpt) after
each run of the GBUM heuristic. This last heuristic is the complete data grid
optimization algorithm used in all the experiments of this paper. The evaluation
protocol is the same as that of the chessboard pattern experiments. Figure 13
reports the number of cells detected by each algorithm, w.r.t. the sample size.

Surprisingly, the GBUM heuristic needs a very large number of instances to
discover the XOR pattern. This can be explained by the sparseness of the initial
data grid, which contains N2 cells, but at most N non empty cells. The GBUM
algorithm performs about 2N merges between adjacent intervals, but only half
of them involve non empty cells. This means that half of the merges are chosen
”‘randomly”’, without being guided by the data. These random merges are likely
to destroy the pattern in the early steps of the heuristic, so that the last merges
are no longer able to detect the pattern.

The VNS meta-heuristic greatly improves the efficiency of the algorithm,
and needs about 100 times less instances than the GBUM heuristic to detect the
XOR pattern. The key point is that it starts from initial bivariate discretizations
with fewer intervals, so that the initial data grid contains enough instances per

22 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

1

2

3

4

5

1 10 100 1000 10000 100000
Sample size

M
ea

n
ce

ll
nu

m
be

r

GBUM
VNS
VNS+PostOpt

Fig. 13. Comparison of the performance of three data grid optimization algorithms for
the detection of an XOR numerical pattern

cell to guide the merge process. The drawback is that the boundaries of the
patterns are only approximated, since the initial random data grid are likely
to miss the correct boundaries. This results in data grids of size 2 x 3, 3 x 2
or 3 x 3 for the XOR pattern. Although the meta-heuristic is partly able to
improve this, finding the correct boundaries appears to be too difficult with the
VNS randomization strategy. This is illustrated in Figure 13 by an average cell
number beyond 4 for the VNS heuristic, especially for large sample sizes. The
post-optimization heuristic performs an efficient local search around good initial
solutions, and results in the correct detection of the XOR pattern.

The XOR pattern was chosen to be very simple for illustrative reasons. With
more complex patterns, the differences of quality between each heuristic are far
more important.

6 Evaluation on real datasets

This section evaluates the impact of the MODL bivariate method on supervised
classification. The benefits for data preparation are first presented on one exam-
ple dataset, prior to an intensive evaluation on many datasets.

6.1 Benefits for data preparation

This section evaluates the impact of the bivariate evaluation method on data
preparation, especially concerning variable selection and data visualization. The
Adult dataset [BM96] is used as an illustrative example. This dataset comes
from the US census bureau and contains about 50,000 instances described with 15
input variables (8 categorical and 7 numerical). The objective of the classification
task is to predict the output label ’> 50K’ (rich) or ’<= 50K’ (poor). The train
dataset used in this experiment contains about 70% of the instances.

The univariate analysis is performed using the MODL discretization and
value grouping methods. The results are reported in Table 1, where the in-
put variables are sorted by decreasing compression gain g(M). The univari-
ate analysis reveals that two variables, Label and Fnlwgt, are not informa-
tive. The two most informative variables are RelationShip and MaritalStatus,

23

with g(M) ≈ 20%. The CapitalGain Variable comes third (g(M) ≈ 13%), fol-
lowed by a group of three variables, Education, Age and EducationNum, with
g(M) ≈ 11%. This variable ranking provides a first insight on the informative
variables, but new questions arise concerning the interactions between these vari-
ables. The interaction can be constructive, if there is more information in a pair
of variable taken jointly than in the sum of the two univariate informations (like
in the XOR pattern). It can be additive if the two variables bring independent
information. Redundancy can also be detected if the pair of variables does not
bring more information than the most informative variable of the pair. The bi-

Table 1. Univariate ranking of the input variables of the Adult Dataset, sorted by
decreasing compression gain g(M)

Rank g(M) Variable Type Partition size

1 20.8% Relationship Categorical 4
2 19.7% MaritalStatus Categorical 4
3 13.5% CapitalGain Numerical 20
4 11.4% Education Categorical 7
5 11.4% Age Numerical 7
6 11.2% EducationNum Numerical 6
7 9.0% Occupation Categorical 7
8 7.1% HoursPerWeek Numerical 6
9 5.3% CapitalLoss Numerical 15
10 4.6% Sex Categorical 2
11 2.2% Workclass Categorical 4
12 1.0% Race Categorical 2
13 0.7% NativeCountry Categorical 3
14 0.0% Label Numerical 1
15 0.0% Fnlwgt Numerical 1

variate analysis is then performed using the method presented in the paper. The
results are reported in Table 2 for the first twenty pairs of variables (among
105 pairs). The two most informative variables RelationShip and MaritalStatus
look redundant, since they bring similar information in all the pairs of variables
where they are involved. This is confirmed by an inspection of the MaritalStatus
x Relationship pair, ranked 20th, whose compression level is only slightly better
than that of the Relationship variable taken alone. The redundancy is perfectly
detected for the Education x EducationNum pair, since the corresponding data
grid, ranked 67th, reduces to a 7 x 1 grid identical to the univariate partition
of variable Education. On the opposite, the interaction between Education and
MaritalStatus is approximatively additive, since the compression gain of the
pair (30.3%) is not far from the sum of the compression gains of each variable

24 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

Table 2. Bivariate ranking of the twenty first pairs of input variables of the Adult
Dataset, sorted by decreasing compression gain g(M)

Rank g(M) Variable 1 Variable 2 Data Grid size

1 31.8% CapitalGain Relationship 12 x 4
2 31.1% CapitalGain MaritalStatus 15 x 3
3 30.3% Education Relationship 7 x 3
4 30.3% Education MaritalStatus 7 x 3
5 30.1% EducationNum Relationship 6 x 3
6 30.1% EducationNum MaritalStatus 7 x 3
7 27.4% Occupation Relationship 6 x 4
8 26.7% MaritalStatus Occupation 3 x 6
9 24.4% CapitalLoss Relationship 9 x 4
10 24.0% Age Relationship 5 x 3
11 23.9% HoursPerWeek Relationship 5 x 4
12 23.6% Age MaritalStatus 5 x 2
13 23.5% CapitalLoss MaritalStatus 9 x 3
14 23.5% HoursPerWeek MaritalStatus 5 x 3
15 22.6% Age CapitalGain 6 x 11
16 21.9% Relationship Workclass 4 x 4
17 21.7% CapitalGain Education 11 x 6
18 21.6% CapitalGain EducationNum 11 x 6
19 21.3% NativeCountry Relationship 2 x 4
20 21.1% MaritalStatus Relationship 3 x 3

(32.2%). Let us now visualize in Figure 14 the interaction between one numerical
variable, EducationNum, and one categorical variable, MaritalStatus. The Ed-
ucationNum variable is discretized in 7 intervals, with an increasing proportion
of rich persons. The MaritalStatus variable is partitioned into three groups of
values that look consistent: {Never-Married}, {Divorced, Separated, Widowed}
and {Married-civ-spouse, Married-AF-spouse}. The two variables taken jointly
bring a meaningful and easily understandable information. The proportion of
rich people always increases with the number of education years, but the corre-
sponding curve has not the same shape and is not at the same level according to
the marital status. The data grid model can also easily be transformed into an
understandable set of rules, with one rule for each cell. For example, the right-
most upper cell in Figure 14 can be described with the following rule: for married
people with at least 15 years of education, the proportion of rich is beyond 80%.

Finally, let us focus in Figure 15 on two numerical variables, Age and Ed-
ucationNum. This pair is ranked 31th with a compression gain of 20.0%. The
two input variables are discretized in 7 and 5 intervals (instead of 7 and 6 in
the univariate case). The 3D histogram resulting from the data grid model al-

25

lows a to visualize the interaction between the two input variables in a clearly
understandable way.

… 8 9 10 11-12 13 14 15 …

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

{Never-married} {Divorced, Separated, Widowed} {Married-civ-spouse, Married-AF-spouse}

Fig. 14. 3D histogram for the Adult dataset, with the two input variables Education-
Num and MaritalStatus on the X and Y axis and the percentage of rich people per cell
on the Z axis

… 23 24-27 28-32 33-35 36-45 46-61 62 …

… 8
 9

10-12
13-14

15 …

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

… 8
 9
10-12
13-14
15 …

Fig. 15. 3D histogram for the Adult dataset, with the two input variables Age and
EducationNum on the X and Y axis and the percentage of rich people per cell on the
Z axis

Overall, the bivariate evaluation method is very helpful in the data prepa-
ration step of data mining, with ranking of pairs of variables, detection of con-
structive interactions or of redundancies in the representation space, and easily
understandable visualizations of the joint conditional information carried out by
each pair of variables.

26 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

6.2 Benefits for modeling

In this section, we focus on the predictive accuracy of the data grid models.
In order to evaluate the intrinsic performance of the MODL bivariate method,

we introduce a new type of classifier called best bivariate (B2). This classifier
first searches the best pair of variables, which maximizes the probability that
its partitioning model explains the target variable. In order to classify a test
instance, the input cell related to the instance is retrieved from the learned data
grid and the majority target value of this cell is used for prediction. In case
where this cell was empty in the learned data grid, the majority class value on
the whole train dataset is used for prediction. For sanity check, we also evaluate
the best univariate classifier (B1), which proceeds in the same way on the basis
of the MODL univariate analysis, and we present the results of the majority
classifier (M) which serves as a ground level reference.

In order to evaluate the impact of the method on multivariate classifiers,
we evaluate the naive Bayes classifier [LIT92], on the basis of the univariate
preprocessing (NB1) and bivariate preprocessing (NB2). We also exploit the en-
hancements of this classifier described in [Bou06b] 2 , which incorporates both
variable selection and model averaging and results in a naive Bayes classifier
with weighted variables. This enhanced selective naive Bayes classifier (SNB)
is applied using the univariate preprocessing (SNB1) and bivariate preprocess-
ing(SNB2). The bivariate preprocessing is basically exploited in the experiments,
since each bivariate partitioning is simply managed as a constructed variable
which expands the data representation space.

To summarize, the evaluated classifiers are:

– M: majority classifier,
– B1: best univariate classifier,
– B2: best bivariate classifier (based on the best preprocessed pair of variables),
– NB1: naive Bayes classifier,
– NB2: naive Bayes classifier (based on bivariate preprocessing),
– SNB1: selective naive Bayes classifier,
– SNB2: selective naive Bayes classifier (based on bivariate preprocessing).

The experiments are performed on 30 datasets from the UCI repository
[BM96] described in Table 3. They represent a large variety of domains, in-
stance numbers, variable numbers, types of variables (numerical or categorical)
and numbers of target values. The test accuracy is evaluated using a stratified
ten fold cross-validation. In order to determine whether the performances are
significantly different between the SNB2 method and the alternative methods,
the t-statistics of the difference of the results is computed, at the 5% confidence
level.

The results are summarized in Table 4 with the mean of the test accuracy
on all the datasets. The number of significant differences for the NB2 classifier
2 Tool available as a shareware at http://www.francetelecom.com/

en/group/rd/offer/software/technologies/middlewares/khiops.html.

27

Table 3. UCI Datasets

N◦ Name Instances Numerical Categorical Classes Majority
variables variables accuracy

1 Abalone 4177 7 1 28 16.5
2 Adult 48842 7 8 2 76.1
3 Australian 690 6 8 2 55.5
4 Breast 699 10 0 2 65.5
5 Crx 690 6 9 2 55.5
6 German 1000 24 0 2 70.0
7 Glass 214 9 0 6 35.5
8 Heart 270 10 3 2 55.6
9 Hepatitis 155 6 13 2 79.4
10 HorseColic 368 7 20 2 63.0
11 Hypothyroid 3163 7 18 2 95.2
12 Ionosphere 351 34 0 2 64.1
13 Iris 150 4 0 3 33.3
14 LED 1000 7 0 10 11.4
15 LED17 10000 24 0 10 10.7
16 Letter 20000 16 0 26 04.1
17 Mushroom 8416 0 22 2 53.3
18 PenDigits 7494 16 0 10 10.4
19 Pima 768 8 0 2 65.1
20 Satimage 6435 36 0 6 23.8
21 Segmentation 2310 19 0 7 14.3
22 SickEuthyroid 3163 7 18 2 90.7
23 Sonar 208 60 0 2 53.4
24 Spam 4307 57 0 2 64.7
25 Thyroid 7200 21 0 3 92.6
26 TicTacToe 958 0 9 2 65.3
27 Vehicle 846 18 0 4 25.8
28 Waveform 5000 21 0 3 33.9
29 Wine 178 13 0 3 39.9
30 Yeast 1484 8 1 10 31.2

28 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

is also reported, as well as the average rank of each method. It is noteworthy
that the classifier based on one single variable (B1) is as accurate as the best
multivariate classifier evaluated in the benchmark (SNB2) in about one quarter
of the datasets (no significant differences in 7 datasets out of 30). The classifier
that selects only two variables (B2) obtains the best performance in about one
third of datasets (10 datasets out of 30).

Table 4. Mean of the test accuracy, number of significant differences for the NB2
classifier and average rank of each classifier on 30 UCI datasets

SNB2 NB2 SNB1 NB1 B2 B1 M

Mean 83.9% 81.9% 82.4% 81.4% 73.4% 67.6% 48.5%
Win/Draw/Loss 15/15/0 12/18/0 14/16/0 20/10/0 23/7/0
Average rank 1.8 3.3 2.3 3.4 4.4 5.4

In order to analyse the results with deeper details, Figure 16 presents the
accuracy per dataset for the best univariate, best bivariate and naive Bayes
classifiers, relatively to the accuracy of the majority classifier. The best bivari-
ate classifier is always more accurate than the best univariate classifier, which
confirms the capacity of the bivariate evaluation method to efficiently select a
predictive pair of variables. However, the best bivariate classifier is significantly
dominated by the naive Bayes classifier, which exploits the whole set of variables.

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N°
 dataset

Accuracy -
Accuracy(M)

NB1
B2
B1
M

Fig. 16. Difference of accuracy between each evaluated classifier and the majority
classifier (M), used as baseline. The evaluated classifiers are the best univariate (B1),
best bivariate (B2) and naive Bayes (NB1) classifiers

Figure 17 focuses on the naive Bayes multivariate classifier, and studies the
impact of exploiting or not the pairs of variables (NB2 and NB1) and of that
of variable selection (SNB2 and SNB1). Using the pairs of variables enlarges

29

the representation space, which potentially allows to detect new predictive in-
formation. On the other hand, redundancies in the univariate representation are
multiplied in the bivariate representation, which is detrimental to the naive Bayes
assumption. Figure 17 shows that the two effects are observed on the datasets of
the experiments, with significant loss of accuracy for datasets 1, 2, 6, 9, 22, 26,
and strong gain of accuracy for datasets 16, 18, 20, 23, 27. The variable selection
method [Bou06b] used in the SNB1 classifier confirms its beneficial impact on
test accuracy, systematic but slight, compared to the NB1 classifier. When effi-
cient variable selection is used together with the pairs of variables (SNB2), the
gain in accuracy becomes both important, with an average improvement of 2.5%
(15% for the Letter dataset), and highly significant, with 14 significant wins and
0 loss.

-5%

0%

5%

10%

15%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N°
dataset

Accuracy -
Accuracy(NB1)

SNB2
NB2
SNB1
NB1

Fig. 17. Difference of accuracy between each evaluated classifier and the naive Bayes
classifier (NB1), used as baseline. The evaluated classifiers are the naive Bayes classifier
exploiting all pairs of variables (NB2) and the selective naive Bayes classifiers based
on univariate preprocessing (SNB1) or bivariate preprocessing (SNB2)

7 Conclusion

The bivariate evaluation method introduced in this paper is based on a parti-
tioning model of each input variables, in intervals for numerical variables and
in groups of values for categorical variables. The cross-product of the univariate
partitions, called a data grid, allows to quantify the conditional information rela-
tive to the output variable. The data grid models are evaluated using a Bayesian
approach, and the best joint partitioning is searched in the model space owing
to efficient heuristics.

Our method is non parametric both in the statistical and algorithmic sense :
it does not rely on any statistical hypothesis for the data distribution (like Gaus-
sianity for instance) and, as the criterion is regularized, there is no parameter to
tune before optimizing it. This strong point enables to consider large datasets.

The data grid models are non asymptotic universal approximators of the
class conditional density for pairs of input variables. Experiments on artificial

30 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

datasets show that the method is both very resilient to noise and able to detect
complex fine grained patterns, even with few instances. This requires sophisti-
cated algorithms, such as those described in Chapter 2. The experiments confirm
that these algorithms run in O(N log N) time and that less complex algorithms
fail to be as efficient.

The benefit of data grid models for data exploration is evaluated as a case
study on a real dataset. The results demonstrate the ability of the method to
detect constructive interactions or, on the opposite, redundancies between the
input variables, and highlight the vizualisation and data understanding capaci-
ties of the data grids.

The impact of bivariate preprocessing on classification accuracy is evaluated
through extensive experiments on 30 UCI datasets. The results show that the
bivariate evaluation method is able to select strongly predictive pairs of variables.
However, the average impact on classification accuracy is not conclusive for the
naive Bayes classifier when all the pairs of variables are exploited. The problem
is that the potential benefit of additional predictive information in the pairs
of variables is balanced by the detrimental effect of increased redundancies in
the presentation space. When the naive Bayes classifier is equipped with an
efficient variable selection method, the benefit of bivariate preprocessing becomes
both systematic and important: the classification accuracy always increases, with
significant differences in half of the cases.

References

[Bay01] S.D. Bay. Multivariate discretization for set mining. Machine Learning,
3(4):491–512, 2001.

[BFOS84] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification
and Regression Trees. California: Wadsworth International, 1984.

[BM96] C.L. Blake and C.J. Merz. UCI repository of machine learning databases,
1996. http://www.ics.uci.edu/mlearn/MLRepository.html.

[Bou05] M. Boullé. A Bayes optimal approach for partitioning the values of cat-
egorical attributes. Journal of Machine Learning Research, 6:1431–1452,
2005.

[Bou06a] M. Boullé. MODL: a Bayes optimal discretization method for continuous
attributes. Machine Learning, 65(1):131–165, 2006.

[Bou06b] M. Boullé. Regularization and averaging of the selective naive Bayes clas-
sifier. In International Joint Conference on Neural Networks, pages 2989–
2997, 2006.

[CCK+00] P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer,
and R. Wirth. CRISP-DM 1.0 : step-by-step data mining guide, 2000.

[CLNL87] D.B. Carr, R.J. Littlefield, W.L. Nicholson, and J.S. Littlefield. Scatterplot
matrix techniques for large n. Journal of the American Statistical Associa-
tion, 82:424–436, 1987.

[FGG97] N. Friedman, D. Geiger, and M. Goldsmidt. Bayesian network classifiers.
Machine Learning, 29:131–163, 1997.

[FI92] U. Fayyad and K. Irani. On the handling of continuous-valued attributes
in decision tree generation. Machine Learning, 8:87–102, 1992.

31

[GE03] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157–1182, 2003.

[GGHD06] I. Guyon, S. Gunn, A. Ben Hur, and G. Dror. Design and analysis of the
nips2003 challenge. In Feature Extraction: Foundations And Applications,
chapter 9, pages 237–263. Springer, 2006.

[Han80] T.S. Han. Multiple mutual informations an multiple interactions in fre-
quency data. Information and Control, 46(1):26–45, July 1980.

[HM01] P. Hansen and N. Mladenovic. Variable neighborhood search: principles
and applications. European Journal of Operational Research, 130:449–467,
2001.

[Kas80] G.V. Kass. An exploratory technique for investigating large quantities of
categorical data. Applied Statistics, 29(2):119–127, 1980.

[KJ97] R. Kohavi and G. John. Wrappers for feature selection. Artificial Intelli-
gence, 97(1-2):273–324, 1997.

[KK99] W. Kwedlo and M. Kretowski. An evolutionary algorithm using multivariate
discretization for decision rule induction. In Principles of Data Mining and
Knowledge Discovery, pages 392–397, 1999.

[Kon91] I. Kononenko. Semi-naive Bayesian classifier. In Y. Kodrato, editor, Sixth
European Working Session on Learning (EWSL91), volume 482 of LNAI,
pages 206–219. Springer, 1991.

[LIT92] P. Langley, W. Iba, and K. Thompson. An analysis of Bayesian classifiers.
In 10th national conference on Artificial Intelligence, pages 223–228. AAAI
Press, 1992.

[MC99] S. Monti and G.F. Cooper. A latent variable model for multivariate dis-
cretization. In The Seventh International Workshop on Artificial Intelli-
gence and Statistics, pages 249–254, 1999.

[McG54] W.J. McGill. Multivariate information transmission. IEEE Trans. Infor-
mation Theory, 4(4):93–111, 1954.

[NG05] M. Nadif and G. Govaert. Block clustering of contingency table and mixture
model. In Intelligent Data Analysis, pages 249–259, 2005.

[Pyl99] D. Pyle. Data preparation for data mining. Morgan Kaufmann Publishers,
Inc. San Francisco, USA, 1999.

[Qui93] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[Sap90] G. Saporta. Probabilités analyse des données et statistique. Technip, 1990.
[Sha48] C.E. Shannon. A mathematical theory of communication. Technical report,

Bell systems technical journal, 1948.
[SJ04] H. Steck and T. Jaakkola. Predictive discretization during model selection.

Pattern Recognition, LNCS 3175:1–8, 2004.
[VR03] R. Vilalta and I. Rish. A decomposition of classes via clustering to explain

and improve naive Bayes. In Proceedings of the 14th European Conference
on Machine Learning, pages 444–455, 2003.

[WBW05] G.I. Webb, J.R. Boughton, and Z. Wang. Not so naive bayes: Aggregating
one-dependence estimators. Machine Learning, 58(1):5–24, 2005.

[ZR00] D.A. Zighed and R. Rakotomalala. Graphes d’induction. Hermes, France,
2000.

[ZRES05] D.A. Zighed, G. Ritschard, W. Erray, and V.M. Scuturici. Decision trees
with optimal joint partitioning. International Journal of Intelligent System,
20(7):693–718, 2005.

32 Chapter 1. Optimal Bivariate Evaluation for Supervised Learning

Chapter 2

Optimization Algorithms
for Bivariate Evaluation

of Data Grid Models

33

Optimization Algorithms
for Bivariate Evaluation

of Data Grid Models

Marc Boullé

France Télécom R&D Lannion,
marc.boulle@orange-ftgroup.com

Abstract. In the domain of data preparation for supervised learning,
many ranking methods have been proposed to assess the predictive infor-
mation of individual input variable. For example, supervised discretiza-
tion methods partition the input variable into a set of intervals, which
allows to evaluate the correlation between the input and output vari-
ables. Such partitions can be extended to the bivariate case, owing to a
partition of two input variables, in intervals in the numerical case and
in groups of values in the categorical case. The resulting input data grid
allows a joint evaluation of the two input variables with respect to the
output variable. In this paper, we introduce a family of additive eval-
uation criteria for data grid models and present new algorithms which
efficiently search the model space.

1 Introduction

In Chapter 1, we have introduced bivariate partitioning models called data grids
in order to quantify the predictive importance of pairs of input variables in su-
pervised learning. These models can be evaluated owing to an analytic criterion,
which is Bayes optimal but is difficult to optimize. The purpose of this paper is
to describe efficient algorithms for the optimization of data grid models. Their
evaluation on artificial and real data is reported in Chapter 1.

Many discretization methods have been proposed in the literature to eval-
uate the correlation between a numerical input variable and an output vari-
able [Cat91,Hol93,DKS95,ZR00,LHTD02]. Some discretization methods such as
ChiMerge [Ker91] or MDLPC [FI92] evaluate a bipartition of one interval into
two sub-intervals and apply the method recursively. Since the criterion evaluates
only a local decision for two adjacent intervals, the discretization of the whole
numerical domain cannot be optimized globally. Other discretization methods
such as BalancedGain [KBR84], Fusinter [ZRR98] or MODL [Bou06] exploit a
global criterion which evaluates the complete discretization, so that looking for
an optimal discretization makes sense.

For some classes of global criteria such as additive criteria, an optimal algo-
rithm based on dynamic programming [FKS95,ER96] allows to find the optimal
discretization in O(N3), where N is the number of instances. A more practical

34 Chapter 2. Optimization Algorithms for Bivariate Data Grid Models

time complexity is achievable using top-down or bottom-up heuristics. Top-down
methods start from the complete numerical domain interval and recursively split
it into smaller intervals. Bottom-up methods start from the set of single value in-
tervals and iteratively merge neighboring intervals. In the case of global criteria,
each evaluation of a discretization requires O(N) time since the discretization
contains O(N) intervals. At each step of the heuristic, there are O(N) splits
or merges to evaluate, and the number of steps is O(N). Overall, a straight-
forward implementation of the heuristic runs in O(N3) time. However, in case
of additive criteria, computation time can be saved provided that intermediate
evaluation results are kept into memory. Using a careful implementation such as
that described in [Bou04], the algorithm runs in O(N log N) time.

While discretization methods look for a partition of a numerical variable
into intervals, value grouping methods search a partition of categorical variable
into groups of values. Value grouping methods exploit either local criteria such
as CHAID [Kas80] or global criteria such as Gain Ratio [Qui93]. Even with
additive evaluation criteria, no optimal algorithm is available in the literature,
since any partition of the input values is possible for value grouping. The time
efficient bottom-up discretization heuristic can be applied to value grouping,
but its time complexity is O(N2 log N) since O(N2) merge decisions have to
be evaluated for very large numbers of input values. In [Bou05], the bottom-up
standard heuristic is enhanced with pre-processing and post-processing steps, in
order to reach a practical O(N log N) time complexity without sacrifying the
quality of the solution.

The univariate partitioning of an input variable has been extended to the
bivariate case in Chapter 1, using data grid models. Each input variable is parti-
tioned, in intervals in the numerical case and in groups of values in the categori-
cal case. The resulting input data grid allows a joint evaluation of the two input
variables with respect to the output variable. The optimization of a data grid
is a combinatorial problem. Let us first focus on numerical input variables. We
describe in Algorithm 1 an adaptation of the greedy bottom up merge heuristic
(GBUM) to optimize the data grids. The method starts with the maximum data
grid MMax, which corresponds to the finest possible univariate discretizations,
based on single value intervals. It evaluates all the merges between adjacent in-
tervals, and perform the best merge if the evaluation criterion decreases after
the merge. The process is reiterated until no further merge can decrease the
criterion.

Each evaluation of a data grid requires O(N2) time, since the initial data grid
model MMax contains N2 cells. Each step of the algorithm relies on O(N) eval-
uations of interval merges, and there are at most O(N) steps, since the data grid
reduces to the null model M∅ once all the possible merges have been performed.
Overall, the time complexity of the algorithm is O(N4) using a straightforward
implementation of the algorithm.

We introduce in section 2 a family of additive criteria for data grid models
and describe in section 3 an algorithmic structure that exploits the sparseness
of the data in the bidimensional space. We show in section 4 how to exploit this

35

Algorithm 1 Greedy Bottom Up Merge heuristic (GBUM)
Require: M {Initial data grid solution}
Ensure: M∗, c(M∗) ≤ c(M) {Final solution with improved cost}
1: M∗ ←M
2: while improved solution do
3: for all Merge m between two parts of variable X1 or X2 do
4: M ′ ←M∗ + m {Evaluate merge m on data grid M∗}
5: if c(M ′) < c(M∗) then
6: M∗ ←M ′

7: end if
8: end for
9: end while

algorithmic structure to implement the GBUM heuristic in O(N log N) time for
additive criteria in the case of numerical input variables. We present in section
5 several post-optimization heuristics, that still run in O(N log N) time. While
post-optimizations may help to refine a good solution, the main heuristic may
be unable to obtain such an initial good solution. We propose to tackle this
problem using a meta-heuristic described in section 6, which mainly benefits
from multiple runs of the algorithms with different random initial solutions. We
extend the algorithm to handle categorical input variables in section 7. Finally,
the algorithms are summarized in section 8.

2 Additive data grid evaluation criterion

This section formally states the definitions and notations related to data grid
models and introduces a family of additive evaluation criteria, first in the case
of univariate models, then in the case of bivariate data grid models.

2.1 Data grid models

Let us first focus on the univariate case and formalize in Definition 1 the univari-
ate partitioning models introduced for the discretization of numerical variables
[Bou06] and for the grouping of values of categorical variables [Bou05].

Definition 1. An univariate partitioning model is defined by a set of intervals
(resp. groups of values) and by the distribution of the output values in each
interval (resp. group of values).

Notations.

– Y : output variable,
– X: input variables,
– N : number of instances,
– J : number of output values,

36 Chapter 2. Optimization Algorithms for Bivariate Data Grid Models

– V : number of values(in the categorical case),
– I: number of parts (intervals or groups of values),
– Ni.: number of instances in the input part i,
– Nij : number of instances of output value j in the input part i.

We now present in Definition 2 the data grid models introduced in Chapter 1.
They consist in a family of bivariate partitioning models, the purpose of which
is to evaluate the joint information between a pair of input variables and an
output categorical variable. The input variables can be of any type, numerical
or categorical.

Definition 2. A data grid model is a bivariate partitioning model defined by a
partition of each input variable, in intervals in the numerical case or groups of
values in the categorical case, and by the distribution of the output values in each
cell of the data grid resulting from the cross-product of the univariate partitions.

The components of a data grid model are the input variables, the parts (inter-
vals or groups of values) in the univariate partitions, and the cells (cross-product
of two parts). An illustrative instance of data grid model is given in Figure 1.

Notations.

– Y : output variable,
– X1, X2: input variables,
– N : number of instances,
– J : number of output values,
– V1, V2: number of values for each input variable (in the categorical case),
– I1, I2: number of parts for each input variable,
– Ni1..: number of instances in the part i1 of variable X1,
– N.i2.: number of instances in the part i2 of variable X2,
– Ni1i2.: number of instances in the input data cell (i1, i2),
– Ni1i2j : number of instances of output value j in the input data cell (i1, i2).

A data grid model describes the distribution of the output values given the
input values. It is completely defined by the numbers of parts I1 and I2, the
specification of the univariate partitions which results in part frequencies {Ni1..}
and {.Ni2.} and the distribution of the output values {Ni1i2j} in each cell (i1, i2)
of the data grid . It is noteworthy that the cell frequencies {Ni1i2.} do not belong
to the parameters of the data grid models: they are derived from the specification
of the two univariate partitions and from the dataset.

2.2 Univariate case

In the univariate case (discretization or value grouping), the considered mod-
els consist in a partition of one input variable X in I parts. We introduce in
definition 3 a family of additive criteria to evaluate such partitions.

37

Definition 3. An evaluation criterion c(M) of a univariate partition model M
is additive if it can be decomposed as a sum of the following terms:
– a variable criterion c(V) (X, I), which relies only on features of the input

variable X and on the number of parts I in the partition,
– a part criterion c(P) (Pi) for each part Pi of the univariate partition of the

input variable X, which relies only on features of the part.

An additive univariate partition evaluation criterion can be written like in
formula 1. In the rest of the paper, C(M) is referred to as the cost of M .

c(M) = c(V) (X, I) +
I∑

i=1

c(P) (Pi) (1)

For example, the discretization criterion [Bou06] is additive with

c(V) (X, I) = log N + log
(

N + I − 1
I − 1

)
,

c(P) (Pi) = log
(

Ni. + J − 1
J − 1

)
+ log

Ni.!
Ni1!Ni2! . . . NiJ !

.

The value grouping criterion [Bou05] is also additive with

c(V) (X, I) = log V + log B (V, I) ,

c(P) (Pi) = log
(

Ni. + J − 1
J − 1

)
+ log

Ni.!
Ni1!Ni2! . . . NiJ !

.

We now describe in property 1 the impact of a merge between two parts for
additive evaluation criteria.

Property 1. Let M be a univariate partition model of variable X, Pia and Pib
two

parts of the partition and M ′ the partition resulting from the merge of the two
parts. Then the variation of the evaluation criterion δc(M ′,M) = c(M ′)− c(M)
can be decomposed as a sum of one variation term for the variable criterion and
one variation term for the part criterion.

More formally, we have

δc(M ′,M) = δc(V) (X, I) + δc(P) (Pia
, Pib

) , (2)

with δc(V) (X, I) = c(V) (X, I − 1)− c(V) (X, I) and
δc(P) (Pia

, Pib
) = c(P) (Pia

∪ Pib
)− c(P) (Pia

)− c(P) (Pib
) .

Property 1 means that each merge has only a local impact on the criterion. In
the case of discretization, all the merges can thus be evaluated in O(N) time since
each interval is involved in at most two merges, each of which evaluated in O(1).
This key property is at the ground of the optimized version of the univariate
greedy heuristic [Bou06], which runs in O(N log N) time (and O(N) memory
complexity) instead of O(N3) time with a straightforward implementation.

38 Chapter 2. Optimization Algorithms for Bivariate Data Grid Models

2.3 Bivariate case

We now extend in definition 4 the notion of additive criterion to data grid models,
which rely on a univariate partition of the values for each input variable, and for
each cell of the cross-product of the univariate partitions, on the distribution of
the output values.

Definition 4. An evaluation criterion c(M) of a data grid model M is additive
if it can be decomposed as a sum of the following terms:

– a grid criterion c(G) (G), which relies only on the number G = I1I2 of cells
in the data grid,

– a variable criterion c(V) (Xk, Ik), which relies only on features of the input
variable Xk (k ∈ {1, 2}) and on the number of parts Ik of its partition,

– a part criterion c(P)
(
P

(k)
ik

)
for each part P

(k)
ik

of the univariate partition of
the input variable Xk (k ∈ {1, 2}), which relies only on features of the part,

– a cell criterion c(V) (Ci1i2) for each cell Ci1i2 of the data grid, which relies
only on features of the cell, and which is null for empty cells.

An additive data grid evaluation criterion can be written like in formula 3.

c(M) = c(G) (G) +
∑

k∈{1,2}

c(V) (Xk, Ik)

+
∑

k∈{1,2}

Ik∑
ik=1

c(P)
(
P

(k)
ik

)
+

I1∑
i1=1

I2∑
i2=1

c(C) (Ci1i2)
(3)

For example, in the case of two numerical input variables, the evaluation
criterion introduced in Chapter 1 is additive with

c(G) (G) = 0,

c(V) (X1, I1) = log N + log
(

N + I1 − 1
I1 − 1

)
,

c(V) (X2, I2) = log N + log
(

N + I2 − 1
I2 − 1

)
,

c(P)
(
P

(1)
i1

)
= 0,

c(P)
(
P

(2)
i2

)
= 0,

c(C) (Ci1i2) = log
(

Ni1i2 + J − 1
J − 1

)
+ log

Ni1i2.!
Ni1i21!Ni1i22! . . . Ni1i2J !

.

Since the number of instances N and of output values J are supposed to be
known, they may be used in every component of the additive criterion. On the
opposite, the features of variables, parts and cells are local to their component:
they mainly consist in the frequency and frequency per output value locally

39

to the component (for example, Ni1i2. and Ni1i2j frequencies in the cells). The
other data grid evaluation criteria introduced in Chapter 1 in the case of two
categorical variables or mixed type variables are also additive.

We now describe in property 2 the impact of a merge between two parts of
the same variable in a data grid model for additive evaluation criteria. For sake
of simplicity, we consider the variable X1, without loss of generality.

Property 2. Let M be a data grid model, P
(1)
i1a

and P
(1)
i1b

two parts of the uni-
variate partition of variable X1 and M ′ the data grid resulting from the merge
of the two parts. Then the variation of the evaluation criterion δc(M ′,M) =
c(M ′)− c(M) can be decomposed as a sum of the variation of the criterion for
each component of the data grid involved in the merge.

More formally, we have

δc (M ′,M) = δc(G) (G, I1) + δc(V) (X1, I1)

+ δc(P) (Pia , Pib
) +

I2∑
i2=1

δc(C)
(
Ci1a i2 , Ci1b

i2

)
,

(4)

with δc(G) (G, I1) = c(G)

(
G

I1 − 1
I1

)
− c(G) (G) ,

δc(V) (X1, I1) = c(V) (X1, I1 − 1)− c(V) (X1, I1) ,

δc(P)
(
P

(1)
i1a

, P
(1)
i1b

)
= c(P)

(
P

(1)
i1a
∪ P

(1)
i1b

)
− c(P)

(
P

(1)
i1a

)
− c(P)

(
P

(1)
i1b

)
and

δc(C)
(
Ci1a i2 , Ci1b

i2

)
= c(C)

(
Ci1a i2 ∪ Ci1b

i2

)
− c(C)

(
Ci1a i2

)
− c(C)

(
Ci1b

i2

)
.

Given Property 2, the evaluation of a merge can be performed in O(1) for
the data grid, variable and part components of the criterion and in O(1) per non
empty cell involved in the merge.

3 Algorithmic structure for data grid optimization

In this section, we present an algorithmic structure designed to efficiently opti-
mize data grids. This structure exploits the sparseness of the data in the bivariate
case. Figure 1 shows a data grid for the (V1, V7) variables of the Wine dataset
[BM96], with about half of the cells being empty. In the extreme case, the max-
imum data grid MMax have O(N) parts in each univariate discretization and
O(N2) cells. However, this maximum data grid contains at most N non-empty
cells, since the number of such cells is below the number of instances in the
dataset.

We define below and illustrate in Figure 2 the components of an algorithmic
structure that allows an efficient storage of data grids.

40 Chapter 2. Optimization Algorithms for Bivariate Data Grid Models

Fig. 1. Data grid for the input variables V1 and V7 of the Wine dataset. The V1
variable is discretized into 8 parts and the V7 variable into 7 parts. There are 34 non
empty cells among the 56 cells of the data grid

– Data Grid: main data grid component, which collects the data grid features
and contains a list a Variable components and a set of Cell components,

– Variable: sub-component of a Data Grid, which collects the variable features
and contains a list of Part components,

– Part: sub-component of a Variable, which collects the part features and
references a list of Cell components,

• Interval: part in the case of a numerical variable,
• Value Group: part in the case of a categorical variable,

– Cell: cell defined by its Signature (a pair of Parts).

In the rest of the paper, we will refer to the data grid concepts (variable,
part, cell) using lower case characters and to the algorithmic components (Data
Grid, Variable, Part, Cell) with a leading uppercase character.

Data Grid Variable

Part

Interval Value Group

Cell

Cells Parts

Signature

Variables

Cells

Data Grid Merger Variable

Part

Interval Value Group

Cell

Cells Parts

Signature

Variables

Cells MergeSource
Target

Merges

Merges

Fig. 2. Algorithmic structure Data Grid defined to store a data grid and its extension
Data Grid Merger defined to store all the part merges considered by the bottom-up
merge heuristic

41

For example, the data grid shown in Figure 1 contains 2 variables and 34
non-empty cells. The first variable contains 8 parts and the second one 7 parts.
The first part of the V1 variable (interval] − ∞, 11.5]) references two cells,
whose signatures are (]−∞, 11.5],]2, 2.5]) and (]−∞, 11.5],]2.5, 3]).

We now extend the Data Grid structure to the Data Grid Merger struc-
ture, which contains the list of all the possible part Merges. As shown in Figure
2, each variable contains the list of all the merges between two parts. Each merge
references its Source part and its Target part, and each part maintains the list
of all its related merges.

Finally, let us introduce two last terms which are useful to describe the
optimization algorithms. Each merge corresponds to one input variable, called
the inner variable. The other input variable is called the outer variable. Similarly,
we relate to inner or outer parts (or to inner or outer merges), according to
whether these components belong to the inner or outer variable.

4 Optimized implementation of the greedy bottom-up
heuristic

In this section, we focus on numerical input variables. The case of categorical
variables is discussed in section 7.

The purpose of this section is to demonstrate that the Greedy Bottom Up
Merge (GBUM) heuristic (Algorithm 1) can run in O(N log N) time, owing to
the additivity of the criterion introduced in section 2 and to the Data Grid
Merger algorithmic structure defined in section 3. We detail the main subrou-
tines necessary to achieve this time complexity: initialization of the Data Grid
structure in section 4.1, evaluation of all the possible merges and initialization
of the Data Grid Merger structure in section 4.2, maintenance of this structure
throughout the GBUM algorithm in sections 4.3 and 4.4. We summarize the
algorithmic complexity results in section 4.5.

4.1 Initialization of the Data Grid structure

The Data Grid initialization subroutine is presented in Algorithm 2. Each in-
stance in the dataset is stored in the Data Grid with at most one Cell and two
Parts. Thus, the memory requirement of a Data Grid is O(N), like that of the
dataset.

During the initialization, the Parts are first created, ranked by their input
values. This requires a sort of the dataset for each variable, in O(N log N) time.
The cells can be efficiently initialized owing to a lookup table for the Parts of
each Variable (based on a hash function of the input values) and a lookup table
for the Cells of the Data Grid (based on a hash function of the cell signatures).
These hash tables allow to create or retrieve each Cell in O(1). Overall, the time
complexity of the Data Grid initialization subroutine is O(N log N).

42 Chapter 2. Optimization Algorithms for Bivariate Data Grid Models

Algorithm 2 Subroutine: initialization of a Data Grid Structure
Require: Dataset {Data in its tabular format (instances*variables)}
Ensure: Data Grid {Data in its Data Grid format}
1: Create an empty Data Grid
2: for all input variable V ∈ {X1, X2} do
3: Create an empty Variable V in the Data Grid
4: Sort Dataset according to V
5: Create initial Parts (Interval or Value Group) for each value of V
6: end for
7: for all instance in Dataset do
8: Lookup the corresponding Part for each input Variable
9: Compute the Signature of the corresponding Cell

10: Lookup the Cell corresponding to this Signature
11: if the Cell does not exist then
12: Create the Cell in the Data Grid
13: end if
14: Update the Cell output value frequencies
15: end for

4.2 Initialization of the Data Grid Merger structure

The Data Grid Merger initialization subroutine is described in Algorithm 3.
Since only adjacent intervals can be merged, there are at most O(N) possible
merges for each numerical input variable. Thus, the memory requirement of a
Data Grid Merger is O(N).

The main loop in the algorithm evaluates the local cost variation resulting
from each merge, and takes benefit from the additivity of the evaluation cri-
terion. The cost variation can be evaluated once at the variable level (δc(V))
and at the data grid level (δc(G)), since each merge results in the same new part
number (see Property 2). On the opposite, the cost variation has to be evaluated
locally to each merge at the part level (δc(P)) for the two parts involved in the
merge and at the cell level (δc(C)) for the non-empty cells involved in merge.
We show in Algorithm 4 that the merge evaluation subroutine requires a com-
putation time linear in the number of cells involved in the merge. Since each cell
participates to at most two merges (with the preceding and following interval),
the overall computation time for all the merges is O(N). Last, the merges are
sorted according to their cost variation, in order to retrieve the most interesting
merge. This sort requires O(N log N) time. Overall, the time complexity of the
Data Grid Merger initialization subroutine is O(N log N).

We now comment the merge evaluation subroutine described in Algorithm
4. When the source and target parts are merged, the routine mainly evaluates
the impact of the merge on the cells. Three situations may occur, as illustrated
in Figure 3. In the first situation, the source cell collides with a target cell.
This situation, identified in O(1) per cell owing to the hash function of the cell
signatures, has an impact on the cost variation related to the merge. In the two
other situations, there is either no target cell corresponding to a source cell,

43

Algorithm 3 Subroutine: initialization of a Data Grid Merger Structure
Require: Dataset {Data in its tabular format (instances*variables)}
Ensure: Data Grid Merger {Data in its Data Grid Merger format}
1: Call subroutine 2 {Initialize the core Data Grid structure}
2: Initialize the cost of each component (Data Grid, Variable, Part, Cell)
3: for all Variable in the Data Grid do
4: Compute the local variation of cost (δc(V)) resulting from one part less in the

variable partition
5: for all Part do
6: for all Possible merge between the Part and an adjacent Part do
7: Create an empty Merge
8: Link the Merge to each of its Parts
9: Call subroutine 4 {Evaluation of the merge}

10: end for
11: end for
12: Sort the Merges by decreasing cost variation and store them the Variable using

a sortable list
13: end for

either no source cell corresponding to a target cell. This has no impact on the
cost variation, since the involved cells are the same before and after the merge.

Fig. 3. Diagrams representing the merge between the source part [13.5, 14.0[and the
target part [14.0, 14.5[of variable V1 in the Wine dataset, before the merge (on the left)
and after the merge (on the right). Three sources cells collide with three target cells,
one source cell has no related target cell and two target cells have no related source
cells

4.3 Completion of the merges: impacts on the Data Grid

Once the Data Grid Merger structure is initialized, the best merge per input
variable can be retrieved in O(1) from the related sorted list of merges. Using
the additivity of the evaluation criterion, we just have to add the cost varia-
tion related to the variable (δc(V)) and to the data grid (δc(G)) to retrieve the

44 Chapter 2. Optimization Algorithms for Bivariate Data Grid Models

Algorithm 4 Subroutine: evaluation of the local cost variation resulting from
a Merge
Require: Merge M (1)

{We assume that the inner variable of the merge is variable X1 and that the number
of cells is less in its source part than in its target part}

Ensure: Evaluation of M (1) {δc = δc(P) +
P

δc(C)}
1: P

(1)
s ← source part of M (1)

2: P
(1)
t ← target part of M (1)

3: δc← δc(P)(P
(1)
s , P

(1)
t)

4: for all Cell C ∈ P
(1)
s do

5: P (2) ← outer part of C
6: s← (P

(1)
t , P (2)) {compute the signature s of C′ related to parts (P

(1)
t , P (2))}

7: if s ∈ Data Grid then
8: C′ ← Cell related to signature s {collision of cells during the merge}
9: δc← δc + δc(C)(C, C′)

10: end if
11: end for

best merge among the two variable best merges. The next issue is to efficiently
perform the merge and maintain the Data Grid structure.

Performing a merge is similar to evaluating a merge, except that all the
components impacted by the merge in the data grid have to be updated. This is
detailed in Algorithm 5.

During the completion of a merge, only the cells of the source part have
an impact on the time complexity, since they have to be either merged with
colliding target cells, either transfered to the target part. The target cells that
do not collide with source cells are never considered in the merge completion
subroutine. A close inspection of Algorithm 5 confirms that the time complexity
of one merge completion is linear in the number of cells in the source part of the
merge.

The time complexity of all the merge completions is then related to the
total number of cells considered (cell merges or cell transfers) during the whole
execution of the GBUM algorithm. Propositions 1 and 2 demonstrate that this
process has an overall time complexity of O(N log N).

Proposition 1. The total number of cell merges during the whole execution of
the GBUM algorithm is bounded by N .

Proof. Since the initial number of non-empty cells is bounded by N , and since
this number is decremented after each cell merge, the total number of cell merges
is bounded by N . �

Proposition 2. The total number of cell transfers or merges during the whole
execution of the GBUM algorithm is bounded by O(N log N).

Proof. Let us focus on one variable and on the part merges related to this vari-
able. Let us first define precisely how we choose the source and target part of a

45

Algorithm 5 Subroutine: completion of a merge in the core Data Grid structure
Require: Merge M (1)

{We assume that the inner variable of the merge is variable X1 and that the number
of cells is less in its source part than in its target part}

Ensure: Data Grid updated according to the merge
1: P

(1)
s ← source part of M (1)

2: P
(1)
t ← target part of M (1)

3: for all Cell C ∈ P
(1)
s do

4: P (2) ← outer part of C {the signature of C is (P
(1)
s , P (2))}

5: Unreference Cell C from its source Part P
(1)
s

6: Unreference Cell C from the Data Grid
7: s← (P

(1)
t , P (2)) {compute the signature s of C′ related to parts (P

(1)
t , P (2))}

8: if s ∈ Data Grid then
9: {the source Cell C is merged in the target Cell C′}

10: C′ ← Cell related to signature s
11: Update the output value frequencies of C′ with those of C
12: Unreference the Cell C from its outer Part P (2)

13: Delete the orphan source Cell C
14: else
15: {the source Cell C is transfered to the target Part P

(1)
t }

16: Replace the Part P
(1)
s by Part P

(1)
t in the Cell C

17: Reference the Cell C in its new Parts P
(1)
t

18: Reference the Cell C in the Data Grid with its new signature
19: end if
20: end for
21: Unreference the source Part P

(1)
s from the inner Variable X1

22: Delete the orphan Part P
(1)
s

46 Chapter 2. Optimization Algorithms for Bivariate Data Grid Models

merge. The part of the merge having the smallest cell number is called the cell-
based source part, and the one having the smallest instance number is called the
instance-based source part. In Algorithm 5, source parts are chosen according to
the cell-based rule. In this proof, we first study the algorithmic complexity for a
variant of Algorithm 5 using the instance-based instead of the cell-based rule.

Let D be an instance and {Mk, 1 ≤ k ≤ K} the list of the merges in which
the instance D is considered, that is where D belongs to the source part. Let nk

be the number of instances in the source part of merge Mk. Since the number of
instances in the target part is greater or equal than nk, the number of instances
in the new part resulting from the merge completion is at least twice nk. The
next merge Mk+1 contains all the instances of this new part. We thus have
nk+1 ≥ 2nk and more generally nk ≤ 2k−1n1. Since nK ≤ N , the number K of
merges that consider the instance D is bounded by O(log N).

This is true for each instance and for each input variable. Thus, the total
number of instances considered in the whole execution of the GBUM algorithm
is bounded by O(N log N), provided that the instance-based rule is used.

Let us now evaluate the algorithmic complexity using the initial Algorithm
5 which exploits the cell-based rule. The initial algorithm and its variant differ
only on the way they choose the source part of each merge. Since the smallest
number of cells between two parts is always lower than the smallest number of
instances, the total number of cell operations (transfers or merges) is smaller
using the cell-based rule of Algorithm 5. The claim follows. �

4.4 Completion of the merges: impacts on the Data Grid Merger

The last maintenance operation, summarized in Algorithm 6, is related to the
impact of a merge completion on the other merges. To reach an efficient time
complexity, the main issue is to restrict as much as possible the number of inner
or outer merges that need to be reevaluated.

Let us analyze the detailed impacts of a merge completion and introduce
the principles exploited to tackle the time complexity issue. Figure 4 illustrates
the case of a merge in the Wine dataset. Once the merge is completed, at most
two inner merges need to be reevaluated: these are the merges adjacent to the
source part P

(1)
s or to the target part P

(1)
t of the merge under completion. On

the other hand, potentially all the outer merges (related to variable V7) have to
be reevaluated. In fact, they need to be reevaluated only if they contain at least
one cell involved in the merge under completion. More precisely, owing to the
additivity of the criterion, the reevaluated outer merges are impacted by at most
four cells, which they share with the merge under completion. This is formalized
in proposition 3.

Proposition 3. The number of cells that have an impact on the reevaluation of
an outer merge is at most four.

Proof. Let M be a data grid model with I1 parts for variable X1 and I2 parts for
variable X2. Let P

(1)
i1s

and P
(1)
i1t

two parts of variable X1 involved as the source

47

Algorithm 6 Subroutine: completion of a merge in the Data Grid Merger struc-
ture
Require: Merge M (1)

{We assume that the inner variable of the merge is variable X1 and that the number
of cells is less in its source part than in its target part}

Ensure: Data Grid Merger updated according to the merge
1: for all inner merge M that need to be reevaluated do
2: Reevaluate M
3: Maintain the sortable list of merges of the inner variable
4: end for
5: for all outer merge M that need to be reevaluated do
6: Reevaluate M
7: Maintain the sortable list of merges of the outer variable
8: end for
9: Reevaluate the cost variation δc(V) for variable X1

10: Reevaluate the cost variation δc(G) for the data grid

Fig. 4. Merge between the source part P
(1)
s = [13.5, 14.0[and the target part P

(1)
t =

[14.0, 14.5[of the inner variable V1 in the Wine dataset. One outer merge related to the

outer variable V7 is also represented, with its source part P
(2)
s = [1.0, 1.5[and target

part P
(2)
t = [1.5, 2.0[. Four cells (two of them are non-empty cells) shared by the merge

under completion and the outer merge have an impact on the reevaluation of the outer
merge

48 Chapter 2. Optimization Algorithms for Bivariate Data Grid Models

and target parts of a merge under completion. Let P
(2)
i2s

and P
(2)
i2t

the source
and target parts of a merge of the outer variable X2, M ′

2 and M ′′
2 the data grid

resulting from the merge of these outer parts before and after the merge between
P

(1)
i1s

and P
(1)
i1t

.
From the variation of the data grid cost given in formula 4, we get

δc (M ′
2,M) = δc(G) (I1I2, I2) + δc(V) (X2, I2)

+ δc(P)
(
P

(2)
i2s

, P
(2)
i2t

)
+

I1∑
i1=1

δc(C)
(
Ci1i2s

, Ci1i2t

)
.

(5)

After the merge completion, the new cost variation δc (M ′′
2 ,M) involves the

same cells belonging to the outer parts P
(2)
i2s

and P
(2)
i2t

, except those belonging to

the parts P
(1)
i1s

and P
(1)
i1t

. This is illustrated below.

.

.

.

P
(2)
i2t

. . . Ci1s i2t
Ci1t

i2t
. . .

P
(2)
i2s

. . . Ci1s i2s
Ci1t

i2s
. . .

.

.

.

. . . P
(1)
i1s

P
(1)
i1t

. . .

−−−−−−−−−−−−−−−→
merge of variable X1

.

.

.

P
(2)
i2t

. . . Ci1s i2t
∪ Ci1t

i2t
. . .

P
(2)
i2s

. . . Ci1s i2s
∪ Ci1t

i2s
. . .

.

.

.

. . . P
(1)
i1s

∪ P
(1)
i1t

. . .

The new cost variation for the outer merge can thus be computed from the
former cost variation.

δc (M ′′
2 ,M) = δc (M ′

2,M)

+ δc(G) ((I1 − 1)I2, I2)− δc(G) (I1I2, I2)

+ δc(C)
(
Ci1s i2s

∪ Ci1t i2s
, Ci1s i2t

∪ Ci1t i2t

)
− δc(C)

(
Ci1s i2s

, Ci1s i2t

)
− δc(C)

(
Ci1t i2s

, Ci1t i2t

)
.

(6)

The claim follows. �

Sixteen combinations of the four impacted cells may occur, according to
whether they are empty or not. Let us call them cell patterns and analyze their
impact on the cost variation of the outer merge (see formula 6).

The empty pattern is ◦ ◦
◦ ◦ .

The singleton pattern (◦ ◦
◦ • , ◦ ◦

• ◦ , ◦ •
◦ ◦ , • ◦

◦ ◦) involves one single cell in the
outer merge. The cost variation of the outer merge remains unchanged.

The outer collision pattern (• ◦
• ◦ , ◦ •

◦ •) involves exactly two cells that collide
for the outer variable. The cost variation of the outer merge remains unchanged
since the collision between the two cells is the same before and after the inner
merge.

49

The inner collision pattern (◦ ◦
• • , • •

◦ ◦ , ◦ •
• • , • ◦

• • , • •
◦ • , • •

• ◦ , • •
• •) involves

at least two cells that collide in the inner merge. The cost variation of the outer
merge needs to be reevaluated, since some cells are merged during the part merge
under completion.

The diagonal pattern (◦ •
• ◦ , • ◦

◦ •) involves one outer cell merge after the
current inner merge completion, whereas no cell needed to be merged before the
merge completion. The cost variation of the outer merge must then be reevalu-
ated.

All in all, a close look at all the cell patterns allow to derive the interesting
property 3.

Property 3. An outer merge does not need to be reevaluated when the cell pat-
tern is like ◦ ∗

◦ ∗ , that is when it contains only empty cells in the source part of
the merge under completion.

We now present in lemmas 1, 2, 3, 4 and 5 intermediate results related to the
time complexity of the Data Grid Merger maintenance operations. We conclude
in proposition 4 that the time complexity of all these maintenance operations is
O(N log N).

Lemma 1. The total number of inner merges reevaluated during the whole ex-
ecution of the GBUM algorithm is bounded by O(N).

Proof. Since at most two inner merges need to be reevaluated after each merge
completion, and since the number of merge completions is at most N for each
input variable, the claim follows. �

Lemma 2. The total number of cells considered in the inner merges during the
whole execution of the GBUM algorithm is bounded by O(N log N).

Proof. The principle of the proof is similar to that of Proposition 2.
For each merge, at most two inner merges (left and right) must be reevaluated.

Let us focus on one variable, on the part merges related to this variable and on
the reevaluation of the left inner merges.

In Algorithm 6, source parts are chosen according to the cell-based rule (see
Proposition 2 for a definition of the cell-based and instance based rules). In this
proof, we first study the algorithmic complexity for a variant of Algorithm 6
using the instance-based instead of the cell-based rule.

Let D be an instance and {Mk, 1 ≤ k ≤ K} the list of the reevaluated left
inner merges in which the instance D is considered. Let nk be the number of
instances in the source part of merge Mk. Since the number of instances in the
target part is greater or equal than nk, the number of instances in the new part
resulting from the reevaluated merge is at least twice nk. The next reevaluated
merge Mk+1 contains all the instances of this new part. We thus have nk+1 ≥ 2nk

and more generally nk ≤ 2k−1n1. Since nK ≤ N , the number K of reevaluated
left inner merges which consider the instance D is bounded by O(log N).

50 Chapter 2. Optimization Algorithms for Bivariate Data Grid Models

This is true for each instance, for each input variable and for each type (left
and right) of impacted inner merge. Thus, the total number of instances consid-
ered in the whole maintenance operations of the Data Grid Merger structure is
bounded by O(N log N), provided that the instance-based rule is used.

Let us now evaluate the algorithmic complexity using the initial Algorithm
6 which exploits the cell-based rule. The initial algorithm and its variant differ
only on the way they choose the source part of each merge. Since the smallest
number of cells between two parts is always lower than the smallest number of
instances, the total number of cell operations (transfers or merges) is smaller
using the cell-based rule of Algorithm 6. The claim follows.

�

Lemma 3. The total number of outer merges reevaluated during the whole ex-
ecution of the GBUM algorithm is bounded by O(N log N).

Proof. Exploiting property 3, an outer merge is reevaluated only if it contains a
cell considered in the current inner merge. From proposition 2, the total number
of cells considered in the whole merge process is bounded by O(N log N). The
claim follows. �

Lemma 4. The total number of outer merges the reevaluation of which has a
non null impact on the data grid cost is bounded by O(N).

Proof. Let C be a non-empty cell let us focus on the cell pattern ∗ ∗
• ∗ , where

C is in the lower left corner of the cell pattern. When a merge occurs, a new
pattern is associated to the cell C. Let us focus on the chain of the cell patterns
related to C during to whole merge process.

This chain can be described by 16 possible states (16 cell patterns) and
256 = 162 possible transitions between the states. A close look at the cell patterns
shows that the only outer merges which impact the reevaluation are related to
the inner collision pattern and to the diagonal pattern. Concerning the inner
collision states, the only possible transitions involve at least one cell merge.
Concerning the diagonal state, transitions are possible only to inner collision
states or to outer collision states, which contain either two cells in the same row
or two cells in the same column. A new diagonal state can be encountered in the
chain if and only if a cell merge happens.

The total number of states having an impact on the reevaluation is then
bounded by the total number of cell merges in the merge process, that is by
O(N) according to proposition 1. This is true for each position of the cell in the
cell pattern (lower left, lower right, upper left or upper right corner). The claim
follows. �

Lemma 5. The total number of cells considered in the outer merges during the
whole execution of the GBUM algorithm is bounded by O(N log N).

Proof. Lemma 3 states that the total number of reevaluated outer merges is
bounded by O(N log N) and proposition 3 states that each reevaluation involves
at most four cells. The claim follows. �

51

Proposition 4. The overall time complexity of the maintenance operations of
the Data Grid Merger structure during the whole execution of the GBUM algo-
rithm is bounded by O(N log N).

Proof. The maintenance operations for one merge are summarized in Algorithm
6. From lemmas 2 and 5, the cell cost variation δc(C) needs to be computed
O(N log N) times. From lemmas 1 and 3, the part cost variation δc(P) needs to
be computed O(N log N) times. From lemma 1 and 4, the number of parts merges
which have an impact on the cost reevaluation is O(N). These merges need to be
sorted again in the sorted list of part merges related to each input variable. Each
sort maintenance can be performed in O(log N), using a maintainable sorted list
such as an AVL tree [AVL62]. The total time complexity for the maintenance of
the sorted list of merges is then O(N log N). The cost variation for the data grid
δc(G) and for the input variables δc(V) needs to be reevaluated after each merge,
that is at most O(N) times. Overall, the time complexity of all the maintenance
operations of the Data Grid Merger is thus O(N log N). �

4.5 Overall algorithmic complexity

We have shown in section 4.1 that the Data Grid structure can be initialized
from the dataset in O(N log N) time, and in section 4.2 that all the possible
part merges can be evaluated and stored in the Data Grid Merger structure
in O(N log N) time. These structures need to be maintained during the greedy
merge process. We have demonstrated in section 4.3 that all the maintenance
operations run in O(N log N) time for the Data Grid structure, and in section
4.4 that they run in O(N log N) time for the Data Grid Merger structure. The
memory complexity is O(N) both for the Data Grid structure and the Data Grid
Merger structure.

Whereas a straightforward implementation of the GBUM algorithm requires
an O(N4) time complexity and an O(N2) memory complexity, a carefully opti-
mized implementation runs in O(N log N) time with a O(N) memory require-
ment. This optimized implementation exploits both the additivity of the evalu-
ation criterion and the sparseness of the data grids.

5 Post-optimization

The greedy heuristic is time efficient, but it may fall into a local optimum.
First, the greedy heuristic may stop too soon and produce too many parts for
each input variable. Second, the boundaries of the intervals may be sub-optimal
since the merge decisions of the greedy heuristic are never rejected. We propose
to reuse the post-optimization algorithms described in [Bou06] in the case of
univariate discretization.

In a first stage called exhaustive merge, the greedy heuristic merge steps
are performed without stopping condition until the data grid consists of one
single cell. The best encountered data grid is then memorized. This stage allows
escaping local minima with several successive merges and needs O(N log N) time.

52 Chapter 2. Optimization Algorithms for Bivariate Data Grid Models

In a second stage called greedy post-optimization, a hill-climbing search is
performed in the neighborhood of the best data grid. This search alternates the
optimization on each input variable. For a given input variable, the univariate
partition is frozen, and the other input variable is optimized using the univariate
discretization post-optimization algorithm introduced in [Bou06]. This second
stage converges very quickly in practice and requires only a few steps.

We summarize the post-optimization of data grids in Algorithm 7.

Algorithm 7 Post-optimization of a Data Grid
Require: M {Initial data grid solution}
Ensure: M∗; c(M∗) ≤ c(M) {Final solution with improved cost}
1: M∗ ← call exhaustive merge (M)
2: while improved do
3: {Univariate post-optimization of variable X1}
4: freeze the univariate partition of variable X2

5: M∗ ← call univariate post-optimization (M∗) for variable X1

6: {Univariate post-optimization of variable X2}
7: freeze the univariate partition of variable X1

8: M∗ ← call univariate post-optimization (M∗) for variable X2

9: end while

The univariate post-optimization exploits a neighborhood of a discretization
consisting of combinations of interval splits and interval merges:

– a new interval can be added with one split,
– an interval boundary can be moved with one merge combined with one split,
– an interval can be removed with two merges combined with one split.

Owing to proposition 5, the univariate post-optimization algorithms can be
reused directly.

Proposition 5. Let c(M) be an additive evaluation criterion of a data grid
model M . Let c1(M1) be the univariate evaluation criterion of the univariate
partition model M1 of variable X1 when the partition of variable X2 is frozen.
Then c1(M1) is an additive univariate evaluation criterion.

Proof. From equation 3, we get

c(M) = c(G) (G) + c(V) (X1, I1) + c(V) (X2, I2)

+
I1∑

i1=1

c(P)
(
P

(1)
i1

)
+

I2∑
i2=1

c(P)
(
P

(2)
i2

)
+

I1∑
i1=1

I2∑
i2=1

c(C) (Ci1i2)
(7)

Let us freeze the partition of variable X2. Thus, the number of parts I2 and
the parts P

(2)
i2

become constants for the problem of optimizing the univariate

53

partition of X1. The criterion c1(M1) can be formulated as

c1(M1) = c
(V)
1 (X1, I1) +

I1∑
i1=1

c
(P)
1

(
P

(1)
i1

)
(8)

with

c
(V)
1 (X1, I1) = c(G) (X1X2) + c(V) (X1, I1) + c(V) (X2, I2) +

I2∑
i2=1

c(P)
(
P

(2)
i2

)
(9)

c
(P)
1

(
P

(1)
i1

)
= c(P)

(
P

(1)
i1

)
+

I2∑
i2=1

c(C) (Ci1i2). (10)

The claim follows. �

In the univariate case, each evaluation of a part requires O(1) time, and
the overall time complexity of the post-optimization algorithm is O(N log N) as
shown in [Bou06]. In the bivariate case, both the variable criterion c

(V)
1 and the

part criterion c
(P)
1 are more complex to evaluate. However, the sum term in the

variable criterion is constant for a given partition of X2 and can be evaluated
once. The part criterion involves a sum of term for the cells of the current X1 part
related to each (frozen) part of X2. Since the criterion is null on the empty cells,
this sum can be evaluated only for non-empty cells. Thus, the overall evaluation
of all the neighbor models of the current best bivariate model require O(N)
cell evaluations. Similarly to the main GBUM algorithm, the additivity of the
criterion and the sparseness of the data grid can be exploited to perform the
greedy post-optimization algorithm in O(N log N) time.

The post-optimization holds two straightforward notable properties. The first
one is that post-optimizing can only improve the results of the GBUM algorithm
since its comes after. The second one is that in case of input variables whose
optimal joint partitioning consists of one single cell, the optimum data grid is
necessarily found owing to the exhaustive merge stage of the post-optimization.

6 Meta-heuristic

The GBUM algorithm allows to evaluate O(N2) data grid models among
O(22N) potential data grids in O(N log N) time. About 2N merges are performed
along the algorithm but at most N merges involve a cell collision. This means
that about half of the merges have no impact on the mixture of the output values
in the cells, so that these merge decisions are blind with respect to the distri-
bution of the data and may destroy interesting patterns. The post-optimization
heuristic may bring a significant improvement, but it remains sticked to a close
neighborhood of the best encountered solution.

Since the GBUM algorithm is time efficient, it is then natural to apply it
repeatedly in order to better explore the search space. This is done according to

54 Chapter 2. Optimization Algorithms for Bivariate Data Grid Models

Algorithm 8 VNS meta-heuristic for data grid optimization
Require: M {Initial data grid solution}
Require: MaxLevel {Optimization level}
Ensure: M∗, c(M∗ ≤ c(M) {Final solution with improved cost}
1: L← 1
2: while L ≤MaxLevel do
3: {Generate a random solution in the neighborhood of M∗}
4: M ′′ ← random solution with (N/ log N)L/MaxLevel intervals per input variable
5: M ′ ←M∗ ∪M ′′

6: {Optimize and evaluate the new solution}
7: M ′ ← call Greedy Bottom-Up Merge(M ′)
8: M ′ ← call Post-Optimization(M ′)
9: if c(M ′) < c(M∗) then

10: M∗ ←M ′

11: L← 1
12: else
13: L← L + 1
14: end if
15: end while

the Variable Neighborhood Search (VNS) [HM01], which consists in applying the
primary heuristic (GBUM algorithm and post-optimization) to a neighbor of the
solution. If the new solution is not better, a bigger neighborhood is considered.
Otherwise, the algorithm restarts with the new best solution and a minimal size
neighborhood. The process is controlled by the maximum length of the series of
growing neighborhoods to explore.

This meta-heuristic is described in Algorithm 8. According to the level of the
neighborhood size l, a new solution M ′ is generated close to the current best
solution. A random discretization for each input variable is obtained with the
choice of random interval bounds without replacement. For L = MaxLevel, we
bound the size of the random discretization by N/ log N .

The VNS meta-heuristic only requires the number of sizes of neighborhood as
a parameter. This can easily be turned into an anytime optimization algorithm,
by calling iteratively the VNS algorithm with parameters of increasing size and
stopping the optimization only when the allocated time is elapsed. In Chapter
1, all the experiments are performed by calling the VNS algorithm three times
with successive parameters equal to 1, 2 and 4.

In order to improve the initial solution, we choose to first optimize the uni-
variate partition of each variable (discretization or value grouping) and to build
the initial solution from a cross-product of the univariate partitions. Although
this cannot help in case a strictly bivariate patterns (such as XOR for example),
this might be helpful otherwise.

55

7 Adaptation to categorical variables

In marketing applications for example, variables such as Country, State, Zip-
Code, FirstName, ProductID usually hold many different values. Preprocessing
these variables is critical to produce efficient classifiers.

In this section, we focus on categorical variables. We first analyze the balance
between intensity of optimization and computation time, propose a practical
trade-off, and study the impact of this trade-off on the optimization algorithms.

7.1 Optimization efficiency versus computation time

In the categorical case, O(V 2) part merges have to be evaluated at each step
of the GBUM algorithm, instead of O(N) in the numerical case (intervals are
constrained to be adjacent, not group of values). When V � N , this has little
impact on the algorithmic time complexity. For large enough V , the optimiza-
tion algorithms have to be adapted to keep a practical time complexity without
sacrifying the quality of the solution.

For V ≥
√

N , the overall time complexity of the optimization algorithms
may exceed O(N log N) and even reach O(N2 log N) when V = N . However,
the number of partitions is based on the Bell number in the case of value group-
ing instead of the binomial coefficient in the case of discretization. For regularized
criteria such as those introduced in Chapter 1, the regularization term for the
partition grows very quickly with the size of the partition, which penalizes large
partitions. Furthermore, since no part can be isolated from the others (no adja-
cency constraints like for discretizations), the size I of the optimal partition is
likely to be small w.r.t the number of instances.

In the following, we assume that I ≤ IMax =
√

N and we restrict all the opti-
mization algorithms to work with constrained variables, according to Definition
5. All the Propositions in section 7 relate implicitly to the case of constrained
categorical variables.

Definition 5. A categorical variable is constrained if the size of the partition of
its values is bounded by IMax =

√
N .

According to Proposition 6, the time complexity of the GBUM algorithm is
lower bounded by O(N

√
N log N). However, we demonstrate in section 7.2 that

this lower bound is also an upper bound of the time complexity of the algorithm.

Proposition 6. The time complexity of the GBUM algorithm cannot be better
than O(N

√
N log N).

Proof. The principle of this proof is based on a counterexample, the evaluation
of which in the GBUM algorithm requires at least O(N

√
N log N) operations.

Let us consider a data grid with two categorical variables, each of which
having

√
N parts. The number of cells is N . Let us assume that all these cells

are non-empty cells, which is possible provided that each cell contains exactly
one instance.

56 Chapter 2. Optimization Algorithms for Bivariate Data Grid Models

When a merge is completed on one variable, both the source and target parts
of the merge contain

√
N cells, which all collide. Thus all the N outer merges

need to reevaluated and all of them have a potentially non null impact on the
merge cost. Thus, these N merges need to be sorted again in the sorted list of
the outer variable, with an overall time complexity of O(N log N).

The configuration of the merged part is the same as that of its source and
target part, since it always contains

√
N non-empty cells. Such merges may be

performed up to
√

N times if they are related to the same variable. The claim
follows. �

7.2 Impact on the greedy bottom-up heuristic

In this section, we study the algorithmic complexity of the GBUM algorithm in
the case of constrained categorical variables. We show in Proposition 7 that the
memory complexity of the algorithm is still O(N) and in Propositions 8, 9 and
10 that its time complexity is O(N

√
N log N).

It is noteworthy that the only algorithmic component with O(N
√

N log N)
time complexity is the maintenance of the sorted list of merges per variable, as
illustrated in the counterexample given in Proposition 6. All the other compo-
nents of the GBUM algorithm run in O(N

√
N) time.

Proposition 7. The memory complexity of the GBUM algorithm is O(N).

Proof. The memory complexity of the algorithm is that of the Data Grid and
Data Grid Merger structures. The Data Grid structure contains two Variables,
O(N) Parts and O(N) non-empty cells. The Data Grid Merger structure contains
O(N) Merges, since the number of possible merges if O(N) both for numerical
variables and for constrained categorical variables (IMax

2 ≤ N). �

Proposition 8. The time complexity of the initialization of the Data Grid and
Data Grid Merger structures is O(N log N).

Proof. The initialization of the Data Grid structure is performed according to
Algorithm 2 which has a O(N log N) time complexity.

Concerning the initialization of the Data Grid Merger structure, we have to
evaluate the number of operations at the part level and cell level to initialize
all the merges. Since each part and each non-empty cell is involved in O(IMax)
merges, and since there are at most O(IMax) parts and O(N) non-empty cells,
the claim follows. �

Proposition 9. The time complexity of the maintenance operations of the Data
Grid structure during the whole execution of the GBUM algorithm is O(N

√
N).

Proof. Each merge involves at most two parts and O(N) cells. Since the number
of merges necessary to go from the initial data grid to the terminal data grid is
bounded by O(IMax), the claim follows. �

57

Proposition 10. The time complexity of the maintenance operations of the
Data Grid Merger structure during the whole execution of the GBUM algorithm
is O(N

√
N log N).

Proof. The time complexity of the maintenance of the Data Grid Merger struc-
ture is related to the number of merges that need to be reevaluated and their
impact at the part and cell level. The case of numerical variables has been exam-
ined in section 4.4. In this proof, we focus on constrained categorical variables.

After each merge completion, O(
√

N) inner merges and O(N) outer merges
have to be reevaluated. The total number of reevaluated merges is bounded by
O(N

√
N). The variables need to maintain their sorted lists of merges, which

requires O(log N) operations per merge. Overall, the maintenance operations
have a O(N

√
N log N) time complexity at the merge level and part level (each

merges involves two parts).
At the cell level, let us first focus on the total number of cells considered in the

inner merges. For a given merge M , let P0 be the merged part and Pi, 1 ≤ i ≤ I
all the other inner parts of the data grid. Let N (C)(Pi) be the number of cells
in part i. Let us evaluate the total number of cells N (C)(M) considered in all
the reevaluated inner merges. According to Algorithm 6, the cells are considered
only when the cell number is less in the source part than in the target part of
the reevaluated merge. We have

N (C)(M) ≤
I∑

i=1

min(N (C)(Pi), N (C)(P0)),

N (C)(M) ≤
I∑

i=1

N (C)(Pi)),

N (C)(M) ≤ N.

Since at most N cells are considered after each merge completion and since
there are at most O(

√
N) merges in the GBUM algorithms, the total number of

cells considered in the inner merges is bounded by O(N
√

N).
Let us finally focus on the total number of cells considered in the outer

merges. From Proposition 3, at most four cells need to be considered in the
reevaluation of each outer merge. For each inner merge completion, O(N) outer
merges between the O(

√
N) outer parts need to be reevaluated. Since the GBUM

algorithm involves at most O(
√

N) inner merges, the total number of cells con-
sidered in the outer merges is bounded by O(N

√
N).

The claim follows. �

7.3 Impact on the post-optimization and meta-heuristic

In the post-optimization algorithm, we keep the exhaustive merge algorithm, and
use an univariate post-optimization algorithm for value grouping derived from
[Bou05]. This heuristic consists in evaluating every move of a categorical value

58 Chapter 2. Optimization Algorithms for Bivariate Data Grid Models

from one group to another and performing the moves as soon as they improve
the evaluation criterion. This heuristic is applied on a randomized sort of the
categorical values and iterated as long as the criterion is improved. This post-
optimization requires O(V I) (≤ O(N

√
N)) computation time per iteration and

converges very quickly in case of optimized data grid, so that we choose not to
bound the number of iterations.

In the meta-heuristic algorithm, we generate random solutions containing at
most IMax groups of values for the univariate partitions of categorical variables.
Unfortunately, these random partitions are likely to be poor initial solutions for
the GBUM heuristic, since each part is a random mixture of values. In order
to improve these initial solutions, we pre-optimize them by moving the values
across the groups, as described in the post-optimization heuristic. In this pre-
optimization, we decide to bound the number of iterations (by two in practice)
to both get sufficiently “pure” parts in the initial data grid and control the
pre-optimization computation time.

7.4 Synthesis

Overall in the case of categorical variables, a compromise between the time
complexity and the quality of the solution is necessary as soon as V ≥

√
N .

We choose to constrain the partition of categorical variables to contain at most
O(
√

N) parts and showed that even in this case, the computational complexity
of the GBUM algorithm can reach O(N

√
N log N).

However, we demonstrated that the time complexity of the optimization
heuristics is no more than O(N

√
N log N) in case of categorical variables with

numerous values (beyond
√

N) and that their memory complexity is still O(N).
Compared to the numerical case, the same algorithms are used: greedy bottom-
up heuristic, post-optimization and meta-heuristic. Another algorithmic compo-
nent, pre-optimization, needs to be employed in order to “clean” the randomized
data grids and feed the meta-heuristic with good initial solutions.

Overall, the time complexity of the optimization heuristics is O(N log N) in
the case of two numerical variables and O(N

√
N log N) when one or two of the

input variables are categorical.

8 Summary

Data grid models have been introduced in Chapter 1 to evaluate the correlation
between a pair of input variables and an output variable. They rely on the
partition of each input variable into a set of parts (intervals or groups of values).
The cross-product of the partitions forms a data grid of cells, each of which
allows to locally describe the distribution of the output values.

In this paper, we have introduced the concept of additive evaluation criteria
for data grids, which can be decomposed hierarchically as a sum of terms at the
data grid, variable, part and cell level.

59

We have studied the standard greedy top-down merge heuristic, whose straight-
forward implementation runs in O(N4) time. After introducing specific algorith-
mic structures to store a data grid model as well as all the possible merges
between parts, we have shown that the time complexity of the heuristic can be
reduced to O(N log N). The optimized heuristic mainly takes benefit of the ad-
ditivity of the evaluation criterion and of the sparseness of the data grids which
contain at most O(N) non-empty cells for O(N2) cells.

In order to tackle the greediness of the heuristic, we have introduced post-
optimization heuristics which exploit local neighborhoods around initial solu-
tions, and a meta-heuristic to globally explore the search space according to
neighborhoods of varying size.

Finally, the case of categorical input variables required specific adaptations to
strike a balance between the time complexity and the quality of the optimization.

Overall, the data grid optimization algorithms run in O(N log N) for nu-
merical input variables and in O(N

√
N log N) when categorical variables with

numerous values (beyond
√

N) are involved. The memory requirement is always
O(N). Intensive experiments are reported in Chapter 1 to evaluate the optimiza-
tion algorithms presented in this paper .

References

[AVL62] G. Adelson-Velskii and E.M. Landis. An algorithm for the organization of
information. Doklady Akademii Nauk SSSR, 146 263-266, 1962 (Russian),
3:1259–1263, 1962. English translation by Myron J. Ricci in Soviet Math.
Doklady.

[BM96] C.L. Blake and C.J. Merz. UCI repository of machine learning databases,
1996. http://www.ics.uci.edu/mlearn/MLRepository.html.

[Bou04] M. Boullé. Khiops: a statistical discretization method of continuous at-
tributes. Machine Learning, 55(1):53–69, 2004.

[Bou05] M. Boullé. A Bayes optimal approach for partitioning the values of cat-
egorical attributes. Journal of Machine Learning Research, 6:1431–1452,
2005.

[Bou06] M. Boullé. MODL: a Bayes optimal discretization method for continuous
attributes. Machine Learning, 65(1):131–165, 2006.

[Cat91] J. Catlett. On changing continuous attributes into ordered discrete at-
tributes. In Proceedings of the European Working Session on Learning, pages
87–102. Springer, 1991.

[DKS95] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised
discretization of continuous features. In Proceedings of the 12th International
Conference on Machine Learning, pages 194–202. Morgan Kaufmann, San
Francisco, CA, 1995.

[ER96] T. Elomaa and J. Rousu. Finding optimal multi-splits for numerical at-
tributes in decision tree learning. Technical Report NC-TR-96-041, Royal
Holloway, University of London, 1996. NeuroCOLT.

[FI92] U. Fayyad and K. Irani. On the handling of continuous-valued attributes in
decision tree generation. Machine Learning, 8:87–102, 1992.

60 Chapter 2. Optimization Algorithms for Bivariate Data Grid Models

[FKS95] T. Fulton, S. Kasif, and S. Salzberg. Efficient algorithms for finding multi-
way splits for decision trees. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 244–251. Morgan Kaufmann, 1995.

[HM01] P. Hansen and N. Mladenovic. Variable neighborhood search: principles and
applications. European Journal of Operational Research, 130:449–467, 2001.

[Hol93] R.C. Holte. Very simple classification rules perform well on most commonly
used datasets. Machine Learning, 11:63–90, 1993.

[Kas80] G.V. Kass. An exploratory technique for investigating large quantities of
categorical data. Applied Statistics, 29(2):119–127, 1980.

[KBR84] I. Kononenko, I. Bratko, and E. Roskar. Experiments in automatic learn-
ing of medical diagnostic rules. Technical report, Ljubljana: Joseph Stefan
Institute, Faculty of Electrical Engineering and Computer Science, 1984.

[Ker91] R. Kerber. Chimerge discretization of numeric attributes. In Proceedings of
the 10th International Conference on Artificial Intelligence, pages 123–128.
AAAI Press, 1991.

[LHTD02] H. Liu, F. Hussain, C.L. Tan, and M. Dash. Discretization: An enabling
technique. Data Mining and Knowledge Discovery, 4(6):393–423, 2002.

[Qui93] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[ZR00] D.A. Zighed and R. Rakotomalala. Graphes d’induction. Hermes, France,
2000.

[ZRR98] D.A. Zighed, S. Rabaseda, and R. Rakotomalala. Fusinter: a method for
discretization of continuous attributes for supervised learning. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(33):307–
326, 1998.

61

