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Nonparametric Edge Density Estimation in Large Graphs

Marc Boullé marc.boulle@orange-ftgroup.com

Orange Labs
2, avenue Pierre Marzin
22300 Lannion, France

Abstract

The discovery and analysis of structures in graphs has been long studied in the past. With
the recent availability of many network data on the web, such as social networks, there
is a renewed interest for these research topics, especially for the automatic discovery of
community structures in large networks. In this paper, we present a novel way to sum-
marize the structure of a large graph, based on non-parametric estimation of edge density.
Following the stochastic blockmodeling approach, we exploit a clustering of the vertices,
with a piecewise constant estimation of the density of the edges across the clusters, and
address the problem of automatically and reliably inferring the number of clusters, that is
the granularity of the clustering. We exploit a novel model selection technique based on a
Bayesian approach with data dependent prior and obtain an exact evaluation criterion for
the posterior probability of edge density estimation models. We exploit combinatorial op-
timization algorithms to search the best model, with a super-linear algorithmic complexity
with respect to the number of edges. We demonstrate, both theoretically and empirically,
that our data dependent modeling technique is consistent, resilient to noise, valid non
asymptotically and asymptotically behaves as an universal approximator of the true edge
density in directed multigraphs. We evaluate our approach on numerous artificial and real
graphs. The results show the validity of the approach, that automatically provides an
insightful summary of large graphs.

Keywords: Random graphs, Community detection, Clustering, Bayesianism, Model
Selection, Density estimation

1. Introduction

Graph partitioning has long been studied in the operational research field. One of the
oldest approaches is the minimum-cut method, where the graph is divided into a prede-
termined number of disjoint subsets, usually of approximately the same size, chosen such
that the number of edges between the clusters of vertices is minimized. This combinato-
rial optimization problem arises in various practical applications like telecommunication
network partitioning, VLSI (very large-scale integration) circuit placement or load balanc-
ing for parallel computing in order to minimize communication between processor nodes.
Due to NP-hardness (Garey and Johnson, 1979), many heuristics have been proposed in
the litterature. For example, algorithms such as (Kernighan and Lin, 1970; Fiduccia and
Mattheyses, 1982) are frequently used to locally improve bisections. Many meta-heuristics
have also been exploited such as simulated annealing (Kirkpatrick et al., 1983) evaluated
by (Johnson et al., 1989), genetic algorithms used in (Bui and Moon, 1996) or tabu search
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(Glover, 1987) enhanced and adapted to the bisection problem by (Battiti and Bertossi,
1999). The multilevel approach (Hendrickson and Leland, 1995; Karypis and Kumar, 1998)
is specially fitted to very large graphs and constrained computation time. These families
of heuristics represent a range of options for the trade-off between computation time and
quality of the solution.

With the recent availability of many network data, such as world wide web, social net-
works, phone call networks, science collaboration graphs (Albert and Barabási, 2002), there
is a renewed interest for the graph partitioning problem, especially for the automatic dis-
covery of community structures in large networks. Whereas the classical graph balanced
partitioning formulation works well in many of the applications for which it was originally
intended, its is less appealing for the problem of finding “natural” cluster-based structures
in general graphs since it will find clusters with constrained size and predefined number re-
gardless of whether they are relevant in the graph. Many approaches have been studied for
the problem of graph clustering, including hierarchical clustering, divisive clustering, spec-
tral methods, random walk (see (Schaeffer, 2007) for a survey). To evaluate the quality of a
clustering regardless of the cluster number, the modularity criterion proposed by (Newman
and Girvan, 2003) is now widely accepted in the literature, and has even been treated as an
objective function in clustering algorithms (Clauset et al., 2004; Danon et al., 2005; Blondel
et al., 2008). This criterion aims at obtaining dense clusters where the within-cluster edge
density is above the expected edge density in case of random edges following the same vertex
degree distribution.

In this paper, we present a novel way of analyzing and summarizing the structure of large
graphs, based on piecewise constant edge density estimation. The approach extends the
stochastic blockmodeling approach (Wasserman et al., 2007; Copic et al., 2009; Bickel and
Chen, 2009; Goldenberg et al., 2010) in that the modeling method is fully non-parametric
with the number of clusters as a free parameter, and exploits a novel statistical model se-
lection technique and scalable optimization algorithms. We apply data grid models (Boullé,
2008b) to graph data, where each edge is considered as a statistical unit with two variables,
the source and target vertices. The objective is to find a correlation model between the two
variables, owing to a data grid model, which in this case turns to be a coclustering of both
the source and target vertices of the graph. The cells resulting from the cross-product of
the two clusterings summarize the edge density in the graph. The best correlation model
is selected using the MODL (Minimum Optimized Description Length) approach (Boullé,
2005, 2006), and optimized by the means of combinatorial heuristics with super-linear time
complexity.

The rest of the paper is organized as follows. In Section 2, we present the MODL
approach for data grid models and apply it to edge density estimation in graphs. We
illustrate the distinctive features of the approach in Section 3 and evaluate it on benchmark
graphs in Section 4. In Section 5, we relate our method to the literature on statistical
blockmodeling, further analyze the problem of edge density estimation and demonstrate
the consistency of the MODL approach as a universal density approximator. We present
several research directions in Section 6 and finally give a summary in Section 7.
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2. MODL Approach for Edge Density Estimation in Graphs

In this section, we first recall some basic notions of graph theory, next summarize the
principles of data grid models introduced in (Boullé, 2010) in the data mining field for
supervised and unsupervised data preparation. We then adapt the approach to the case of
edge density estimation in a directed multigraph and relate it to information theory. We
finally describe the optimization algorithm.

2.1 Basic Notions of Graph Theory

A graph G = (V,E) consists of a set V of vertices and a set E of pairs of vertices called
edges. A graph is undirected if the edges are unordered pairs of vertices, and is directed
if the edges are ordered. A loop is an edge from one vertex to itself. A graph is simple
in case of at most one edge per pair of vertices, and is multiple otherwise. Two vertices
of an undirected graph are called adjacent if there is an edge connecting then. An edge is
incident to its two vertices, called extremities. In case of directed graph, the extremities of
an edges are called the source and target vertices of the edge. Figure 1 displays an example
of directed simple graph, and Figure 2 an example of directed multigraph with loops.

A graph is called bipartite if the vertices can be partitioned into two disjoint sets, such
that every edge connects one vertex of each vertex set. A simple graph is complete if it
contains exactly one edge per pair of distinct vertices. A subgraph of a graph consists of a
subset of the vertices and the edges of the graph. A complete subgraph is called a clique:
it is a subset of pairwise adjacent vertices. A coclique is a subset of pairwise nonadjacent
vertices.

The degree of a vertex is the number of edges incident to it. In a directed graph, the
in-degree of a vertex v if the number of edges with target v, and the out-degree of v is
the number of edges with source v. In an undirected graph, the sum of the degrees of
the vertices is equal twice the number of the edges. In a directed graph, the sum of the
in-degrees and the sum of the out-degrees of the vertices are equal to the number of edges.

Graphs can be represented by their adjacency matrix, where each cell of the matrix
contains the number of edges per pair of vertices. The adjacency matrix of simple graphs
contain only binary values, and that of undirected graphs is symmetrical. Figure 2 shows
a directed multigraph and its adjacency matrix, as well as the in and out-degrees of each
vertex.

2.2 Data Grid Models for Data Preparation in Data Mining

Data mining is “the non-trivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data” (Fayyad et al., 1996). Most data mining tech-
niques work on flat tabular data, with one instance per row and one variable, numerical or
categorical, per column. Supervised data mining aims at predicting the value of one target
variable given the other explanatory variables: the task is classification in case of a cate-
gorical target variable and regression in case of a target numerical variable. Unsupervised
learning aims at discovering clusters in the data, association rules between the variables or
at modeling correlations or joint density.
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Data grid models (Boullé, 2008b, 2010) have been introduced for the data preparation
phase of the data mining process (Chapman et al., 2000), which is a key phase, both time
consuming and critical for the quality of the results. They allow to automatically, rapidly
and reliably evaluate the class conditional probability of any subset of variables in super-
vised learning and the joint probability in unsupervised learning. Data grid models are
based on a partitioning of each variable into intervals in the numerical case and into groups
of values in the categorical case. The cross-product of the univariate partitions forms a mul-
tivariate partition of the representation space into a set of cells. This multivariate partition,
called data grid, is a piecewise constant nonparametric estimator of the conditional or joint
probability. The best data grid is searched using a Bayesian model selection approach and
an efficient combinatorial algorithm.

2.3 Edge Density Estimation Models

We reformulate the data grid approach in the context of edge density estimation in directed
multigraphs. As shown in Figure 1, a directed graph can be represented in a tabular format
with two variables, source vertex and target vertex, and one line per edge described by
its two vertices. We can then apply the data grid models in the unsupervised setting to
estimate the joint density between these two variables, that is the density of edges in the
graph.

A B

F

D
E

C

G

Source Target

A D
A F
B A
B C
B D
D G
F G
G E

Figure 1: Directed simple graph and its tabular representation.

Our objective is to provide a joint description of the source and target vertices, which
amounts to a description of the edges in the graph. One simple way to describe the edges
exploits the tabular format shown in Figure 1, with the count of edges per pair (Source,
Target) of vertices. We can also summarize the location of edges at a coarser grain by
introducing clusters of sources vertices and clusters of target vertices, and keeping the
number of edges inside each cluster and across each cluster. Such clustering based model of
the graph provides an estimator of the edge density, which is peacewise constant per pair of
source and target cluster (cocluster). The coarsest summary is based on one single cluster of
vertices with just the total number of edges, whereas the finest summary exploits one cluster
per vertex. Coarse grained summaries tend to be reliable, whereas fine grained summaries
are more informative. The issue is to find a trade-off between the informativeness of the
edge density estimation and its reliability, on the basis of the granularity of the clustering.
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We introduce a family of edge density estimation partitioning models, based on clusters
of source and target vertices and on a multinomial distribution of the edges on the coclusters.
This family of models is formalized in Definition 1.

Definition 1 An edge density estimation model is defined by:

• a number of source and target clusters of vertices,
• the repartition of the source (resp. target) vertices into the source (resp. target)

clusters of vertices,
• the distribution of the edges of the graph on the coclusters,
• for each source (resp. target) cluster of vertices, the distribution of the edges whose

source (resp. target) belong to the cluster on the vertices of the cluster.

Notation.

• G = (V,E): graph with vertex set V and edge set E

• S, T : source and target vertex sets
• n = |V |, nS = |S|, nT = |T |: number of vertices, of source and target vertices
• m = |E|: number of edges
• kS , kT : number of clusters of source and target vertices
• kE = kSkT : number of coclusters
• kS(i), kT (j): index of the cluster containing source vertex i (resp. target vertex j)
• nS

i , nT
j : number of vertices in source cluster i (resp. target cluster j)

• mi.,m.j : number of edges for source vertex i (resp. target vertex j), i.e. out-degree
of vertex i and in-degree of vertex j

• mS
i.,m

T
.j : number of edges originating in source cluster i (resp. terminating in target

cluster j)
• mij : number of edges for pair (i, j) of vertices
• mST

ij : number of edges for coclusters (i, j)

These notations are illustrated in Figure 2, where a directed multigraph is displayed
with its adjacency matrix. A clustered version of this graph is presented in Figure 3, which
results in a coclustering of its adjacency matrix.

We assume that the numbers of edges m and of source and target vertices nS and nT

are known in advance and we aim at modeling the joint distribution of the m edges on these
two sets of vertices. This setting is general enough to account for directed graphs, bipartite
graphs and undirected graph, where each edge comes twice with the two directions.

The family of models introduced in Definition 1 is completely defined by the parameters
describing the partition of the vertices into clusters

kS , kT , {kS(i)}1≤i≤nS , {kT (j)}1≤j≤nT ,

by the parameters of the multinomial distribution of the edges on the coclusters

{mST
ij }1≤i≤kS ,1≤j≤kT

,
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A
B

F

D
E

C

G

A B C D E F G
P

A 0 1 0 0 0 0 0 1
B 0 0 1 0 0 0 1 2
C 0 0 1 0 0 0 1 2
D 0 1 0 0 1 0 0 2
E 0 0 1 0 0 0 1 2
F 0 0 0 0 2 0 0 2
G 0 0 1 0 0 0 1 2P

0 2 4 0 3 0 4 13

Figure 2: Directed multigraph and its adjacency matrix. The numbers mij in the adjacency
matrix are the numbers of edges for each pair of vertices (for example, two edges
from F to E). The sums mi. on the right column are the out-degrees of the vertices,
and the sums m.j on the bottom line are the in-degrees of the vertices. The total
number of edges is on the bottom right corner of the adjacency matrix.

A
B

F

D
E

C

G

S1 S2

T1

T2

T3

A D F B E C G
P

A 0 0 0 1 0 0 0 1
D 0 0 0 1 1 0 0 2
F 0 0 0 0 2 0 0 2

B 0 0 0 0 0 1 1 2
E 0 0 0 0 0 1 1 2
C 0 0 0 0 0 1 1 2
G 0 0 0 0 0 1 1 2P

0 0 0 2 3 4 4 13

T1 T2 T3
P

S1 0 5 0 5

S2 0 0 8 8P
0 5 8 13

Figure 3: Directed multigraph with two source and three target clusters. The adjacency
matrix of the graph (reorganized by clusters) is presented in the middle, and that
of the clustered graph on the right. The numbers mST

ij in the clustered adjacency
matrix are the numbers of edges for each cocluster (for example, 5 edges from S1
to T2).

and by the parameters of the multinomial distribution of the edges originating in each source
cluster (resp. terminating in each target cluster) on the vertices of the cluster

{mi.}1≤i≤nS , {m.j}1≤j≤nT .

The numbers of vertices per cluster nS
i and nT

j are derived from the specification of the
partitions of vertices into clusters: they do not belong to the model parameters. Similarly,
the number of edges originating or terminating in each cluster can be deduced by adding
the frequencies of coclusters, according to mS

i. =
∑kT

j=1 mST
ij and mT

.j =
∑kS

i=1 mST
ij .

In order to select the best model, we apply a Bayesian approach, using the prior distri-
bution on the model parameters described in Definition 2.

Definition 2 The prior for the parameters of an edge density estimation model are chosen
hierarchically and uniformly at each level:
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• the numbers of clusters kS and kT are independent from each other, and uniformly
distributed between 1 and nS for the source vertices, between 1 and nT for the target
vertices,
• for a given number kS of source clusters, every partition of the nS vertices into kS

clusters is equiprobable,
• for a given number kT of target clusters, every partition of the nT vertices into kT

clusters is equiprobable,
• for a model of size (kS , kT ), every distribution of the m edges on the kE = kSkT

coclusters is equiprobable,
• for a given cluster of sources (resp. target) vertices, every distribution of the edges

originating (resp. terminating) in the cluster on the vertices of the cluster is equiprob-
able.

Taking the negative log of the probabilities, this provides the evaluation criterion given
in Theorem 3 (Boullé, 2010).

Theorem 3 An edge density estimation model M distributed according to a uniform hier-
archical prior is Bayes optimal if the value of the following criteria is minimal

c(M) = log nS + log nT + log B(nS , kS) + log B(nT , kT )

+ log
(

m + kE − 1
kE − 1

)
+

kS∑
i=1

log
(

mS
i. + nS

i − 1
nS

i − 1

)
+

kT∑
j=1

log
(

mT
.j + nT

j − 1

nT
j − 1

)

+ log m!−
kS∑
i=1

kT∑
j=1

log mST
ij !

+
kS∑
i=1

log mS
i.!−

nS∑
i=1

log mi.! +
kT∑
j=1

log mT
.j !−

nT∑
j=1

log m.j !

(1)

B(n, k) is the number of divisions of n elements into k subsets (with potentially empty
subsets). When n = k, B(n, k) is the Bell number. In the general case, B(n, k) can be
written as B(n, k) =

∑k
i=1 S(n, i), where S(n, i) is the Stirling number of the second kind

(see Abramowitz and Stegun, 1970), which stands for the number of ways of partitioning a
set of n elements into i nonempty subsets.

The first line in Formula 1 relates to the prior distribution of the cluster numbers kS and
kT and to the specification the partition of the source (resp. target) vertices into clusters.
These terms are the same as in the case of the MODL supervised univariate value grouping
method (Boullé, 2005). The second line in Formula 1 represents the specification of the
parameters of the multinomial distribution of the m edges on the kE coclusters, followed by
the specification of the multinomial distribution of the edges originating (resp. terminating)
in each cluster on the vertices of the cluster. The third line stands for the likelihood of the
distribution of the edges on the coclusters, by the mean of a multinomial term. The last line
corresponds to the likelihood of the distribution of the edges originating (resp. terminating)
in each cluster on the vertices of the cluster.
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2.4 Relation with Information Theory

Null model. Let us first introduce the null model M∅, with one single cluster of source
(resp. target) vertices and one cocluster, containing all the edges. Applying Formula 1, the
cost c(M∅) of the null model (its value according to evaluation criterion 1) reduces to

c(M∅) = log nS + log nT + log
(

m + nS − 1
nS − 1

)
+ log

(
m + nT − 1

nT − 1

)
+ log

m!
m1.!m2.! . . .mnS .!

+ log
m!

m.1!m.2! . . .m.nT !

(2)

which corresponds to the posterior probability of the multinomial model for the distribution
of the edges on the source vertices and on the target vertices. This means that the source
and target vertices are described independently.

Entropy of the null model. To get an asymptotic evaluation of the cost of the null
model, we now introduce the Shannon entropy H(X) (Shannon, 1948) of a discrete variable
X, H(X) = −

∑
x∈X p(x) log p(x). Let us consider edges as statistical instances, with two

vertex variables VS and VT having nS and nT values. As mi. stands for the out-degree of
vertex i, the probability of originating from vertex i can be estimated by mi.

m . We thus get
H(VS) = −

∑nS
i=1

mi.
m log mi.

m and H(VT ) = −
∑nT

j=1
m.j

m log m.j

m .
Using the approximation log n! = n(log n − 1) + O(log n) based on Stirling’s formula,

the cost of the null model is asymptotically equivalent to m times the Shannon entropy of
the source and target vertex variables VS and VT :

c(M∅) = mH(VS) + mH(VT ) + O(log m). (3)

Coding length of edge density models. As the negative log of a probability can be
interpreted as a coding length (Shannon, 1948), our model selection technique is closely
related to the minimum description length (MDL) approach (Rissanen, 1978; Hansen and
Yu, 2001; Grünwald et al., 2005), which aims to approximate the Kolmogorov complexity (Li
and Vitanyi, 1997) for the coding length of the data (edges of the graph). The Kolmogorov
complexity is the length of the shortest computer program that encodes the data. The
prior terms in Formula 1 represent the coding length of the edge density model parameters
whereas the likelihood terms represent the coding length of the data (the edges) given the
model.

Robust edge density estimation in graphs. Overall, our prior approximates the Kol-
mogorov complexity of the edge density model given the vertices and our conditional like-
lihood encodes the edges given the model. In our approach, the choice of the null model
corresponds to the lack of reliable structure in the graph. The coding length of the null
model is asymptotically equivalent to the Shannon entropy of the distribution of the source
and target vertex degrees (cf. Formula 3), which corresponds to a basic encoding of the
edges, without any use of structure in the graph. This is close to the idea of Kolmogorov,
who considers data to be random if its algorithmic complexity is high, that is if it cannot
be compressed significantly. This makes our approach very robust, since detecting reliable
structures using edge density models is necessarily related to a coding length better than
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that of the null model, thus to non random patterns according Kolmogorov’s definition
of randomness. This robustness has been confirmed using extensive experiments in the
case of univariate data preparation for supervised data mining (Boullé, 2006, 2005), and is
evaluated in the case of graphs in Section 4.

2.5 Optimization Algorithm

Edge density estimation models are no other than data grid models (Boullé, 2010) applied
to the case of joint density estimation of the source and target vertices of the edges. The
space of data grid models is so large that straightforward algorithms almost surely fail to
obtain good solutions within a practicable computational time. Given that criterion 1 is op-
timal, the design of sophisticated optimization algorithms is both necessary and meaningful.
Such algorithms are described in (Boullé, 2008a). They finely exploit the sparseness of the
adjacency matrix of the graph and the additivity of the criterion, and allow a deep search
in the model space with O(m) memory complexity and O(m

√
m log m) time complexity.

In this section, we give an overview of the optimization algorithms which are fully de-
tailed in (Boullé, 2008a), and rephrase them using the graph terminology. The optimization
of a data grid is a combinatorial problem. The number of possible partitions of n vertices
is equal to the Bell number B(n) = 1

e

∑∞
k=1

kn

k! . Even with very simple models having only
two clusters of source and target vertices, the number of models involves 2nSnT cocluster-
ings of the vertices. An exhaustive search through the whole space of models is unrealistic.
We describe in Algorithm 1 a greedy bottom up merge heuristic (GBUM) which optimizes
the model criterion 1. The method starts with a fine grained model, with few vertices per
source or target cluster, up to the maximum model MMax with one vertex per source or
target cluster. It considers all the merges between adjacent clusters (independently for the
source and target sets of vertices), and performs the best merge if the criterion decreases
after the merge. The process is reiterated until no further merge decreases the criterion.

Algorithm 1 Greedy Bottom Up Merge heuristic (GBUM)
Require: M {Initial solution}
Ensure: M∗, c(M∗) ≤ c(M) {Final solution with improved cost}
1: M∗ ←M
2: while improved solution do
3: M ′ ←M∗

4: for all Merge m between two source or target clusters do
5: M+ ←M∗ + m {Consider merge m for model M∗}
6: if c(M+) < c(M ′) then
7: M ′ ←M+

8: end if
9: end for

10: if c(M ′) < c(M∗) then
11: M∗ ←M ′ {Improved solution}
12: end if
13: end while

9
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Each evaluation of the criterion for a model requires O(n2) time, since the initial model
contains up to nSnT coclusters (see formula (1)) in the case of the maximal model MMax.
Each step of the algorithm relies on O(n2) evaluations of merges of clusters of vertices, and
there are at most O(n) steps, since the model becomes equal to the null model M∅ once all
the possible merges have been performed. Overall, the time complexity of the algorithm is
O(n5) using a straightforward implementation of the algorithm. However, the method can
be optimized in O(m

√
m log m) time, as demonstrated in (Boullé, 2008a). The optimized

algorithm mainly exploits the sparseness of the data, the additivity of the criterion and
starts from non-maximal models with pre and post-optimization heuristics.

• Large graph are often sparse, with far less edges than in complete graphs. Although
a model may contain O(n2) coclusters, at most m clusters are non empty. Since the
contribution of empty coclusters is null in the criterion 1, each evaluation of a data
grid can be performed in O(m) time owing to specific algorithmic data structures.

• The additivity of the criterion means that it can be decomposed on the hierarchy of the
components of the models: extremity (sources vs target variable), cluster of vertices,
cocluster. Using this additivity property, all the merges between adjacent clusters can
be evaluated in O(m) time. Furthermore, when the best merge is performed, the only
impacted merges that need to be reevaluated for the next optimization step are the
merges that share edges with the best merge. Since the graph is potentially sparse,
the number of reevaluations of models may be small on average.

• Finally, the algorithm starts from initial fine grained solutions containing at most
O(
√

m) clusters. Specific pre-processing and post-processing heuristics are exploited
to locally improve the initial and final solutions of Algorithm 1 by moving vertices
across clusters. The post-optimization algorithms are applied alternatively to the
source and target vertex variables, for a frozen partition of the other variable. This
allows to keep a O(m) memory complexity and to bound the time complexity by
O(m

√
m log m).

Sophisticated algorithmic data structures and algorithms are necessary to exploit these op-
timization principles and guarantee a time complexity of O(m

√
m log m) for initial solutions

exploiting at most O(
√

m) clusters of vertices.
The optimized version of the greedy heuristic is time efficient, but it may fall into a

local optimum. This problem is tackled using the variable neighborhood search (VNS)
meta-heuristic (Hansen and Mladenovic, 2001), which mainly benefits from multiple runs
of the algorithms with different random initial solutions. In practice, the main heuristic
described in Algorithm 1, with its guaranteed time complexity, is used to find a good
solution as quickly as possible. The VNS meta-heuristic is exploited to perform anytime
optimization: the more you optimize, the better the solution.

The optimization algorithms summarized above have been extensively evaluated in
(Boullé, 2008a), using a large variety of artificial datasets, where the true data distribu-
tion is known. Overall, the method is both resilient to noise and able to detect complex
fine grained patterns. It is able to approximate any data distribution, provided that there
are enough instances in the train data sample.

10
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3. Illustration

This section, intended to be of a tutorial nature, points out the difference between stochas-
tic edge density blockmodeling and deterministic clustering. This way, we illustrate the
behavior of our approach using several small artificial datasets, and show how the discov-
ered patterns encompass and significantly extend the community patterns discovered using
modularity based clustering methods.

3.1 Artificial Graph Family

We introduce a family of artificial graphs consisting in four clusters of ten vertices, named
A,B, C, D. For two-dimensional depiction purpose, we consider the case of undirected
simple graphs, with at most one edge per pair of vertices and no loops, and control the
proportion of potential edges per cocluster, that is per pair of clusters of vertices. This
is illustrated in Figure 4, where the four cluster of vertices are drawn on circles for better
readability. For example, choosing a proportion p = 50% for the edges of (A,B) means
that 50% of the potential edges with one extremity in A and the other one in B (among
100 = 10∗10 edges) are in the graph. A random graph is produced by generating a random
value v ∈ [0, 1] for each edge of the complete graph and keeping the edge if v ≤ p in the
related cocluster. In the rest of the section, we study several distributions of edges, with
one randomly generated graph for each distribution.

All the graph clusterings based on data grid models are produced using the Khiops
tool1. Khiops is a general purpose data preparation and scoring tool which implements the
method described in Section 2. For the graph clustering problem, it is applied on a graph
dataset consisting of two variables, Source and Target, with one record per edge (two for
undirected graphs), for the task of unsupervised bivariate analysis.

Figure 4: Artificial graph family.

3.2 Random Edge Distribution

We study the case of a random graph, were the probability of edges is uniform; each potential
edge has a probability 20% of being in the graph, which means that within each cocluster,
each potential edge has a probability 20% of being in the graph. Figure 5 shows on the left
the parameters of this distribution, on the right an example of a random graph generated

1. Khiops tool: available as a shareware on http://www.khiops.com
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according to this distribution of edges, and in the middle a contingency table summarizing
the graph by the numbers of edges per cocluster.

In order to check whether the source and target extremities of the edges are independent
for the random graph generated in Figure 5, we use a chi-square test of independence with
9 = (4− 1)(4− 1) degrees of freedom. For two independent variables, the critical value at
5% is 16.919: this means that the probability of getting a chi-square value above 16.919 is
5%. The critical value is 21.666 at 1% and 27.877 at 0.1%. In the case of the random graph
drawn in Figure 5, the chi-square computed from the contingency table is 7.198. Thus,
using the chi-square test, the hypothesis of independence cannot be rejected. This sanity
check will be used throughout the rest of the section.

Using the approach described in Section 2, our methods builds one single cluster of
vertices. This confirms experimentally the analysis presented in Section 2.4, which claims
that any random graph should be summarized using the null model, having one single
cluster.

A B C D
P

A 18 26 17 19 80
B 26 14 20 23 83
C 17 20 22 21 80
D 19 23 21 22 85P

80 83 80 85 328

Figure 5: Artificial graph: random edges.

3.3 Random Edges with Unbalanced Distribution of Vertex Degrees

We now study the case of a graph where the extremities of the edges are chosen indepen-
dently according to an unbalanced distribution of the vertex degrees. Each edge has a
probability 50% of having an extremity in vertex cluster D, 20% in A, 20% in C and, 10%
in B. Thus, the probability of having an edge in (D,D) is 25% = 50% ∗ 50%, in (A,D)
is 10% = 50% ∗ 20%, in (B,D) is 5% = 50% ∗ 10%... Generating around 400 edges, the
proportions of edges used in the distribution on the left of Figure 6 follow this unbalanced
distribution of the vertex degrees, with the source and target extremities independently
drawn from the same distribution. The graph pictured on the right of Figure 6 shows
an example of such a graph. The chi-square value computed from the contingency table
is 3.321, far below the critical value, which confirms that the hypothesis of independence
between the edges extremities cannot be rejected.

Our method builds one single cluster for this sample graph, which complies the ana-
lysis of Section 2.4. Although Figure 6 clearly exhibits a pattern, with one high den-
sity vertex cluster D, two medium density clusters A and C and one small density clus-
ter B, the independence between the edges extremities provides the simplest explana-
tion for this pattern. We have p(edge) = p(source, target) = p(source)p(target). Thus
p(edge|source) = p(target). In other words, knowing the source vertex of an edge provides

12
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no information about the target vertex of the edge. This is why there is no correlation
pattern in this sample graph according to our approach.

A B C D
P

A 16 9 14 41 80
B 9 8 10 23 50
C 14 10 20 46 90
D 41 23 46 90 200P

80 50 90 200 420

Figure 6: Artificial graph: random edges with unbalanced distribution of vertex degrees.

3.4 Quasi-cliques

Figure 7 provides a classical pattern consisting of four dense vertex clusters, with an intra
edge density of 80% and an inter edge density of 10%. Our method recognizes this pattern,
building four vertex clusters related to A,B, C, D. It is noteworthy that the number of
partitions of 40 vertices is based on the Bell number B(40) ≈ 1.6 1035: Although the model
space is huge, our algorithm manages to construct the correct number of clusters with their
correct composition.

The chi-square value computed from the contingency table is 401.840, far beyond the
critical value 27.877 at 0.1% rejection rate or even the critical value 44.811 at 0.0001%. Since
a huge number of vertex partitions are considers, there could be a risk of overfitting the data.
Even at a rejection rate 0.0001% = 10−6, if millions of clustering models are evaluated using
the chi-square test of independance, one of them could have a chi-square value beyond the
rejection rate just by random. This problem is addressed in our approach using a Bayesian
model selection technique with the prior for the model parameters introduced in Definition 2.
The criterion 1 provides a balance between the model complexity, related to the number
of considered models, and the likelihood of the observed edge distribution given the model.
For example, the chi-square value 401.840 for the sample graph in Figure 7 corresponds to a
rejection rate of around 10−80. This demonstrates that our model selection approach clearly
accounts for the huge number of considered models and that the selected model reliably fits
the data.

3.5 Cocliques

Figure 8 exposes an unusual pattern with four vertex clusters, with a null intra edge density
and an inter edge density of 50%. The four clusters are correctly identified by our method.
The chi-square value is 217.714, still far beyond the critical value 27.877 at 0.1% rejection
rate. This illustrates one main difference between our approach and most alternative graph
clustering approaches. Whereas standard approaches are essentially parametric and aim at
finding dense clusters in graphs, our approach behaves as a non-parametric edge density
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A B C D
P

A 74 14 9 12 109
B 14 68 12 16 110
C 9 12 76 13 110
D 12 16 13 76 117P

109 110 110 117 446

Figure 7: Artificial graph: quasi-cliques.

estimator whose objective is to summarize the edge density in the graph using a piecewise
constant approximator.

A B C D
P

A 0 60 49 51 160
B 60 0 46 50 156
C 49 46 0 59 154
D 51 50 59 0 160P

160 156 154 160 630

Figure 8: Artificial graph: cocliques.

3.6 Complex pattern

Figure 9 displays a complex pattern, with two dense vertex clusters, D which is a clique and
C a quasi-clique, and two sparse clusters, B which is a coclique and A a quasi-coclique. The
edge density in coclusters vary from 0% to 50%. Any method requiring a global threshold
for the intra edge density or for the ratio between intra and inter edge densities would fail to
recognize such patterns, since some clusters are denser and other sparser than on average.
The four clusters are correctly identified by our method, with a chi-square value is 476.977,
still far beyond the critical value 27.877 at 0.1% rejection rate. This example demonstrates
the summarizing capacity of our method, which provides a simple model of the edge density
in the graph, whatever be the underlying pattern.

3.7 Relation with Modularity Optimization Methods

The goal of community detection is to partition a network into clusters of vertices with
high edge density, with the vertices belonging to different clusters being sparsely connected.
To evaluate the quality of a partition, the modularity Q (Newman and Girvan, 2003) is a
widely used criterion in recent community detection methods. The modularity measures
the density of edges inside clusters as compared to the one expected in case of independence
of the vertices.
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A B C D
P

A 18 60 0 12 90
B 60 0 46 0 106
C 0 46 76 13 135
D 12 0 13 90 115P

90 106 135 115 446

Figure 9: Artificial graph: complex edge density.

Given a graph G = (V,E) with n vertices and m edges, let mij be an element of the
adjacency matrix of the graph. mij = 1 if vertices i and j are connected by an edge, mij = 0
otherwise. The degree of a vertex i is defined by the number of edges incident upon it. In
the case of undirected graphs, the ouput and input degree of a vertice are equal. Using the
notation of Section 2.3, we have

mi. = m.i =
∑

j

mij =
∑

j

mji. (4)

An undirected graph with mU edges corresponds to a symmetrical directed graph with
m = 2mU edges. Assuming that the vertex degrees are respected, the probability of a
random edge between vertices i and j is mi.m.j/m. The modularity Q is defined as

Q =
1
m

∑
ij

(
mij −

mi.m.j

m

)
δ(kS(i), kT (j)), (5)

where kS(i) = kT (i) is the index of the cluster to which vertex i is assigned, the δ-function
δ(x, y) is 1 if x = y and 0 otherwise and m =

∑
ij mij is twice the number of (undirected)

edges. The modularity takes its values between -1 and 1 and has positive values when the
clusters have more internal edges that the expected edge number if connections where made
at random, with the same vertex degrees. The value of this criterion is 0 in the two extreme
cases of one single cluster and of as many clusters as vertices. The modularity criterion has
two appealing properties: it is well founded for the discovery of clusters the density of which
is higher than the expected density when the extremities of the edges are independent, and
it does not require any parameter, such as the number of clusters.

Modularity has been used to evaluate the quality of partitions, but also as an objective
function to optimize. In this paper, we compare our approach with two modularity based
algorithms. The first one is a greedy bottom-up algorithm that comes from the seminal work
of (Clauset et al., 2004) and the second one is the state of the art heuristic of (Blondel et al.,
2008), which is very fast and builds high quality partitions (measured by the modularity
criterion). For each sample graph introduced in this section, we report in Table 1 the number
of clusters and the resulting modularity for these two algorithms and for our approach. The
clusters discovered by the best modularity based algorithm (BGLL) and our approach are
displayed in Figure 10, using a different color per cluster.
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Sample graph BGLL clusters Our approach

Random

Random (unbalanced)

Quasi-cliques

Cocliques

Complex pattern

Figure 10: Clusters on sample graphs, for the modularity based algorithm (Blondel et al.,
2008) and our approach. All patterns are consistently uncovered using our ap-
proach.
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CNM BGLL Our approach
Sample graph Clusters Mod. Clusters Mod. Clusters Mod.
Random 4 0.203 6 0.217 1 0
Random (unbalanced degrees) 5 0.163 4 0.159 1 0
Quasi-cliques 4 0.409 4 0.409 4 0.409
Cocliques 3 0.120 4 0.132 4 -0.251
Complex pattern 3 0.318 3 0.340 4 0.157

Table 1: Number of clusters and modularity on sample graphs, for the algorithms of Clauset,
Newman and Moore (Clauset et al., 2004), Blondel, Guillaume, Lambiotte and
Lefebvre (Blondel et al., 2008) and our approach. The modularity is clearly not a
good criterion for the evaluation of patterns discovered by our approach.

Whereas our method perfectly recognizes the underlying pattern in each case, the mod-
ularity based methods fail to do so, except for the quasi-clique sample. For the two random
graphs, whether the distribution of the vertex degrees is balanced or not, the theoretical
objective of modularity based methods is to build one single cluster with modularity zero.
However, due to randomness, clusters with edge density slightly above the mean density
may appear, and the modularity based method will build erroneous clusters. This is ac-
knowledged in (Clauset et al., 2004):

“Non zero values represent deviation from randomness, and in practice it is
found that a value above about 0.3 is a good indicator of significant community
structure in a network.”

The results in Table 1 are compliant with this claim: both the CNM and BGLL algorithms
find 4 to 6 irrelevant clusters in the two random graphs, but the related modularity value
is about 0.2, below the 0.3 threshold.

C1 C2 C3 C4 C5 C6
∑

C1 56 14 8 5 13 8 104
C2 14 30 4 5 10 6 69
C3 8 4 10 2 5 3 32
C4 5 5 2 6 4 2 24
C5 13 10 5 4 28 5 65
C6 8 6 3 2 5 10 34∑

104 69 32 24 65 34 328

Table 2: Illustration of overfitting behavior on the random graph sample: contingency table
for the six clusters produced using the BGLL approach.

Table 2 shows the contingency table related to the six erroneous clusters found using the
BGLL approach for the random graph sample. Interestingly, the chi-square value 109.693
for this table with 25 = (6 − 1)(6 − 1) degrees of freedom is far above the 52.620 critical
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value for a rejection rate at 0.1% of the hypothesis of independence between the source and
target vertices. This value of 109.693 corresponds to a rejection rate of about 10−12. This
is a clear illustration of the overfitting phenomenon: although the best partition built using
the modularity based approach looks informative, it does not account for the huge number
of potential partitions. There are about 1.6 1035 different partitions of 40 vertices, and even
around 1.8 1028 when restricting to partitions into six clusters, so that even a chi-square
value with a rejection rate of 10−12 of the hypothesis of independence for one given partition
does not allow to trust the discovered pattern. Our approach is regularized and not prone
to overfitting: it has a strong theoretical foundation to build one single cluster in case of
random graph, more precisely in case where the source and target vertices of the edges have
independent distributions. This is empirically confirmed on the two random graphs.

The quasi-clique sample matches exactly the kind of patterns searched by community
based methods: the algorithms retrieve the pattern with a modularity value of about 0.4,
clearly above the 0.3 threshold of (Clauset et al., 2004). In this case, the modularity based
algorithms and our approach retrieve the same pattern.

The coclique sample illustrates a case where the intra-edge density is far below the mean
density. Actually, not all graphs have a structure consisting of natural clusters. Yet, all
clustering algorithm output a partition into clusters for any input graph, and the modularity
based algorithm build around 4 dubious clusters (with modularity below the 0.3 threshold).
Our approach builds four empty clusters, with zero intra-cluster edge density and large inter-
cluster density. In this case, the modularity is negative (-0.251), which reflects the fact that
the ratio between observed and expected edge density is far below 1. The true pattern
would likely be found by a minimization of the modularity, which is the exact opposite
of the intention of modularity based algorithms. Let us give an example of potential real
data exhibiting this kind of coclique patterns. In a distributed computing environment
with hundred of computers (the vertices) coming from several universities (the clusters), if
we collect the internet connexions between the computers (the edges), but are not able to
collect the LAN (local area network) connexions within each university, our approach would
be able to reconstruct the university pattern in the computing network. Given the collected
data, the computers within each university are in cocliques, with potentially intense traffic
across universities.

The last sample graph exhibits a complex pattern, with clusters of various densities,
lower or higher than the mean density. Our approach, which is non-parametric in essence,
is able to recognize any kind of pattern, provided that there is enough available data.
Modularity based approaches clearly fail to uncover such patterns, whether the modularity
optimization problem is turned into a maximization problem (to discover quasi-cliques) or
a minimization problem (to discover quasi-cocliques).

To summarize, our approach retrieves the same patterns as the modularity based algo-
rithms when the graph follows the assumption of being structured into dense clusters. It
has the clear advantage of not overfitting the data, being able to build one single cluster
in case of random graph with independently distributed source and target vertices for the
edges. It is also non-parametric and able to approximate any edge distribution in graphs,
without the strong assumption of cluster-based distribution of the edges.
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4. Evaluation on Benchmark Graphs

In this section, we apply and analyze the results of our method on a variety of benchmark
graphs introduced in the literature. The results are related to those of a modularity-based
clustering algorithm, which makes sense insomuch as many real graphs have a cluster-based
structure with dense clusters and few edges across clusters.

4.1 Artificial Graphs

The artificial graphs used for tests were introduced by (Johnson et al., 1989), with two
kinds of randomly generated graphs. The first type of graph is the classical random graph
of (Erdős and Rényi, 1976), with n vertices and every pair of vertices being connected with
probability p. The expected average vertex degree is p(n− 1) and the expected number of
edges is pn(n − 1). The random graphs are summarized in Table 3, with vertex numbers
124, 250, 500 and 1000, and parameter p chosen by (Johnson et al., 1989) so as to build
sparse graphs with small expected average degrees. On all these graphs, our method builds
one single cluster, which confirms its high resilience to noise.

Graph Vertices Edges Graph Vertices Edges
g124.02 124 149 g500.005 500 625
g124.04 124 318 g500.01 500 1223
g124.08 124 620 g500.02 500 2355
g124.16 124 1271 g500.04 500 5120
g250.01 250 331 g1000.0025 1000 1272
g250.02 250 612 g1000.005 1000 2496
g250.04 250 1283 g1000.01 1000 5064
g250.08 250 2421 g1000.02 1000 10107

Table 3: Random graphs: our method produces one single cluster in each case.

The second type of random graphs may be closer from real applications, in that they
have structure and clustering properties. For two-dimensionnal depiction purpose, they
are based on n vertices with two dimensional coordinates independently and randomly
generated on the interval (0, 1). An edge is created between two vertices if and only if their
Euclidian distance is d or less. The expected average degree is nπd2 for points not too
close from the boundary. These geometric random graphs are summarized in Table 4, with
vertex numbers 500 and 1000 and expected vertex degree ranging from 5 to 40. The results
of our method are reported in Table 4 as well, with the number of clusters, of non-empty
coclusters (in the upper triangular part of the clustered adjacency matrix of graph), and
the proportion of edges that are inside the clusters of vertices. The results show that our
method builds dense clusters: most of the coclusters are empty and the clusters of vertices
clearly have an edge density far above the expected density if clusters were made at random.
For example, for graph U500.40, the methods builds 36 clusters of vertices, which contains
37% of the edges, whereas the fraction of edges falling into 36 random clusters of vertices
is 1

36 ≈ 2.8%.
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Graph Vertices Edges Clusters Coclusters % edge intra
u500.05 500 1282 17 38 97%
u500.10 500 2355 23 62 87%
u500.20 500 4549 31 106 63%
u500.40 500 8793 36 161 37%
u1000.05 1000 2394 24 56 97%
u1000.10 1000 4696 33 98 89%
u1000.20 1000 9339 48 168 66%
u1000.40 1000 18015 54 236 45%

Table 4: Random geometric graphs and their clustering summary using our approach.

Figure 11 shows the clusters discovered by our method for the geometric graphs U500.05,
U500.10 and U500.40. Remarkably, our method is able to reconstruct the geometric struc-
ture of each graph, with an increased precision as the number of edges grows.

As in Section 3.7, we compare our method with two modularity based algorithms and
report the results in Table 5. Whereas our method always correctly builds one single
cluster for classical random graphs, the modularity based algorithms falsely find cluster-
based structures in these graphs, confirming the analysis of (Guimerà et al., 2004). In
the case of random graphs, the modularity criterion ranges from 0.2 to 0.7, surprisingly
far above the 0.3 threshold of (Clauset et al., 2004). Therefore, there is no simple way of
deciding whether the structures found by the modularity based algorithms are spurious or
not. In their paper, (Guimerà et al., 2004) suggest to always interpret the modularity in
comparison with that obtained on randomized graphs.

For the highly structured geometric graphs, our method builds informative clusters with
an increased precision as the number of edges grows. This results from our non-parametric
statistical approach, which benefits from more data to select models with more parameters.
On the opposite, modularity based methods build clusterings with fewer and fewer clusters
as the number of edges grows. This behavior can be observed both for the classical random
graphs and the geometric graphs. Although the modularity criterion allows to avoid any
parameter for the choice of the cluster number, it is clearly sensitive to the sparsity of
the graph, with a number of clusters increasing with the sparsity. Overall, the modularity
criterion have the bad property of discovering clusters in random graphs and building too
few clusters in some highly structured graphs.

4.2 Real Graphs

Table 6 presents a summary of 12 real graphs2, all of them treated as unweighted undirected
graphs. The three first graphs come from the Harwell-Boeing sparse matrix collection (Duff
et al., 1989), the following five graphs are finite element meshes problems (Walshaw, 2000)
and the last four are scientific co-authorship networks (Newman, 2001). The results of our
method are reported in Table 6, with up to 570 clusters of vertices for the largest graph
containing around 150.000 vertices and one million edges.

2. Isolated vertices have been discarded from the datasets.
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Figure 11: Clustering of geometric graphs: U500.05, U500.10 and U500.40.
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CNM BGLL Our approach
Graph Vertices Edges Clust. Mod. Clust. Mod. Clust. Mod.
g124.02 112 149 10 0.622 9 0.644 1 0
g124.04 124 318 6 0.421 9 0.416 1 0
g124.08 124 620 7 0.255 9 0.259 1 0
g124.16 124 1271 4 0.159 7 0.163 1 0
g250.01 230 331 13 0.652 15 0.643 1 0
g250.02 248 612 11 0.434 11 0.443 1 0
g250.04 250 1283 6 0.274 10 0.284 1 0
g250.08 250 2421 5 0.182 9 0.182 1 0
g500.005 451 625 24 0.684 23 0.676 1 0
g500.01 493 1223 11 0.435 15 0.446 1 0
g500.02 500 2355 8 0.286 12 0.289 1 0
g500.04 500 5120 4 0.187 12 0.194 1 0
g1000.0025 933 1272 35 0.703 34 0.708 1 0
g1000.005 994 2496 15 0.445 19 0.446 1 0
g1000.01 1000 5064 7 0.274 15 0.279 1 0
g1000.02 1000 10107 5 0.184 9 0.202 1 0
u500.05 497 1282 29 0.909 29 0.912 17 0.905
u500.10 500 2355 8 0.770 15 0.84 23 0.818
u500.20 500 4549 4 0.631 11 0.754 31 0.596
u500.40 500 8793 4 0.592 6 0.682 36 0.340
u1000.05 993 2394 46 0.930 46 0.932 24 0.925
u1000.10 999 4696 14 0.778 24 0.877 33 0.854
u1000.20 1000 9339 5 0.641 12 0.794 48 0.639
u1000.40 1000 18015 4 0.579 9 0.740 54 0.426

Table 5: Number of clusters and modularity on two kinds of random graphs, classical ran-
dom graphs (g*) and geometric random graphs (u*), for the two modularity based
algorithms CNM and BGLL and our approach. The modularity based algorithms
are prone to overfitting and not able to discover fine grained clusters in highly
structured graphs.

As in the preceding section, we compare our method with two modularity based algo-
rithms and report the results in Table 7. The BGLL algorithm gets significantly better
modularity results than the CNM algorithm, which complies the results of (Blondel et al.,
2008). In the following, we focus the analysis on comparing the results of the BGLL algo-
rithm and our method.

Surprisingly, our method builds far more clusters than the modularity based algorithms
in some graphs and far less clusters on other graphs. We now proceed with a more detailed
analysis on three representative graphs: bcspwr09, netscience and wave.

On the bcspwr09 graph, the BGLL algorithm produces 26 clusters whereas our approach
builds one single cluster. As it is hard to prove the non-existence of any partition that would
get a better score, the result of our approach does not prove that there is no clustering
information in the graph. A known behavior of our approach is that when there is not
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Graph Vertices Edges Clusters Coclusters % edge intra
Bcspwr09 1723 2394 1 1 100%
Bcsstk13 2003 40940 95 662 29%
Bcsstk15 3948 56934 145 669 52%
Airfoil1 4253 12229 45 136 90%
Nasa4704 4704 50027 134 628 63%
4elt 15606 45878 91 305 92%
Brack2 62631 366559 320 1728 83%
Wave 156317 1059333 570 4282 80%
Netscience 1461 2742 22 58 95%
Hep-th 7610 15751 48 727 80%
Cond-mat 16264 47594 127 2515 79%
Astro-ph 16046 121251 233 6692 59%

Table 6: Real graphs and their clustering summary using our approach.

CNM BGLL Our approach
Graph Vertices Edges Clust. Mod. Clust. Mod. Clust. Mod.
bcspwr09 1723 2394 26 0.897 26 0.900 1 0
bcsstk13 2003 40940 3 0.473 6 0.593 95 0.279
bcsstk15 3942 56934 3 0.561 7 0.719 145 0.508
airfoil1 4253 12289 7 0.81 19 0.859 45 0.881
nasa4704 4704 50026 8 0.677 14 0.772 134 0.622
4elt 15606 45878 7 0.814 34 0.923 91 0.911
brack2 62631 366559 5 0.692 31 0.905 320 0.824
wave 156317 1059331 8 0.655 31 0.876 570 0.794
netscience 1461 2742 276 0.956 278 0.960 22 0.898
hep-th 7610 15751 666 0.802 631 0.849 48 0.777
cond-mat 16264 47594 901 0.791 796 0.844 127 0.785
astro-ph 16046 121251 522 0.633 420 0.727 233 0.586

Table 7: Number of clusters and modularity on real graphs, for the two modularity based
algorithms CNM and BGLL and our approach.

enough data (here: only 2394 edges for 1723 vertices), our approach is reluctant to conclude
that there is a significant clustering structure in the graph. We also generated a random
version of the bcspwr09 graph, with the same numbers of vertices and edges. Our approach
still builds one single cluster, as expected, whereas the BGLL algorithm falsely builds 42
clusters (with modularity 0.674), more clusters than in the original graph. As the random
version of the graph is not constrained by the vertex degrees of the original graph, there
is still room for variability in the results, and it is hard to conclude whether the graph
contains or not some cluster-based structure.

On the netscience graph, the BGLL algorithm builds 278 clusters versus 22 for our
approach. We report in Figure 12 the observed versus expected edge number for each
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cocluster. Our approach builds a small number of clusters, containing between 75 and 200
edges with reasonably balanced edge densities. This small number of clusters makes sense
given the small number of edges in the graph. On the opposite, the BGLL algorithm builds
many clusters of vertices containing few edges: less than 50 clusters contain at least 50
edges, and more than 100 clusters contain one single edge. While this might make sense
in the context of community detection, most tiny connected components are grouped in
one single cluster using our approach, since they are similar with respect to their sparse
connectivity pattern. On a random version of the data set, the BGLL algorithm builds 25
clusters (with modularity 0.546), which confirms its tendency to build too many clusters.

Netscience graph: BGLF clustering
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Netscience graph: MODL clustering
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Figure 12: Clustering of netscience graph, with observed versus expected edge number for
each cocluster, intra (black) and inter (gray).

On the wave graph, the BGLL algorithm builds 31 clusters versus 570 for our approach.
Figure 13 displays the observed versus expected edge number for each cocluster. Our
approach builds a large number of clusters, with balanced sizes (from 850 to 2250 edges per
cluster) and high edge density (on average 450 times the expected density). Given the size
of the graph, the BGLL algorithm builds very few clusters, with unbalanced sizes (from
8500 to 80000 edges per cluster) and low edge density (on average, 30 times the expected
density).

Overall, the experiments on real graphs show that our approach is able to reliably
uncover interesting structures on a variety of graphs. On the experiments, our method
tends to build clusters with reasonably balanced edge frequency and high edge density,
with an increasing number of clusters as the number of graph edges grows.

5. Consistency of the MODL Approach for Edge Density Estimation

In this section we present some of the research literature related to statistical graph models
and point out why our edge density estimation method is interesting. We show how our
approach behaves as a universal approximator and establish the consistency of the MODL
model selection approach, which is data dependent and aims at modeling the finite data
sample directly, but asymptotically converges towards the true edge density. We finally

24



Nonparametric Edge Density Estimation in Large Graphs

Wave graph: BGLF clustering
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Figure 13: Clustering of wave graph, with observed versus expected edge number for each
cocluster, intra (black) and inter (gray).

relate the MODL criterion to the modularity and chi-square criterions and show surprising
similarities as well as significant differences.

5.1 Random Graphs, Stochastic Blockmodels and Edge Density Estimation

Several standard stochastic graph models have been studied in the literature (Chung and
Lu, 2006). The classical random graph of (Erdős and Rényi, 1976) generates graphs with n
vertices in which each of the n(n−1)/2 possible edges occurs with probability p. A variant of
this model considers that all the graphs with n vertices and m edges are equiprobabble: this
variant differs only on whether the number of edges is a hard or soft constraint. This model
can be further constrained by a vector of vertex degrees, either by generating graphs with the
expected degrees or with a hard constraint on the vertex degrees (Roberts, 2000; Blitzstein
and Diaconis, 2006). These uniform graph models have been specialized to produce clusters.
In the planted l-partition model (Condon and Karp, 2001), a graph is generated with l
clusters of k vertices, with intra-cluster edges having a high probability p and inter-cluster
edges having a low probability q.

More expressive graph models aim at searching a partition of the vertices into groups
or blocks, with different types of interaction between blocks. In the applied mathematics
field, the seminal work of (Hartigan, 1972) treats the similar problem of coclustering of a
matrix, by looking at a partition of the rows and columns of the matrix. In the data mining
field, in case of binary variables, this technique has been applied to the simultaneous parti-
tioning of the instances into clusters and the variables into groups of variables (Bock, 1979;
Dhillon et al., 2003; Govaert and Nadif, 2003), based on stochastic coclustering models and
expectation maximisation (EM) algorithm. In the the sociometric literature, this modeling
approach is called blockmodeling and has been thoroughly studied. Lorrain and White
(1971) introduced the notion of structural equivalence, where the vertices are connected to
the rest of the graph in similar ways. Early approaches (White et al., 1976; Arabie et al.,
1978; White and Reitz, 1983; Doreian et al., 2004) consider non stochastic blocks, with a
focus on predefined types of block patterns. The block model is searched either indirectly
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using a (dis)similarity measure between pairs of vertices and then applying a standard clus-
tering algorithm, or directly by optimizing an ad hoc function measuring the fit of real
blocks to the corresponding predefined types of blocks. Using the framework of exponential
family (Holland and S.Leinhardt, 1981), Holland et al. (1983) introduced stochastic block
models, with blocks still specified a priori. In (Wasserman and Anderson, 1987; Wang and
Wong, 1987), the approach is extended to the discovery of block structure and exploits a
statistical criterion, e.g likelihood function, optimized using the EM algorithm. The method
of (Snijders and Nowicki, 1997) considers block models where the edge probabilities depend
only on the blocks to which the vertices belong. The considered models are limited to two
blocks, and searched via maximum likelihood estimation using the EM algorithm for small
graphs and via Bayesian Gibbs sampling for large graphs. In (Nowicki and Snijders, 2001;
Gill and Swartz, 2004), the blockmodels are broaden to an arbitrary number of blocks,
and optimized via Monte Carlo Markov Chain (MCMC) Bayesian inference. Recent work
on stochastical blockmodeling via maximum likelihood methods include (Wasserman et al.,
2007; Copic et al., 2009; Bickel and Chen, 2009), with a survey in (Goldenberg et al., 2010).
Still, finding the optimal number K of clusters and optimizing the likelihood in the case
of large K remain open problems. Airoldi et al. (2008) introduce a mixed membership
stochastic blockmodel, where each vertex belongs to several blocks according to a mixture
model. The likelihood cannot be evaluated analytically and the inference is approximated
owing to variational methods. Following (Chakrabarti et al., 2004; Rosvall and Bergstrom,
2007), Lang (2009) considers undirected simple graphs and employ another model selection
approach for the inference the whole set of blockmodel parameters, including the number
of blocks. Using the MDL (Minimum Description Length) approach (Rissanen, 1978), sev-
eral encoding schemes are explored. A fast multi-level algorithm is exploited to generate
candidate partitions of the vertices for K ∈ {2, 4, 8, . . . , 1024}, with a focus on the K = 1
versus K > 1 question. Lang (2009) shows that accounting for the vertex degrees brings a
better resilience to randomness.

In our method, we consider the problem of edge density estimation in directed multiple
graphs, with potential loops and multi-edges. Our approach differs from previous ones in
several points:

1. we aim at modeling the edge density, that is all the edge probabilities for any pair
of vertices; the inferred block structure is a by-product of the modeling approach(see
Section 5.2),

2. we propose a fully non-parametric approach, where the whole set of block models is
considered, from one single cluster of vertices to as many clusters as vertices, and the
optimal number of clusters is found automatically (see Section 2.3),

3. we exploit a new model selection approach, where the finite data sample is mod-
eled directly, with a data dependent prior distribution of the model parameters; we
demonstrate new fundamental results that prove the consistency of the approach (see
Section 5.3),

4. we exploit combinatorial algorithms with practical time complexity, that enable the
processing of large real graphs (see Section 2.5).
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Given these features, our method is able to reliably summarize large graphs without
any assumption on their structure, and provides an approximation of the underlying edge
density which asymptotically converges toward the true edge density.

5.2 Generative Models for Edge Density Estimation

In our method, we consider the graphs as generative models, where the statistical units are
the edges with two variables per edge, source and target vertices of the edge. Whereas most
blockmodeling approaches deal with simple graphs, focusing on their topology with at most
one edge per pair of vertices, we regard graphs as statistical distributions of directed edges,
with potential loops and multi-edges. A graph generative model for a set of n vertices V
is entirely defined by a set of probability parameters {pij}1≤i≤n,1≤j≤n, where pij stands for
the probability of each independent and identically distributed (i.i.d) edge of having source
vertex i and target vertex j. Given these settings, a graph G = (V,E) containing m edges
is treated as a sample of size m drawn from the edge distribution. Therefore, large samples
tend be produce complete graphs from a pure topological point of view, but with varying
edge densities taking into account the generative model.

This generative model applies to many real graph data. In web log analysis, it seems
natural to consider a bipartite graph, with users as source vertices, web pages as target
vertices and edges representing web navigation. A sample graph corresponds to an extract
of web log data, with the popular pages much more seen than the others. In a phone call
network, each edge represents one phone call from a caller vertex to a called vertex, so
that two vertices can be connected by multiple edges. Collecting the phone calls during a
given time period corresponds to a sample of a directed multigraph, where the potential
communities correspond to subgraphs with high multi-edge density. The case of undirected
graphs can be treated with symmetrical edge probabilities and a pair of directed edges per
undirected edge.

Given the random graph generative model, the problem is to estimate the edges densities
in the graph from a finite data sample. Estimating the n2 edge probability parameters pij

from a sample of size m is not an easy task, especially in the case of sparse graphs.
In the following, we propose a new interpretation of our approach described in Section 2

and show how it reduces to a finite sample modeling, which asymptotically converges to an
estimation of the edge density parameters.

Let us introduce a family of cluster-based random graphs, defined by the following
parameters:

• kS , kT : number of clusters of source and target vertices

• kS(i), kT (j): index of the cluster containing source vertex i (resp. target vertex j)

• {pST
ij }1≤i≤kS ,1≤j≤kT

: probability distribution of the edges falling in each cocluster
(i, j)

• {pi,µ.}kS(µ)=i: probability distribution of the out-degrees of the vertices µ of the source
cluster i

• {pj,.γ}kT (γ)=j : probability distribution of the in-degrees of the vertices γ of the target
cluster j
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For a sample graph of size m with edges counts mij , let us reuse the notations of
Section 2.3, which correspond to different levels of aggregation of edge counts in the MODL
approach.

mi. =
∑

j mij out-degree of vertex i

m.j =
∑

i mij in-degree of vertex j

mST
ij =

∑
µ,γ/kS(µ)=i,kT (γ)=j mµγ edge count in cocluster (i, j)

mS
i. =

∑
µ,γ/kS(µ)=i mµγ out-degree of cluster i

mT
.j =

∑
µ,γ/kT (γ)=j mµγ in-degree of cluster j

Using these notations, the probability parameters of the cluster-based random graphs
can be empirically estimated according to:

pST
ij =

mST
ij

m
, pi,µ. =

mµ.

mS
i.

, pj,.γ =
m.γ

mT
.j

, (6)

which shows that the MODL approach relates to an empirical estimation of the probabilities
introduced in the family of cluster-based random graphs.

This is a piece-wise constant modeling of the edge density with respect to the coclusters,
constrained by the distributions of the in and out-degrees of the vertices in each cluster.
Assuming the independence between the source and target vertices of the edges inside each
cocluster, we get the following estimation of the edge densities:

pµγ = pST
ij pi,µ.pj,.γ =

mST
ij

m

mµ.

mS
i.

m.γ

mT
.j

, (7)

where (i, j) is the cocluster containg the edges (µ, γ).
For the null model M∅ with one single cluster (i = j = 1), we have

pST
11 = 1, p1,µ. =

mµ.

m
, p1,.γ =

m.γ

m
, pµγ =

mµ.

m

m.γ

m
, (8)

which means that the joint probability distribution pij is the product of the two independent
marginal distributions of the in and out-degrees of the vertices.

For the maximal model MMax with one cluster per vertex, we have

pST
ij =

mij

m
, pi,i. = 1, pj,.j = 1, pµγ =

mµγ

m
, (9)

which means that the joint probability distribution pij of the edges is directly estimated by
the model parameters.

5.3 Asymptotic Convergence of the MODL Approach

The family of cluster-based random graphs is very expressive and can theoretically approx-
imate any edge distribution provided that there is sufficient data. The problem is to select
the best model given the data. Whereas classical Bayesian approaches rely on the delicate
problem of choosing a prior for the model parameters and computing the likelihood of the
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data given the model, and MDL approaches on the similar problem of choosing a com-
pression scheme for model parameters and the data given the model, the MODL approach
avoids these problems by modeling directly the finite data sample. Instead of modeling
the real-valued edge probabilities, the data grid models consider all the potential discrete
distributions of the m edges on the nS , nT source and target vertices. Working on a set
of parameters of finite size allows to define “natural” hierarchical priors with uniform dis-
tribution at each level of the hierarchy, as in Definition 2. This data dependent modeling
technique provides the criterion of Formula 1, which can be interpreted as the exact poste-
rior probability of the sample graph given the model (Bayesian interpretation), or the exact
coding length of the model parameters and edges given the model (MDL interpretation).
Therefore, contrary to classical model selection approaches, the criterion does not rely on
empirical estimation of continuous-valued parameters (such as probabilities or entropies),
which are valid only asymptotically.

We now study whether for a given vertex number, this exact finite data sample modeling
asymptotically converges towards the true edge density as the edge number goes to infinity.

Let us first recall some concepts from information theory. The Shannon entropy H(X)
(Shannon, 1948) of a discrete random variable X with probability distribution function p
is defined as:

H(X) = −
∑
x∈X

p(x) log p(x). (10)

The mutual information of two random variables is a quantity which measures the mutual
dependence of the two variables (Cover and Thomas, 1991); it vanishes if and only if they
are independent. For two discrete variables X and Y , the mutual information is defined as:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (11)

where p(x, y) is the joint probability distribution function of X and Y , and p(x) and p(y)
are the marginal probability distribution functions of X and Y respectively.

Let us consider edges as statistical instances, with two vertex variables VS and VT having
nS and nT values, and two vertex cluster variables V M

S and V M
T having kS and kT for a

given vertex coclustering model M .
We present in Theorem 4 a generalization of the asymptotic evaluation of the null

model M∅ presented in Formula 3. As the criterion has to be minimized, this means that
the method aims at selecting a coclustering model which maximizes the mutual information
between the two vertex cluster variables. Since the mutual information of two variables is not
other than the Kullback-Leibler divergence (Kullback, 1959) between the joint probability
distribution of two variables and their independent joint distribution, this means that the
best selected coclustering tends to highlight contrasts between the two variables, being as
far as possible from their independent joint distribution.

Theorem 4 The MODL evaluation criterion (Formula 1) for an edge density estimation
model M is asymptotically equal to m times the entropy of the source and target vertex
variables minus their mutual entropy.

c(M) = m
(
H(VS) + H(VT )− I(V M

S ;V M
T )
)

+ O(log m). (12)
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Proof See Appendix A.

We now present an important result in Theorem 5, which shows that the MODL ap-
proach asymptotically converges towards the estimation of the true edge distribution, that
is the joint distribution of the source and target vertex variables. Although the modeling
technique is data dependent (regarding the model space and the prior on the model pa-
rameters) and aims at modeling exactly the data sample with a discrete distribution of the
sample edges on the vertices, not the true edge continuous valued-probability distribution,
this theorem demonstrates the consistency of the approach, as it asymptotically estimates
the true edge distribution.

Theorem 5 The MODL approach for selecting an edge density estimation model M asymp-
totically converges towards the true edge distribution, and the criterion for the best model
MBest converges to m times the entropy of the edge variable, that is the joint entropy of the
source and target vertices variables.

lim
m→∞

c(MBest)
m

= H(VS , VT ). (13)

Proof See Appendix A.

As a corollary of Theorem 5, Theorem 6 states that the MODL approach allows to
estimate the mutual information between the source and target vertices variables.

Theorem 6 The MODL approach for selecting an edge density estimation model M asymp-
totically converges towards the true edge distribution, and the criterion for the null model
minus the best model MBest converges to m times the mutual entropy of the source and
target vertices variables.

lim
m→∞

c(M∅)− c(MBest)
m

= I(VS ;VT ). (14)

5.4 Experimental Convergence Rate of the MODL Approach

We have shown that although the MODL approach aims at modeling the data sample
directly, it asymptotically converges towards the true edge density. The assumption behind
the non-asymptotic MODL approach is that the non-parametric edge density estimation
will benefit from fine tuned finite data dependent model space and prior, so as to converge
as fast and reliably as possible.

This convergence rate is hard to analyze theoretically in the non-parametric setting,
without any assumption regarding the true edge density. For example, in the simple case
of a cluster-based graphs, the adjacency matrix is block-diagonal and most of the edge
probabilities are null. In this case, few parameters need to be estimated and the convergence
is fast. In this section, we chose a more difficult sample graph where the distribution of
the edge probabilities is rather smooth and never null (except for loops), and present an
experimental study of the convergence rate of the approach.
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Let us introduce circular random graphs as undirected graph, where the n vertices
lie equidistant on the unit circle at positions (xi = cos 2πi

n , yi = sin 2πi
n ). The euclidian

distance between two vertices i and j being dij =
√

(xi − xj)2 + (yi − yj)2, we define the
probability of having an edge between two disjoint vertices in inverse proportion of their
distance, according to:

∀i, pii = 0, ∀i 6= j, pij =
1

dij∑
µ 6=γ

1
dµγ

. (15)

In such a circular random graph, the closest pairs of vertices (two consecutive points on
the circle) are distant from about 2π

n , whereas the farthest pairs (on the diameter of the
circle) are distant from 2. Therefore, close vertices lead to edges that are about n

π times
more probable than for distant vertices, with a continuous decrease of edge probabilities in
inverse proportion to their distance.

In our experiment, we chose a circular random graph with n = 100 vertices and ran-
domly generate edges (by pairs, twice the number of undirected edges) from sample size
varying from 100 to 107. For each sample size, we run the MODL algorithm and collect
both the number of clusters and the difference between the estimated mutual informa-
tion (see Theorem 6) and the true mutual information (known exactly for this artificial
dataset). The results are presented in Figure 14, which shows tree phases in the conver-
gence of the MODL algorithm. In the first phase (stability phase), the number of edges
is not sufficient to reliably estimate the edge probabilities, and the approach evaluates
the random graph with one single cluster as being the most probable. In the second phase
(non−parametric estimation phase), the method reliably identifies structures in the graph
by building clusters and approximating the true mutual information, with an increased pre-
cision as the sample size grows. In the third phase (classical estimation phase), the method
has built one cluster per vertex and estimates all the n2 edges probabilities simultaneously
according to a classical empirical estimation of a set of multinomial parameters: the pre-
cision of the estimation “classically” increases with the sample size. In this sample, the
non-parametric estimation phase starts when the number of available edges is about 1000,
about 1

10 of the number of edge probability parameters, and has converged at about 50000
edges, five times the number of edges probability parameters. It is noteworthy that in most
large sparse real graphs such as those of Section 4, the method is in the non-parametric
estimation phase (in the wave graph, the number of observed edges is about 1

10000 of the
number of potential edge probability parameters).

This shows that the method is reliable, quickly discovers true structures in the graph
as soon as there is sufficient data, and is able to approximate any edge density distribution
with a fast convergence rate.

5.5 Comparative Analysis of the MODL Criterion

We now compare three criterions, modularity, chi-square and criterion, by formulating them
in terms of observed and expected edge counts per cocluster.

Using the notation of Section 2.3, mij is the number of edges between vertices i and
j and mST

ij is the number of edges between clusters i and j. Let eij = mi.m.j/m be the
number of expected edges between vertices i and j in case of random edges constrained by
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Figure 14: Convergence of the MODL approach on the random circular graph with 100 ver-
tices: number of clusters and difference between the estimated and true mutual
information I(VS ;VT ) per edge number in the graph sample.

the vertex degrees, and eST
ij = mS

i.m
T
.j/m the number of expected edges between clusters

i and j. The case of undirected graphs with mU edges is treated as symmetrical directed
graphs with m = 2mU edges.

Modularity. Using these notations, the modularity criterion (5) can be rewritten as a
weighted sum over of the clusters of a difference between observed and expected edge num-
bers:

Q =
1
m

∑
ij

eST
ij

(
mST

ij

eST
ij

− 1

)
δ(i, j). (16)

Chi-square. The Pearson’s chi-square test is a widespread statistical test for deciding
whether two variables (in our case, the clusters) are independent. Using the same terms as
above, the chi-square value can be written as:

χ2 =
∑
ij

eST
ij

(
mST

ij

eST
ij

− 1

)2

. (17)

MODL. Using Formula (23) from the proof of Theorem 4, we have:

c(M) =−m

kS∑
i=1

kT∑
j=1

mST
ij

m
log

mST
ij

m

mS
i.

m

mT
.j

m

−m

nS∑
i=1

mi.

m
log

mi.

m
− m

nT∑
j=1

m.j

m
log

m.j

m
+ O(log m).

(18)
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Since the terms of the second line are constant given a sample graph, the minimization of
the MODL criterion reduces to the maximization of the following criterion:

c′(M) =
∑
ij

mST
ij log

mST
ij

eST
ij

+ O(log m). (19)

Comparison of the Criterions. Interestingly, the three criterions, modularity, chi-
square and MODL can be written using the same observed and expected edges counts
per cocluster. The modularity criterion focusses on the diagonal of the clustered graph
adjacency matrix only, ignoring the inter-cluster distribution of the edges. Maximizing the
modularity comes down to identifying clusters where the observed edge count is as much as
possible above the expected count. The chi-square and MODL criterions account for the
whole edge distribution, looking for a clustered adjacency matrix as contrasted as possi-
ble compared to the “grayed” independent-based related adjacency matrix. The chi-square
criterion comes from statistical test theory, is valid asymptotically with conditions related
to the minimum expected edge counts per cell of the clustered adjacency matrix (Cochran,
1954). The MODL criterion comes from information theory, which is usually valid asymp-
totically. In the MODL approach, the criterion relates to an exact encoding of the finite
graph sample and benefits from a non-asymptotic validity. Finally, whereas both the mod-
ularity and chi-square criterions ignore the model selection problem and are consequently
prone to overfitting (see Section 3), the MODL criterion accounts for the complexity of
the cluster-based model of the graph and is theoretically and experimentally resilient to
overfitting.

6. Future Research Direction

We propose several extensions of our approach, regarding the classes of graphs and the
optimization algorithms.

6.1 Classes of Graphs Addressed by our Approach

Although all the experiments in Section 4 deal with undirected graphs with at most one
edge per pair of vertices, our approach is meant to handle directed multigraphs. We show
how it can be specialized or extended to different classes of graphs.

Multigraph. A multigraph can have loops and multiple edges between each pair of ver-
tices. Our approach treats the edges as statistical units, which naturally encompasses the
case of multiple edges.

Weighted graph. A weighted graph has values assigned to each edge, such as for example
cost, length, capacity, edge creation or deletion date. Some approaches, such as modularity
based approached, treat weighted graphs naturally by replacing the unit values in the
adjacency matrix by the edge weights, and the vertex degrees by the sum of weights of
the edges adjacent to each vertex. Our approach cannot deal with weights this way, since
edges, considered as statistical units, only have integer counts. These edge counts are not
weights: for example, doubling the count of each edge has no impact in modularity based

33



Marc Boullé

approaches, whereas in our approach, this reenforces the statistics of the edges and allows
a better edge density approximation with potentially more vertex clusters.

Our approach can be extended to weighted graphs by representing them in a tabular
format with one edge per line and three variables: source vertex, target vertex and edge
weight. The related 3-dimensional data grid will produce clusters of source and target
vertices, and intervals of weights, so as to estimate the joint density of the three variables.

Directed graph. In directed graphs, the pair of vertices describing each edge is ordered.
Our approach is meant for directed graph, by building clusters of source vertices and clusters
of target vertices, which may differ. For example, it has been exploited to analyze the web
graph, where the vertices are web pages and the edges are links between web pages.

Bipartite graph. In bipartite graphs, the vertices can be divided into two sets, so that
every edge has one vertex in each of the two sets. This can be seen a a special case of
directed graphs, where each vertex is either source or target. We have applied our approach
to bipartite graphs, for the coclustering of texts versus words in text mining, of customers
versus products in marketing or of cookies versus pages in web log analysis.

Undirected graph. In undirected graphs, edges have no orientation. Throughout this
paper, we have applied our approach to undirected graph by analyzing the related symmet-
rical directed graph with twice the number of edges. Our approach could be specialized, by
considering one single clustering of the vertices, distributing the edges on half of the con-
tingency matrix and exploiting specialized clustering algorithms, potentially more efficient
than coclustering algorithms.

Graph with edge data. Weighted graphs can be extended to graphs with several vari-
ables per edge. For example, in a telecommunication network, call detail records (edges)
between the calling and called parties (vertices) can be characterized by the date and time
of the call, its length, cost, type (voice, SMS...). As for weighted graphs, our data grid
approach can be applied to edges with multiple variables, using a table of edges with these
variables in addition to the source and target vertex variables. Each categorical variable
is clustered into groups of values and each numerical variable is partitioned into intervals.
The cross-product of these univariate partitions forms a multivariate partition consisting of
cells, which behave as a estimator of the joint-probability distribution of all the variables.
Experiments are needed to evaluate the practical interest and the limits of the approach.

Hypergraph. A hypergraph is a generalization of a graph, where an edge (called hyper-
edge) can connect any number of vertices. A hypergraph can be described by its incidence
matrix A = (aij), where aij = 1 if vertex j belongs to hyperedge i. By applying the bivari-
ate MODL coclustering approach to this incidence matrix, we obtain clusters of hyperedges
which are similar w.r.t. their vertex incidence and clusters of vertices which are similar
w.r.t. the connected hyperedges. We have applied this method to VPN (virtual private
network) data, where each VPN can be considered as a hyperedge related to a subsets of
vertices that need to be connected in a telecommunication network. Coclustering scientific
papers (hyperedges) versus authors (vertices) is another application of hypergraph analysis.

K-partite hypergraph. A hypergraph is k-uniform if all its hyperedges have the same
size k and k-partite if the vertex set can be divided into k sets in such a way that each
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Figure 15: Anytime optimization of the MODL criterion (with reported estimated mutual
information I(VS ;VT ) (see Theorem 6) for the sample graph brack2). The bot-
tom figure is a zoom of the top figure. The first result comes after 2000 seconds,
and is improved by 2% after five million seconds.

hyperedge has one vertex per vertex set. By representing the hyperedges in a single table
with k variables relative to its extremities in the k vertex sets, our approach can be extended
to build k-clustering of the vertices, with one clustering per vertex set and the hyperedges
distributed in the k-clusters resulting from the cross-product the vertex clusterings.

6.2 Algorithms

The CNM algorithm (Clauset et al., 2004) has a practical complexity of O(m log2 n) in case
of sparse graphs when the dendrogram is balanced, but may degenerate in O(mn log n).
The BGLL algorithm (Blondel et al., 2008) is essentially linear in the number of edges, but
its phase of swapping vertices across clusters may have a quadratic linear complexity in case
of dense graphs.

Our algorithm has a guaranteed time complexity of O(m
√

m log m) for the main greedy
heuristic and behaves as an anytime algorithm when the meta-heuristic is exploited to
further explore the search space. It is noteworthy that modularity based algorithm only
consider the diagonal of the block-clustered adjacency matrix (see Section 5.5), whereas
our approach exploits all the adjacency matrix (the size of which is quadratic w.r.t. its
diagonal). Therefore, our algorithm can hardly compete with the most efficient modularity
based algorithms.

On the sample graph brack2 (around 60000 vertices and 370000 edges), the CNM al-
gorithms outputs its clustering in about 500 seconds, and the BGLL in only 4 seconds (on
a PC Windows with Pentium IV 3.2 Ghz, 2 Go RAM). The greedy heuristic used in our
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algorithm requires about 2000 second to output its first solution. Figure 15 displays the
results of the anytime algorithm running during five millions seconds. The meta-heuristic
manages to improve the solution, with a fast rate at the beginning. However, the solution
is improved by only 2% after five millions seconds. The first solution contains 316 clusters,
not far from the 305 clusters of the best obtained solution. The first solution looks very
good, but waiting 2000 seconds is too long in some application contexts. Our algorithm is
also limited by the size of the graph, which is assumed to fit entirely into central memory.
Some applications need far more scalable algorithms to analyze very large graphs, poten-
tially several orders of magnitude above the standard available central memory. Different
trade-offs between computational efficiency and quality of the clustering can be considered,
and there is room for faster and more scalable algorithms, inspired from the state of the art
multi-level clustering algorithms.

7. Conclusion

In this paper, we have presented a novel way of discovering structures in graph, by con-
sidering graphs as generative models whose statistical units are the edges, with unknown
joint density of the source and target vertices. Our approach applies the MODL approach
based on data grid models introduced in (Boullé, 2010) to the case of graphs. By clustering
both the source and target vertices of a graph, the method behaves as a non-parametric
estimator of the unknown edge density.

Our approach is compared experimentally with state of the art modularity based algo-
rithms. It consistently builds better graph clusterings, being both resilient to randomness
and accurate with fine grained clusters in case of informative graphs. Whereas alternative
graph clustering algorithms assume cluster-based patterns, our approach does not make any
assumption about the distribution of the edges in the graph. It is able to discover any kind
of density-based patterns, such as cocliques where the intra-cluster edge density is null.

The main originality of the modeling approach is that it is data dependent and non-
asymptotic in essence: it aims at modeling the finite graph sample directly. The modeling
task is then easier, with finite modeling space and model priors which essentially reduce to
counting. This modeling approach is both non-asymptotic and consistent, with an asymp-
totic convergence towards the true edge density, without any assumption regarding this
density.

The approach can easily be applied or extended to many classes of graphs, such as
multigraphs, directed or undirected graphs, bipartite graphs or hypergraphs. Still, further
work is necessary to explore the practical interest, the benefits and the limitation of the
approach in such extended settings.

The algorithm exploited in our approach has a O(m
√

m log m) time complexity, where
m is the number of edges. Although this is acceptable for many applications, this does not
scale enough in the case of very large graphs. We do believe that the MODL criterion for
edge density estimation in graphs is very relevant, and working on faster and more scalable
optimization algorithms is a potentially valuable research direction.
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Appendix A.

In this appendix we prove theorems 4 and 5 from Section 5.3.

Theorem 4 The MODL evaluation criterion (Formula 1) for an edge density estimation
model M is asymptotically equal to m times the entropy of the source and target vertex
variables minus their mutual entropy.

c(M) = m
(
H(VS) + H(VT )− I(V M

S ;V M
T )
)

+ O(log m).

Proof According to Formula 1, we have:

c(M) = log nS + log nT + log B(nS , kS) + log B(nT , kT )

+ log
(

m + kE − 1
kE − 1

)
+

kS∑
i=1

log
(

mS
i. + nS

i − 1
nS

i − 1

)
+

kT∑
j=1

log
(

mT
.j + nT

j − 1

nT
j − 1

)

+ log m!−
kS∑
i=1

kT∑
j=1

log mST
ij ! +

kS∑
i=1

log mS
i.!−

nS∑
i=1

log mi.! +
kT∑
j=1

log mT
.j !−

nT∑
j=1

log m.j !.

(20)

The first two lines of the criterion, corresponding to the encoding of the model prior param-
eters, can be bounded by O(log m). Using the approximation log n! = n(log n−1)+O(log n)
based on Stirling’s formula and rearranging the terms with new m log m terms, we get:

c(M) =m log m−
kS∑
i=1

kT∑
j=1

mST
ij log mST

ij

−

(
m log m−

kS∑
i=1

mS
i. log mS

i.

)
−

m log m−
kT∑
j=1

mT
.j log mT

.j


+

(
m log m−

nS∑
i=1

mi. log mi.

)
+

m log m−
nT∑
j=1

m.j log m.j

+ O(log m).

(21)

Using the fact that the sum of the edge counts in each partition (per cocluster, per
cluster in and out-degree and per vertex in and out-degree) is always equal to m, we obtain:

c(M) =−m

 kS∑
i=1

kT∑
j=1

mST
ij

m
log

mST
ij

m
−

kS∑
i=1

mS
i.

m
log

mS
i.

m
−

kT∑
j=1

mT
.j

m
log

mT
.j

m


−m

nS∑
i=1

mi.

m
log

mi.

m
− m

nT∑
j=1

m.j

m
log

m.j

m
+ O(log m).

(22)
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As the marginal distributions mS
i. and mT

.j can be decomposed by summation on the
joint distribution mST

ij , we have:

c(M) =−m

kS∑
i=1

kT∑
j=1

mST
ij

m
log

mST
ij

m

mS
i.

m

mT
.j

m

−m

nS∑
i=1

mi.

m
log

mi.

m
− m

nT∑
j=1

m.j

m
log

m.j

m
+ O(log m).

(23)

Considering that the empirical estimation asymptotically converges towards the related
probabilities, the claim follows.

Theorem 5 The MODL approach for selecting an edge density estimation model M asymp-
totically converges towards the true edge distribution, and the criterion for the best model
MBest converges to m times the entropy of the edge variable, that is the joint entropy of the
source and target vertices variables.

lim
m→∞

c(MBest)
m

= H(VS , VT ).

Proof Using Theorem 4, we have

c(M) = −mI(V M
S ;V M

T ) + mH(VS) + mH(VT ) + O(log m). (24)

We apply the Data Processing Inequality (DPI) (Cover and Thomas, 1991), that states
that post-processing cannot increase information. More precisely, the DPI applies for three
random variables X, Y, Z that form a Markov chain X → Y → Z. It means that the
conditional distribution of Z depends only on Y and is conditionally independent of X.
More specifically, for three random variables such that p(Z|X, Y ) = P (Z|Y ), the DPI
states that I(X;Y ) ≥ I(X;Z)

We apply the DPI to the variables VS , VT , V M
T . As the vertex cluster variable V M

T can
be computed according to a partition of the vertex variable VT (V M

T = f(VT )), we have
p(V M

T |VS , VT ) = p(V M
T |VT ) and thus obtain:

I(VS ;VT ) ≥ I(VS ;V M
T ). (25)

We apply again the DPI to the variables V M
T , VS , V M

S . As the vertex cluster variable
V M

S is a function of VS , we have p(V M
S |VS , V M

T ) = p(V M
S |VS) and get:

I(V M
T ;VS) ≥ I(V M

T ;V M
S ). (26)

By transitivity and since the mutual information is symmetrical, we get:

I(VS ;VT ) ≥ I(V M
S ;V M

T ). (27)
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It is noteworthy that this result applies to compare any pair of coclustering models, one
of the models being a sub-partition of the other: the finer model brings a higher mutual
information.

The model selection approach corresponds to a minimization of the MODL criterion.
Let us now show that the best selected model asymptotically tends to be finer and finer,
until reaching the finest possible model with one cluster per vertex, which is the maximal
model MMax that enables a direct estimation of the edge probabilities pij (see Formula 9):

I(VS ;VT ) = I(V MMax
S ;V MMax

T ) ≥ I(V M
T ;V M

S ). (28)

If ∀M, I(V MMax
S ;V MMax

T ) = I(V M
T ;V M

S ), then using Theorem 4, the MODL approach
asymptotically converges towards the true edge distribution.

If ∃Mf ,Mc, I(V MMax
S ;V MMax

T ) = I(V Mf

T ;V Mf

S ) > I(V Mc
T ;V Mc

S ), with Mf a fine-grained
model having the same mutual information as the maximal model and Mc a coarse-grained
model, then let us show that the approach asymptotically selects the fine-grained model
Mf rather than the coarser model Mc.

Let ε = I(V
Mf
S ;V

Mf
T )−I(V Mc

T ;V Mc
S )

2 .
Using Theorem 4 for the convergence of the criterion for model Mc,

∃m1,∀m ≥ m1,

∣∣∣∣c(Mc)
m

−
(
H(VS) + H(VT )− I(V Mc

S ;V Mc
T )

)∣∣∣∣ < ε

2
.

Similarly, for model Mf ,

∃m2,∀m ≥ m2,

∣∣∣∣c(Mf )
m

−
(
H(VS) + H(VT )− I(V Mf

S ;V Mf

T )
)∣∣∣∣ < ε

2
.

Thus,

∀m ≥ max(m1,m2),
c(Mc)

m
> H(VS) + H(VT )− I(V Mc

S ;V Mc
T )− ε

2
,

and
c(Mf )

m
< H(VS) + H(VT )− I(V Mf

S ;V Mf

T ) +
ε

2
.

∀m ≥ max(m1,m2),
c(Mf )

m
− c(Mc)

m
< I(V Mc

S ;V Mc
T )− I(V Mf

S ;V Mf

T ) + ε,

c(Mf )
m

<
c(Mc)

m
− ε.

Since the model selection approach corresponds to a minimization of the MODL crite-
rion, this means that the best selected model MBest asymptotically tends to be a fine-grained
model Mf having the same mutual information as the maximal model, which allows the
estimation of the true edge distribution. Using Theorem 4 with the best selected model, we
have:

c(MBest) ≈ −mI(VS ;VT ) + mH(VS) + mH(VT ) + O(log m). (29)

As I(X;Y ) = H(X) + H(Y )−H(X, Y ), the claim follows.
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P. Erdős and A. Rényi. On random graphs I. Selected Papers of Alfréd Rényi, 2:308–315,
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R. Guimerà, M. Sales-Pardo, and L.A.N. Amaral. Modularity from fluctuations in random
graphs and complex networks. Physical Review E, 70, 2004. 02501.

M.H. Hansen and B. Yu. Model selection and the principle of minimum description length.
J. American Statistical Association, 96:746–774, 2001.

P. Hansen and N. Mladenovic. Variable neighborhood search: principles and applications.
European Journal of Operational Research, 130:449–467, 2001.

J.A. Hartigan. Direct clustering of a data matrix. Journal of the American Statistical
Association, 67(337):123–129, 1972.

B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In Conference
on High Performance Networking and Computing, Proceedings of the 1995 ACM/IEEE
conference on Supercomputing, 1995. Article No.: 28.

P.W. Holland and S.Leinhardt. An exponential family of probability distributions for di-
rected graphs. Journal of the American Statistical Association, 76(373):33–50, 1981.

P.W. Holland, K.B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social
Networks, 5(2):109–137, 1983.

D.S. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization by simulated anneal-
ing: An experimental evaluation, part 1, graph partitioning. Operations Research, 37:
865–892, 1989.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell
Systems Technical Journal, 49:291–317, 1970.

S. Kirkpatrick, C.D. Gellat Jr., and M.P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

42



Nonparametric Edge Density Estimation in Large Graphs

S. Kullback. Information theory and statistics. John Wiley and Sons., New York, 1959.
republished by Dover, 1968.

K.J. Lang. Information theoretic comparison of stochastic graph models: Some experiments.
In WAW ’09: Proceedings of the 6th International Workshop on Algorithms and Models
for the Web-Graph, pages 1–12, Berlin, Heidelberg, 2009. Springer-Verlag.

M. Li and P.M.B. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer-Verlag, Berlin, 1997.

F. Lorrain and H.C. White. Structural equivalence of individuals in social networks. Journal
of Mathematical Sociology, 1:49–80, 1971.

M.E.J. Newman. The structure of scientific collaboration networks. Proceedings of the
National Academy of Science of the USA, 98:404–409, 2001.

M.E.J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physical Review E, 69, 2003. 026113.

K. Nowicki and T.A.B. Snijders. Estimation and prediction for stochastic blockstructures.
Journal of the American Statistical Association, 96(455):1077–1097, 2001.

J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.

J.M. Roberts. Simple methods for simulating sociomatrices with given marginal totals.
Social Networks, 22(3):273–283, 2000.

M. Rosvall and C.T. Bergstrom. An information-theoretic framework for resolving com-
munity structure in complex networks. Proc Natl Acad Sci U S A, 104(18):7327–7331,
2007.

S.E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

C.E. Shannon. A mathematical theory of communication. Technical Report 27, Bell systems
technical journal, 1948.

T.A.B. Snijders and K. Nowicki. Estimation and prediction for stochastic blockmodels for
graphs with latent block structure. Journal of Classification, 14(1):75–100, 1997.

C. Walshaw. The graph partitioning archive. University of Greenwich, UK, 2000. URL
http://staffweb.cms.gre.ac.uk/∼c.walshaw/partition/.

Y.Y. Wang and G.Y. Wong. Stochastic blockmodels for directed graphs. Journal of the
American Statistical Association, 82(397):8–19, 1987.

S. Wasserman, G. Robins, and D. Steinley. Statistical models for networks: A brief review
of some recent research. In E. Airoldi, D.M. Blei, S.E. Fienberg, A. Goldenberg, E.P.
Xing, and A.X. Zheng, editors, Statistical Network Analysis: Models, Issues, and New
Directions, volume 4503 of Lecture Notes in Computer Science, chapter 4, pages 45–56.
Springer Berlin Heidelberg, 2007.

43



Marc Boullé
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