
 

Le présent document contient des informations qui sont la propriété de la R&D de France Télécom. L’acceptation de ce 
document par son destinataire implique, de la part de ce dernier, la reconnaissance du caractère confidentiel de son 
contenu et l’engagement de n’en faire aucune reproduction, aucune transmission à des tiers, aucune divulgation et aucune 
utilisation commerciale sans l’accord préalable écrit de la R&D de France Télécom. 

 
 
 
 

 Copyright France Télécom 2011 
  

     
 

 
A Parameter-Free Method for Clustering Functional Data 

 
Note technique 

 

Référence : FT/RD/TECH/11/01/76 
Autre référence :  
Version : 1.0 
Date d'édition : 11 janvier 2011 

  

Vérifié par : Fabrice Clérot 
 
 

Affiliation : TECH/ASAP 
 
Le : 11 janvier 2011 

 

Auteurs :  

 
Boullé Marc 

TECH/ASAP 
 

Approuvé par : Patrice Soyer 

 
 

Affiliation : TECH/ASAP 
 

Le : 11 janvier 2011 

Résumé :  

In this paper, we present a novel way of analyzing and summarizing a collection of curves, based on 
piecewise constant density estimation. The curves are partitioned into clusters, and the dimensions of the 
curves points are discretized into intervals. The cross-product of these univariate partitions forms a data 
grid of cells, which forms a nonparametric estimator of the joined density of the curves and point 
dimensions. The best model is selected using a Bayesian model selection approach and retrieved using 
combinatorial optimization algorithms. The proposed method requires no parameter setting and makes no 
assumption regarding the curves; beyond functional data, it can be applied to distributional data. The 
consistency of the approach is assessed using controlled experiments with artificial datasets, and its 
practical interest for functional data exploratory analysis is presented on three real world datasets. 
 
Mots clés : Functional data, Exploratory analysis, Clustering, Bayesianism, Model Selection, Density 
estimation 
Thème : 0100 - Théories de l'information, des communications et du signal 

 



11 janvier 2011 A Parameter-Free Method for Clustering Functional Data  

 Copyright France Télécom 2011 FT/RD/TECH/11/01/76 Version : 1.0 
 

 



A Parameter-Free Method for Clustering Functional Data

A Parameter-Free Method for Clustering Functional Data

Marc Boullé marc.boulle@orange-ftgroup.com

Orange Labs
2, avenue Pierre Marzin
22300 Lannion, France

Abstract

In this paper, we present a novel way of analyzing and summarizing a collection of curves,
based on piecewise constant density estimation. The curves are partitioned into clusters,
and the dimensions of the curves points are discretized into intervals. The cross-product of
these univariate partitions forms a data grid of cells, which forms a nonparametric estimator
of the joined density of the curves and point dimensions. The best model is selected
using a Bayesian model selection approach and retrieved using combinatorial optimization
algorithms. The proposed method requires no parameter setting and makes no assumption
regarding the curves; beyond functional data, it can be applied to distributional data. The
consistency of the approach is assessed using controlled experiments with artificial datasets,
and its practical interest for functional data exploratory analysis is presented on three real
world datasets.
Keywords: Functional data, Exploratory analysis, Clustering, Bayesianism, Model Se-
lection, Density estimation

1. Introduction

Functional data analysis (Bosq, 2000; Ramsay and Silverman, 2002, 2005) relates to data
samples where each observation is described by a function or curve, represented by a
variable-length set of measure vectors (points). Functional data arise in many domains,
such as measurements of the heights of children over a wide range of ages, daily records
of precipitation at a weather station or hardware monitoring where each curve is a time
series related to a physical quantity recorded at a specified sampling rate. Most statistical
techniques designed for scalar data have their functional counterpart, including descriptive
statistics, principal component analysis, supervised classification. In this paper, we focus
on functional data exploratory analysis.

One of the key problem with functional data is that of data representation, with a
preprocessing task of representing the curves by of fixed set of parameters or proposing a
similarity between curves. Fixed size instances*variables representation allows to exploit
most standard statistical techniques, whereas similarity provides the basis for clustering
methods such as K-means. This problem has been studied for functional data as well as for
time series. A standard approach is to approximate a function using a linear combination
of basis functions, such as Fourier series (Agrawal et al., 1993), discrete wavelet transform
(Chan and Fu, 1999) or spline basis functions (Hastie et al., 2001; Deboor, 2001). In
(Smyth, 1997, 1999), a hidden Markov model (HMM) is exploited as a parametric model
of sequential data, and provides a similarity matrix according to the log-likelihood between
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sequence models and sequences. This similarity matrix is then used to build clusters of
sequences, where each cluster is itself represented by a HMM. In (Rossi et al., 2004), the
self-organizing map (SOM) clustering algorithm is applied to functional data equipped
with a similarity matrix. In (Hébrail et al., 2010), both the problem of segmentation of
the curves (e.g piecewise constant or linear) and clustering (K-means or SOM) are treated
simultaneously. These approaches requires both fixing some function parameters, such
as polynomial degrees, the number of basis functions to use, number of segments for the
representation of curves and setting the number of clusters for the clustering algorithm.

Nonparametric approaches have also been proposed, to better account for the potentially
infinitely dimensional models behind functional data. In (Ferraty and Vieu, 2006; Crambes
et al., 2008), the functional data Y = f(X)+ε is summarized using nonparametric regression
techniques, with a focus on the conditional mode, median and quantiles. Kernel techniques
are employed, that mainly locally weight the data using smoothing parameters. In (Gasser
et al., 1998; Delaigle and Hall, 2010), the problem of density estimation of a random function
is considered, by representing a function in the space of the eigenfunctions of principal
component analysis. This kind of analysis reveals new patterns in functional data analysis,
such as curves representing the mean or the mode in a curve dataset.

In this paper, we propose a novel exploratory method for functional data, based on data
grid models (Boullé, 2010). The collection of curves is represented by a fixed size dataset
where each observation corresponds to a point of a curve with one categorical variable that
stores the curve identifier and a finite dimensional numerical vector for the point variables.
The categorical variable is partitioned into groups of curves and each numerical variable
is discretized into intervals. The cross-product of these univariate partitions forms a data
grid of cells, which is a nonparametric estimator of the joined density of all the variables.
A model selection technique based on a Bayesian approach with data dependent prior is
applied to obtain an exact evaluation criterion for the posterior probability of joined density
estimation data grid models. The best model is retrieved using combinatorial optimization
algorithms, with a super-linear algorithmic complexity w.r.t. the number of points. In
the case of functional data, grouping the values of the “curve identifier” variable can be
interpreted as partitioning the curves into clusters, and discretizing each point variable
provides an insightful summary of the curves, with an estimation of the joined density of
the dimensions of each curve.

Compared to existing approaches, the benefit of our method is two-fold. It does not
require any parameter, such as the choice of a family of basis functions, kernel parameters
or a number of clusters, and it does not make any assumption regarding the curves such
as their simplicity (Hébrail et al., 2010), smoothness as in regularization (Tikhonov and
Arsenin, 1977; Ramsay, 1991) or capacity as in learning theory (Devroye et al., 1996). It
extends the functional data settings and can be applied to any distributional data, revealing
new insights that have not previously been considered.

The rest of the paper is organized as follows. In Section 2, we present the MODL
approach for data grid models and apply it to joint density estimation and clustering for
functional data. We illustrate the approach and assess its performance using artificial data
in Section 3. We present experimental results on three real world datasets in Section 4, and
show what kind of exploratory analysis can be performed. We show in Section 5 how to a
“natural” distance between clusters of curves emerges from the approach and provides the
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basis for insightful post-processing of the clustering results. Finally, we give a summary in
Section 6.

2. MODL Approach for Functional Data Clustering

In this section, we first summarize the principles of data grid models introduced in (Boullé,
2010) in the data mining field for supervised and unsupervised data preparation and show
how these models can be applied to the problem of functional data clustering. We then
adapt the approach to the case of functional data and finally describe the optimization
algorithm.

2.1 Data Grid Models for Data Preparation in Data Mining

Data mining is “the non-trivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data” (Fayyad et al., 1996). Most data mining tech-
niques work on flat tabular data, with one instance per row and one variable, numerical or
categorical, per column. Supervised data mining aims at predicting the value of one target
variable given the other explanatory variables: the task is classification in case of a cate-
gorical target variable and regression in case of a target numerical variable. Unsupervised
learning aims at discovering clusters in the data, association rules between the variables or
at modeling correlations or joint density.

Data grid models (Boullé, 2008b, 2010) have been introduced for the data preparation
phase of the data mining process (Chapman et al., 2000), which is a key phase, both time
consuming and critical for the quality of the results. They allow to automatically, rapidly
and reliably evaluate the class conditional probability of any subset of variables in super-
vised learning and the joint probability in unsupervised learning. Data grid models are
based on a partitioning of each variable into intervals in the numerical case and into groups
of values in the categorical case. The cross-product of the univariate partitions forms a mul-
tivariate partition of the representation space into a set of cells. This multivariate partition,
called data grid, is a piecewise constant nonparametric estimator of the conditional or joint
probability. The best data grid is searched using a Bayesian model selection approach and
efficient combinatorial algorithms.

2.2 Application to Functional Data: principle

Let C be a collection of n curves ci, 1 ≤ i ≤ n. Each curve ci = (pij)mi
j=1 has mi observed

values, the curve points. Each point pij = (pij1, . . . , pijd) is a vector of finite dimension
d. In the rest of the paper, without loss of generality and to keep the notation simple, we
focus on the case where d = 2 and use X and Y for the two point dimensions. We have
ci = (xij , yij)mi

j=1.

Let us take an example, with two curves c1 and c2, drawn on Figure 1, sampled at
equidistant values for x ∈ [0, 1] from the function y = 1 for c1 and from the function
y = cos(πx) for c2. Our sample dataset consist of n = 2 curves with respectively m1 = 4
and m2 = 5 points:

• c1 : (0, 1), (1
3 , 1), (2

3 , 1), (1, 1)
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• c2 : (0, 1), (1
4 ,

√
2

2 ), (1
2 , 0), (3

4 ,−
√

2
2 ), (1,−1)

-1

0

1

0 0.2 0.4 0.6 0.8 1
X

Y

C1
C2

Figure 1: Two sample curves.

We propose to represent the collection of n curves as a unique dataset with three vari-
ables, C to store the curve identifier, X and Y for the point coordinates, and m =

∑n
i=1 mi

observations. This is illustrated in Table 1.

C X Y
c1 0 1
c1

1
3 1

c1
2
3 1

c1 1 1
c2 0 1
c2

1
4

√
2

2
c2

1
2 0

c2
3
4 −

√
2

2
c2 1 -1

Table 1: Two curves represented as a unique dataset with three variables.

Instead of considering a dataset of curves, where each instance has a variable length
description, we have a dataset of points represented in tabular format. We then can apply
the data grid models in the unsupervised setting to estimate the joint density between the
three variable p(C,X, Y ). The curve variable C is grouped into clusters of curves, whereas
each point dimension X and Y is discretized into intervals. The cross-product of these
univariate partitions forms a data grid of cells, which peacewise constant per triplet of curve
cluster, X interval and Y interval. As p(X, Y |C) = p(C,X,Y )

p(C) , this can also be interpreted
as an estimator of the joint density between the point dimensions, which is constant per
cluster of curves. This means that similar curves with respect to the joint density of their
point dimensions will tend to be grouped into the same clusters. We formalize this in next
section and illustrate it in Section 3.1.
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2.3 Density Estimation for Functional Data

We reformulate the data grid approach in the context of functional data clustering. A data
grid provides a summary of a collection of curves with a peacewise constant joint density
estimation of the curves and points. The finest data grid consists of one curve per cluster
and one point value per interval, whereas the coarsest one contains all the points of all the
curves in one single cell. The issue is to find a trade-off between the informativeness of the
joint density estimation and its reliability, on the basis of the granularity of the data grid.

We introduce in Definition 1 a family of functional data clustering models, based on
clusters of curves, intervals for each point dimension, and a multinomial distribution of all
the points on the cells of the resulting data grid.

Definition 1 A functional data clustering model is defined by:

• a number of clusters of curves,
• a number of intervals for each point dimension,
• the repartition of the curves into the clusters of curves,
• the distribution of the points of the functional dataset on the cells of the data grid,
• for each cluster of curves, the distribution of the points that belong to the cluster on

the curves of the cluster.

Notation.

• C: collection of curves
• P: point dataset containing all points of C in tabular format
• C: curve variable
• X, Y : variables for the point dimensions
• n = |C|: number of curves
• m = |P|: total number of points
• kC : number of clusters of curves
• kX , kY : number of intervals for variables X and Y

• k = kCkXkY : number of cells of the data grid
• kC(i): index of the cluster containing curve i

• niC : number of curves in cluster iC

• mi: number of points for curve i

• miC : cumulated number of points for curves of cluster iC

• mjX : cumulated number of points for interval jX of X

• mjY : cumulated number of points for interval jY of Y

• miCjXjY : cumulated number of points for cell (iC , jX , jY ) of the data grid

We assume that the numbers of curves n and points m are known in advance and we aim
at modeling the joint distribution of the m points on the curve and the point dimensions.
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Note. We do not assume that the numbers of points mi per curve are all equal, neither
that the points are ordered or at the same locations, nor that there is a smooth function
underlying curve data such as yij = xij + εij with errors εij .

The family of models introduced in Definition 1 is completely defined by the parameters
describing the partition of the curves into clusters

kC , {kC(i)}1≤i≤n,

by the numbers of intervals for the point dimensions

kX , kY ,

by the parameters of the multinomial distribution of the points on the k cells of the data
grid

{miCjXjY }1≤iC≤kC ,1≤jX≤kX ,1≤jY ≤kY
,

and by the parameters of the multinomial distribution of the points belonging to each cluster
of curves on the curves of the cluster

{mi}1≤i≤n.

The numbers of curves per cluster niC are derived from the partition of the curves into
clusters: they do not belong to the model parameters. Similarly, the cumulated numbers
of points per cluster of curves miC or per intervals miX and miY can be deduced by adding
the frequencies of cells, according to

miC =
kX∑

jX=1

kY∑
jY =1

miCjXjY ,

miX =
kC∑

iC=1

kY∑
jY =1

miCjXjY ,

miY =
kC∑

iC=1

kX∑
jX=1

miCjXjY .

It is noteworthy that the model parameters for the point dimensions exploit the ranks
of the values in the dataset rather than the values themselves. Therefore, any model is
invariant w.r.t. any monotonous transformation of the point dimensions and robust w.r.t.
atypical values (outliers).

In order to select the best model, we apply a Bayesian approach, using the prior distri-
bution on the model parameters described in Definition 2.

Definition 2 The prior for the parameters of functional data clustering model are chosen
hierarchically and uniformly at each level:

• the numbers of clusters kC and of intervals kX , kY are independent from each other,
and uniformly distributed between 1 and n for the curves, between 1 and m for the
point dimensions,
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• for a given number kC of clusters, every partition of the n curves into kC clusters are
equiprobable,
• for a model of size (kC , kX , kY ), every distribution of the m points on the k = kCkXkY

cells of the data grid are equiprobable,
• for a given cluster of curves, every distribution of the points in the cluster on the

curves of the cluster are equiprobable,
• for a given interval of X (resp. Y ), every distribution of the ranks of the X (resp.

Y ) values of points are equiprobable.

Taking the negative log of the probabilities, this provides the evaluation criterion given
in Theorem 3, which specializes to functional data clustering the unsupervised data grid
model general criterion (Boullé, 2007).

Theorem 3 A functional data clustering model M distributed according to a uniform hi-
erarchical prior is Bayes optimal if the value of the following criteria is minimal

c(M) = log n + 2 log m + log B(n, kC)

+ log
(

m + k − 1
k − 1

)
+

kC∑
iC=1

log
(

miC + niC − 1
niC − 1

)

+ log m!−
kC∑

iC=1

kX∑
jX=1

kY∑
jY =1

log miCjXjY !

+
kC∑

iC=1

log miC !−
n∑

i=1

log mi! +
kX∑

jX=1

log mjX ! +
kY∑

jY =1

log mjY !

(1)

B(n, k) is the number of divisions of n elements into k subsets (with eventually empty
subsets). When n = k, B(n, k) is the Bell number. In the general case, B(n, k) can be
written as B(n, k) =

∑k
i=1 S(n, i), where S(n, i) is the Stirling number of the second kind

(see Abramowitz and Stegun, 1970), which stands for the number of ways of partitioning a
set of n elements into i nonempty subsets.

The first line in Formula 1 relates to the prior distribution of the numbers of cluster
kC and of intervals kX and kY , and to the specification the partition of the curves into
clusters. The second line represents the specification of the parameters of the multinomial
distribution of the m points on the k cells of the data grid, followed by the specification
of the multinomial distribution of the points of each cluster on the curves of the cluster.
The third line stands for the likelihood of the distribution of the points on the cells, by the
mean of a multinomial term. The last line corresponds to the likelihood of the distribution
of the points of each cluster on the curves of the cluster, followed by the likelihood of the
distribution of the ranks of the X values (resp. Y values) in each interval.

2.4 Relation with Information Theory

Null model. Let us first introduce the null model M∅, with one single cluster of curves,
one single interval per point dimension, and one single cell containing all the points. Apply-
ing Formula 1, the cost c(M∅) of the null model (its value according to evaluation criterion 1)
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reduces to

c(M∅) = log n + 2 log m + log
(

m + n− 1
n− 1

)
+ log

m!
m1!m2! . . .mn!

+ 2 log m!
(2)

which corresponds to the posterior probability of the multinomial model for the distribution
of the m points on the n curves and the posterior probability of the ranking of the values
of each point dimension. This means that the curves and the dimensions of the points are
described independently.

Entropy of the null model. To get an asymptotic evaluation of the cost of the null
model, we now introduce the Shannon entropy H(V ) (Shannon, 1948) of a discrete variable
V , H(V ) = −

∑
v∈V p(v) log p(v). Let us consider points as statistical instances, described

by the curve variable C having n values and the dimension variables X and Y having m
ranks. As mi stands for the number of points of curve i, the probability that a point belongs
to curve i can be estimated by mi

m . For the dimension variables X and Y , the probability of
each rank of a value among m potential ranks is 1

m . We thus get H(C) = −
∑n

i=1
mi
m log mi

m
and H(X) = H(Y ) = −

∑m
j=1

1
m log 1

m .
Using the approximation log n! = n(log n − 1) + O(log n) based on Stirling’s formula,

the cost of the null model is asymptotically equivalent to m times the Shannon entropy of
the curve variable C and the dimension variables X and Y :

c(M∅) = m(H(C) + H(X) + H(Y )) + O(log m). (3)

Coding length of the null model. As negative log of probabilities can be interpreted
as a coding length (Shannon, 1948), criterion 2 can be interpreted as the coding length of
dataset P. The first line of criterion 2 encodes the number of curves and the number of
intervals per dimension, then the parameters of the multinomial distribution of the m points
on the n curves. The second line encodes the actual curve related to each point, owing to
the negative log of a multinomial term, followed by the actual ranking of the values per
point dimension.

Coding length of functional data clustering models. Extending the coding length
interpretation to any model, our model selection technique is closely related to the minimum
description length (MDL) approach (Rissanen, 1978; Hansen and Yu, 2001; Grünwald et al.,
2005), which aims at approximating the Kolmogorov complexity (Li and Vitanyi, 1997) for
the coding length of the point dataset P (which is equivalent to that of the collection of
curves C). The Kolmogorov complexity is the length of the shortest computer program that
encodes the data. The prior terms in Formula 1 represent the coding length of the functional
data clustering model parameters whereas the likelihood terms represent the coding length
of the data (the points) given the model.

Robust joint density estimation in collections of curves. Overall, our prior ap-
proximates the Kolmogorov complexity of the functional data clustering model and our
conditional likelihood encodes the points given the model. In our approach, the choice of
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the null model corresponds to the lack of reliable structure in the collection of curves. The
coding length of the null model is asymptotically equivalent to the Shannon entropy of the
distribution of the curves and of the ranks of the dimension variables (cf. Formula 3), which
corresponds to a basic encoding of the points, without any use of structure in the collection
of curves. This is close to the idea of Kolmogorov, who considers data to be random if its
algorithmic complexity is high, that is if it cannot be compressed significantly. This makes
our approach very robust, since detecting reliable structures using functional data clustering
models is necessarily related to a coding length better than that of the null model, thus
to non random patterns according Kolmogorov’s definition of randomness. This robustness
has been confirmed using extensive experiments in the case of univariate data preparation
for supervised data mining (Boullé, 2006, 2005) and is evaluated in the case of functional
data in Section 3.

2.5 Optimization Algorithm

Functional data clustering models are no other than data grid models (Boullé, 2007) applied
to the case of joint density estimation of the curve and dimensions of the points. The space
of data grid models is so large that straightforward algorithms almost surely fail to obtain
good solutions within a practicable computational time. Given that criterion 1 is optimal,
the design of sophisticated optimization algorithms is both necessary and meaningful. Such
algorithms are described in (Boullé, 2007, 2008a). They finely exploit the sparseness of the
data grid and the additivity of the criterion, and allow a deep search in the model space
with O(m) memory complexity and O(m

√
m log m) time complexity.

In this section, we give an overview of the optimization algorithms which are fully
detailed in (Boullé, 2007), and rephrase them using the functional data terminology. The
optimization of a data grid is a combinatorial problem. The number of possible partitions of
n curves is equal to the Bell number B(n) = 1

e

∑∞
k=1

kn

k! , and the number of discretizations
of m values is equal to 2m. Even with very simple models having only two clusters of curves
and two intervals per dimension, the number of models amounts to 2nm2. An exhaustive
search through the whole space of models is unrealistic. We describe in Algorithm 1 a
greedy bottom up merge heuristic (GBUM) which optimizes the model criterion 1. The
method starts with a fine grained model, with many clusters of curves and many intervals
per dimension, up to the maximum model MMax with one curve per cluster and one value
per interval. It considers all the merges between adjacent clusters or intervals, for the curve
and dimension variables, and performs the best merge if the criterion decreases after the
merge. The process is reiterated until no further merge decreases the criterion.

Each evaluation of the criterion for a data grid model requires O(nm2) time, since the
initial model contains up to nm2 cells (see Formula (1)) in the case of the maximal model
MMax. Each step of the algorithm relies on O(n2) evaluations of merges of clusters of
curves and O(2m) evaluation of merges of intervals, and there are at most O(n+2m) steps,
since the model becomes equal to the null model M∅ once all the possible merges have been
performed. Overall, the time complexity of the algorithm is O(n4m2 +n3m3 +nm4) using a
straightforward implementation of the algorithm. However, the method can be optimized in
O(m

√
m log m) time, as demonstrated in (Boullé, 2007). The optimized algorithm mainly
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Algorithm 1 Greedy Bottom Up Merge heuristic (GBUM)
Require: M {Initial solution}
Ensure: M∗, c(M∗) ≤ c(M) {Final solution with improved cost}
1: M∗ ←M
2: while improved solution do
3: M ′ ←M∗

4: for all Merge m between two clusters of C or two intervals of a dimension variable
do

5: M+ ←M∗ + m {Consider merge m for model M∗}
6: if c(M+) < c(M ′) then
7: M ′ ←M+

8: end if
9: end for

10: if c(M ′) < c(M∗) then
11: M∗ ←M ′ {Improved solution}
12: end if
13: end while

exploits the sparseness of the data, the additivity of the criterion and starts from non-
maximal models with pre and post-optimization heuristics.

• Collection of curves represented with datasets of points are sparse. Although a data
grid model may contain O(nm2) cells, at most m cells are non empty. Since the
contribution of empty cells is null in the criterion 1, each evaluation of a data grid
can be performed in O(m) time owing to specific algorithmic data structures.

• The additivity of the criterion means that it can be decomposed on the hierarchy of
the components of the models: variables (curve and dimensions), parts (cluster and
intervals), cells. Using this additivity property, all the merges between adjacent parts
can be evaluated in O(m) time. Furthermore, when the best merge is performed, the
only impacted merges that need to be reevaluated for the next optimization step are
the merges that share points with the best merge. Since the dataset is sparse, the
number of reevaluations of models is small on average.

• Finally, the algorithm starts from initial fine grained solutions containing at most
O(
√

m) clusters. Specific pre-processing and post-processing heuristics are exploited
to locally improve the initial and final solutions of Algorithm 1 by moving curves
across clusters and moving interval bounds. The post-optimization algorithms are
applied alternatively to each variable (curve or one dimension), for a frozen partition
of the other variables. This allows to keep a O(m) memory complexity and to bound
the time complexity by O(m

√
m log m).

Sophisticated algorithmic data structures and algorithms are necessary to exploit these op-
timization principles and guarantee a time complexity of O(m

√
m log m) for initial solutions

exploiting at most O(
√

m) clusters of curves.
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The optimized version of the greedy heuristic is time efficient, but it may fall into a
local optimum. This problem is tackled using the variable neighborhood search (VNS)
meta-heuristic (Hansen and Mladenovic, 2001), which mainly benefits from multiple runs
of the algorithms with different random initial solutions. In practice, the main heuristic
described in Algorithm 1, with its guaranteed time complexity, is used to find a good
solution as quickly as possible. The VNS meta-heuristic is exploited to perform anytime
optimization: the more you optimize, the better the solution.

The optimization algorithms summarized above have been extensively evaluated in
(Boullé, 2008a), using a large variety of artificial datasets, where the true data distribu-
tion is known. Overall, the method is both resilient to noise and able to detect complex
fine grained patterns. It is able to approximate any data distribution, provided that there
are enough instances in the train data sample.

3. Evaluation on Artificial Data

We first illustrate the behavior of our approach using a toy dataset, then evaluate our
method using a complex artificial dataset, where the true clustering consist of hundreds of
curves belonging to tens of noisy clusters, some of them hard to discriminate.

3.1 Illustration with Two Simple Curves

Let us consider the two functions introduced in Section 2.2, on the domain of x values [0, 1],
with an additive white Gaussian noise N(0, σ) and standard deviation σ = 0.25:

• f1 : y = 1 + N(0, 0.25),

• f2 : y = cos(πx) + N(0, 0.25).

The conditional density d(y|x) of f1 and f2 is drawn on Figure 2.

Figure 2: Two sample functions f1 and f2 drawn with their conditional density d(y|x).

Let us consider a collection of 10 curves generated using function f1 and 10 curves with
function f2. We generate a dataset P of 20000 points, on average 1000 per curve. Each
point is a triple of values with a randomly chosen curve (among 20), a random x value (on
domain [0, 1]) and a y value generated according to the function related to the curve.

We apply our functional data clustering method introduced in Section 2 on subsets of
P of increasing sizes. For very small sample sizes, there is not enough data to discover
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significant patterns, and our method produces one single cluster of curves, with one single
interval for the X and Y variables. With only 5 points per curve on average, that is 100
points in the whole point dataset, our method recovers the underlying pattern and produces
two clusters of ten curves related to the f1 and f2 functions: the horizontal curves and
the decreasing curves (cf. f1 and f2 in Figure 3). Our method is also a piecewise constant
estimator of the joint probability p(C,X, Y ) of the three variables C,X, Y , based on both
the clusters of curves and the discretization of the point dimensions X and Y . In our
sample, the C and X variables and both i.i.d and independent. We thus have

p(Y |X, C) =
p(C,X, Y )
p(X, C)

,

=
p(C,X, Y )
p(X)p(C)

,

∝ p(C,X, Y ).

For each cluster of curves, we have a piecewise constant estimation of the conditional
probability p(Y |C). Let us reuse the notation of Section 2.3, with miCjXjY the number of
points per cell (iC , jX , jY ) of the data grid, and miCjX =

∑kY
jY =1 miCjXjY the number of

points per cluster iC and interval jX . We have

p(Y ∈ intervaljY |X ∈ intervaljX , C ∈ clusteriC ) =
miCjXjY

miCjX

.

We divide these estimated conditional probabilities by the width of intervaljY to obtain
conditional densities that we draw in Figure 3, on the same basis as the true conditional
densities pictured in Figure 2.

0.2 0.4 0.6 0.8

−1

−0.5

0

0.5

1

1.5
 

X

f1

 

Y

d(y|x)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.4 0.6 0.8

−1

−0.5

0

0.5

1

1.5

X

Y

f1

0.2 0.4 0.6 0.8

−1

−0.5

0

0.5

1

1.5
 

X

f2

 

Y

d(y|x)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.4 0.6 0.8

−1

−0.5

0

0.5

1

1.5

X

Y

f2

Figure 3: Estimation of the conditional density d(y|x) and discovered clusters of curves,
with 5 points per curve.

These estimations are very raw, with only two intervals for the X and Y variables, but
they are obtained with only 100 points (5 points per curve) and provide a good summary
of the underlying pattern: horizontal versus decreasing conditional density.

When our method is applied on a dataset of larger size, it still perfectly recovers the
two cluster of curves and provides a refined version of the estimated conditional densities.
With 1000 points per curve on average, that is 20000 points in the whole point dataset,
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the conditional density estimator exploits a joint discretization of the X, Y variables with 9
intervals for X and 12 for Y . This estimation, drawn in Figure 4, is a good approximation
of the true conditional densities pictured in Figure 2.
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Figure 4: Estimation of the conditional density d(y|x) and discovered clusters of curves,
with 1000 points per curve.

We also performed the same experiment with the subset of 10 curves related to the
function f1 : y = 1 + N(0, 0.25). Whatever the size of the dataset, the method always
returns one single cluster, with one single interval for both the X and Y dimensions. This
experimentally confirms the theoretical analysis presented in Section 2.4: in the case of
f1, the three variables C,X, Y are independent, such that the shortest way to encode the
data is to encode each variable independently. One striking benefit of our approach is its
robustness: it never produce spurious clusters whatever the sample size.

3.2 Evaluation on a Complex Curve Artificial Dataset

The purpose of this controlled experiment is to study the ability of our method to dis-
criminate complex clusters and to avoid the detection of spurious patterns for datasets of
increasing sizes. We introduce a space of curves defined on the domain of x values [0, 1],
with two shape parameters a and b and an additive white Gaussian noise N(0, σ):

C(a, b, σ) : y = sin aπx + cos bπx + N(0, σ). (4)

The two functions in Section 3.1 correspond to f1 : C(0, 0, 0.25) and f2 : C(0, 1, 0.25). We
consider 48 families of curves, using a ∈ {0, 1, 2, 3}, b ∈ {0, 1, 2, 3} and σ ∈ {0.25, 0.5, 1.0}.
The conditional density d(y|x) of each family is drawn in Figure 5.

For each family, we generate 10 curves, for a total a 480 curves, representing 16 shapes
with three levels of noise. We generate a dataset P of one million points, on average 2000
per curve. Each point is a triple of values with a randomly chosen curve (among 480), a
random x value (on domain [0, 1]) and a y value generated according to the function related
to the curve. Let us notice that this dataset is difficult to analyze for any functional data
analysis method based on parametric or semi-parametric regression of each curve for the
following reasons:

• the considered curves are very noisy and therefore do not meet the assumption that
they are intrinsically smooth, like in (Ramsay and Silverman, 2005),
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Figure 5: Artificial curve patterns drawn according their conditional density d(y|x). 16
curve shapes with standard deviation 0.25, 0.5 and 1.0

• regression methods estimate the expectation of the function and are prone to overfit-
ting in case a noisy data with problems to discriminate different levels of noise for the
same shapes,

• most functional data analysis approaches require parameter tuning, which is not suit-
able to study the behavior of a method w.r.t datasets of varying sizes.
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Figure 6: Artificial curve patterns: number of clusters and of intervals of X, Y of the data
grids obtained from increasing size of the point dataset.

Like in Section 3.1, we apply our method on subsets of P with increasing size. Figure 6
reports the numbers of clusters of curves and the numbers of intervals per dimension X, Y
for subsets of size 100 to 1 000 000. Interestingly, five phases can be distinguished to qualify
the behavior of the method.
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1. In phase I, up to 100 points, there is not enough data to discriminate any pattern and
the method builds one single cluster of curves with one single interval per dimension,
like in the independence case (see Sections 2.4 and 3.1).

2. In phase II, from 200 to 2000 points, the method is able to detect the global shape
of the whole dataset, but not to discriminate any cluster of curves. It groups all the
curves in one single cluster, but discretizes the dimensions with four interval for X
and two for Y . Figure 7 displays on the left the estimated conditional density d(y|x)
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Figure 7: Point dataset of size 200: one single cluster.

and on the right the curves, most of them sampled with one single point. The overall
shape of all curves in the dataset is to start with positive values of y for small values
of x, then decrease down to a minimum with negative values of y around x = 0.5,
with an almost uniform distribution of y for x before and after the minimum.

3. In phase III, from 3000 to 100 000 points, the method benefits from the growing
number of points to build a more and more precise summary of the dataset with
an increasingly detailed and precise partition of the 480 curves into clusters and an
improving joint discretization of the dimensions X and Y . Figure 8 shows the three
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Figure 8: Point dataset of size 3000 (6 points on average per curve): three clusters.

clusters detected by our method with 3000 points, on average 6 points per curve.
The dimensions X, Y are discretized using a 5 ∗ 5 grid, which provides an insightful
summary of the three clusters. The first cluster groups strongly concave curves, the
second one slightly convex curves with mostly positive y values, and the last one
sharply decreasing curves. With so few points per curve, the partition of the curves
is not fully consistent with the true curves families: several curves belonging to the
same family fall into different clusters. With datasets of growing size, the number of
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clusters increases and their purity w.r.t. the true curves families gets better. With a
dataset of 100 000 points, the 48 true curve families are partitioned into 34 clusters in
a consistent way, owing to a joint discretization of the dimensions X, Y into a 13 ∗ 11
grid. Twenty clusters consist of the 10 curves of one single curve family, and the other
fourteen clusters contain the 20 curves of two close families. Figure 9 displays the 20
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Figure 9: Point dataset of size 100 000: two sample clusters of 20 curves. On the left, mix-
ture of two close shapes with high variance (C(0, 1, 1.0) and C(2, 3, 1.0)), on the
right, mixture of the same shape with small and medium variance (C(1, 0, 0.25)
and C(1, 0, 0.5)).

curves of two of the mixture clusters, one with similar shapes but high variance, the
other one with the same shape but either small or medium variance.

4. In phase IV , from 100 000 to 300 000 points, the clusters are always consistent w.r.t.
the curves families: they consist of all the curves of either one or two curve families.
The discrimination of the true curve families gets better and better, until a fine grain
grid of 15 ∗ 13 is exploited for 300 000 points, that enables the perfect discrimination
of the 48 true curves families. Figure 10 displays the two clusters the most difficult
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Figure 10: Point dataset of size 300 000: curves families C(0, 1, 1.0) and C(2, 3, 1.0), the
most difficult to discriminate.

to discriminate, with close curve shape and high variance.

16



A Parameter-Free Method for Clustering Functional Data

5. Finally, in phase V , the method always discriminates the true curves families with an
increased precision, up to a grid of 20 ∗ 18 for 1 000 000 points. Overall, the finest
grain trivariate datagrid contains 48∗20∗18 = 17280 cells, which mean that the 17280
multinomial distribution parameters miCjXjY are estimated using the model selection
approach presented in Section 2. Figure 11 displays the conditional density estimation

Figure 11: Point dataset of size 1 000 000: all the curve families are accurately discrimi-
nated.

for the 48 curves families, estimated for the whole dataset of 1 000 000 points.

Overall, the experiment demonstrates that the approach is both accurate and robust.
It is able to approximate complex curve families provided that there is enough data, and
never produces spurious clusters. The method is a nonparametric estimator of the joint
probability of the curve and dimension variables. Unlike parametric methods where the
parametric assumption may be questionable and the trade-off between coarse grain and
fine grained summaries is a difficult task, the proposed approach automatically exploits the
available data to build a summary of the dataset that is optimally accurate and robust.
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4. Experimental Results on Real Data

In this section, we apply the proposed approach on three real datasets and show what kind
of exploratory analysis can be performed.

4.1 Topex/Poseidon Satellite

The first dataset1 detailed in (Frappart et al., 2006) consists of 472 waveforms registered by
the Topex/Poseidon satellite around an area of 25 kilometers upon the Amazon river, with
a variability originating from the differences in the ground type. Each waveform is a curve
measured at 70 points. Figure 12 displays 10 curves chosen randomly from the dataset.
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Figure 12: Topex/Poseidon dataset: 10 sample curves.

The original data comes in a format with one waveform per row, containing the 70 mea-
sures. We first reformat the data as a three-dimensional dataset, as described in Section 2.2.
We obtain a point dataset of 472 ∗ 70 = 33040 points with one curve variable, the instance
of waveform, and two dimension variables, the measure index (T ∈ {1, 2, . . . , 70}) and the
measured value (V ∈ {0, 1, . . . , 255}). We apply the proposed method and obtain 33 clus-
ters, summarized by the the conditional probability p(v|t) on a bivariate discretization 7 ∗ 4
of the measure dimensions.

Figure 13 displays a summary of all the clusters. They present a variety of forms, curves
with one more or less heavy peak, with similar shapes but shifted peaks, flat noised curves
with or without a stage.

Figure 14 focuses on four examples of clusters, to better illustrate the kind of sum-
mary provided by our approach. Each cluster is summarized according to the conditional
probability

p(V ∈ intervaljV |T ∈ intervaljT , C ∈ clusteriC ) =
miCjT jV

miCjT

.

All the curves assigned to each cluster are also drawn. The figure shows the richness of
the information retrieved in the probability-based summary of the clusters, as well the easy

1. Dataset available at http://www.math.univ-toulouse.fr/staph/npfda/npfda-datasets.html
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Figure 13: Topex/Poseidon dataset: all clusters.

interpretation of the clusters. Although the individual curves are very noisy, the 7 ∗ 4
bivariate discretization grid provides a simple summary, with a good global fit of all the
curves in a cluster. Nonparametric estimation of probability distribution goes far beyond
the standard regression-based approaches, where the expectation of the curve target value
only is estimated. The method not only summarizes the mean shape of the curves in a
cluster, but also the variability of the curves inside each cluster, without any assumption
regarding constant Gaussian noise (like in ordinary least square regression technique) or
any king of parametric homoscedastic or heteroscedastic noise.
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10 20 30 40 50 60 70
0

50

100

150

200  

T

 

 

V

p(y|x)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70
0

50

100

150

200

T

V

 

10 20 30 40 50 60 70
0

50

100

150

200  

T

 

 

V

p(y|x)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70
0

50

100

150

200

T

V

 

10 20 30 40 50 60 70
0

50

100

150

200  

T

 

 

V

p(y|x)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70
0

50

100

150

200

T

V
 

10 20 30 40 50 60 70
0

50

100

150

200  

T

 

 

V

p(y|x)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70
0

50

100

150

200

T

V

 

Figure 14: Topex/Poseidon dataset: four examples of clusters.

4.2 Electric Power Consumption

The second dataset2 detailed in (Hébrail et al., 2010) consists in the electric power consump-
tion recorded in a personal home during almost one year (349 days). Each curve consists in
144 measures which give the power consumption of one day at a 10 minutes sampling rate.
Figure 12 displays 10 curves chosen randomly from the dataset.
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Figure 15: Power consumption dataset: 10 sample curves.

2. Dataset available at http://bilab.enst.fr/wakka.php?wiki=HomeLoadCurve
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We reformat the original data as a three-dimensional dataset, and obtain a point dataset
of 349 ∗ 144 = 50256 points with one curve variable, the recorded day, and two dimension
variables, the time of the measure and the measured power. We apply the proposed method
and obtain 60 clusters, summarized by the conditional probability p(power|time) on a
bivariate discretization with 7 intervals of time and ten intervals of power level.

Time intervals

0 300 600 900 1200 1500 1800 2100 2400

Power intervals

0 1 2 3 4 5 6 7 8

Figure 16: Power consumption dataset: discretization of the time and power variables.

The discretization of the dimension variables time and power, displayed in Figure 16,
provides a first level of information. The time variable is discretized using seven intervals,
which look consistent w.r.t. the usual periods of activities in a personal home: night,
breakfast, morning, noon, afternoon, evening, and night again. The power variable is
discretized using ten intervals, with a focus on the small levels of power consumption.
In the following, we truncate the last wide interval in the displayed figures to focus on
the discriminating patterns of power consumption. The fine grained discretization of the
power variable makes sense to summarize complex behaviors resulting from many electrical
appliances that might be switched on or off. It would be interesting to compare the bounds
of the discretization intervals with the power of the electrical appliances available at the
personal home related to this dataset.

Figure 17 displays six among the 60 clusters, with both the conditional probability
p(power|time) and all the curves related to each cluster. For example, the first cluster
(top left figure) looks representative of a vacation period away from home: the power
consumption is very low on average. It is noteworthy that the distribution is bimodal, with
the power consumption mostly around 0.3 and with a small probability around 1.5. The
curves of the cluster suggest that an electrical appliance is switched on for short periods
of time, at random moments of the day. The second cluster (top right on Figure 17) looks
typical of a week day, with low consumption during night and work hours, a sharp peak
during breakfast and a wide peak in the evening. The third cluster (middle left) could be
the signature of a week-end, with low consumption during the night and high consumption
all day long, including the late evening period. The sixth cluster (bottom right) exhibits an
unusual pattern, with high consumption during the night. The patterns identified by the
method are discriminating and suggest that external data related to personal activity or
usage of electrical appliances could be collected and correlated with the clusters to provide
an adequate interpretation.

Figure 18 displays a summary of all the clusters. The number of combinations of low
versus high power consumption for each of the seven time periods (27 = 128) provides a
raw explanation of the high number of clusters (sixty) retrieved by the method. The theory
behind the approach says that the number of clusters is optimal (within the effectiveness of
the optimization algorithm), in the sense that more clusters would be less probable, leading
to overfitting the data and creation of spurious clusters, and less clusters would result
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Figure 17: Power consumption dataset: six examples of clusters.

in a less probable explanation that underfit the data. It is noteworthy that the primary
objective of the proposed approach is joint density estimation and that the partition of the
curves into clusters is just a byproduct. In the case of a real world dataset, there is no
reason of stopping the clustering process at a given grain level. We presume that with more
data, for example with power curves sampled every minute instead of every 10 minutes, the
method would potentially build one cluster per curve. Whereas this provides an accurate
estimation of the joint probability of the dataset, this is no longer suitable for exploratory
analysis and understandable explanation of the data. A simple solution to that issue is to
set an upper-bound for the number of clusters and to constrain the optimization heuristics
to retrieve the most probable clustering that fit this user parameter. This provides a trade-
off between accuracy and understandability of the cluster. A possibly better solution is
to let the method find the optimal clustering, then to post-process it using a hierarchical
agglomerative algorithm. This is discussed in Section 5.
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Figure 18: Power consumption dataset: all clusters.

4.3 MNIST Handwritten Digits

The third dataset3 detailed in (Lecun et al., 1998) consists of 8-bit grayscale images of
“0” through “9” digits. The dataset was originally designed for the classification task of
handwritten digit recognition, with a train set of 60 000 examples and a test set of 10 000
examples. Each image is a 28∗28 pixel box, with gray level from 0 to 255. We consider each
image as the picture of a curve, and chose to keep the pixels with gray level above 128 as
belonging to the curves. We exploit both the initial train and test sets and obtain a curve
dataset related to handwritten digits, with 70 000 curves represented on a two-dimensional

3. Dataset available at http://yann.lecun.com/exdb/mnist
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space X, Y , leading to a point dataset P containing about 7.2 million points. Figure 12
displays 100 curves chosen randomly from this curve dataset.
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Figure 19: Handwritten digits datasets: 100 sample curves.

In this last experiment, we apply our method as a exploratory analysis technique, and
use the curve labels (digits) only in a second phase to evaluate the correlation between the
clusters of curves and the curve labels. The interest of using this dataset with the task a
exploratory analysis of functional data is multiple.

• This is a large dataset, two orders of magnitude above the Topex/Poseidon satellite
and electrical power consumption datasets. This provides a challenging benchmark
to evaluate the scalability of an exploratory analysis technique.

• The curves are complex: they look closer to distribution of points than to functions.
Any method assuming a functional relation between the point dimensions is likely to
fail.

• Whereas this dataset has been extensively used for the classification task, to our
knowledge, it is the first time it is used for the task of exploratory analysis. Many
questions arise, related to the number and variety of “natural” patterns in this dataset,
to the correlation between these patterns and the digits, to which digits exhibits a
larger variety of shapes and whether they are harder to discriminate.

• As any educated people can be considered as an expert in handwritten digit recog-
nition, this alleviates the evaluation of the understandability of the results of the
proposed exploratory analysis.
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Figure 20: Handwritten digits datasets: 100 sample clusters.

We apply the method presented in Section 2 and obtain 568 clusters, summarized on a
bivariate grid of size 15 ∗ 21. Since the curves are closer to point distributions rather than
to functions, we focus on the the joint probability p(x, y|c) per curve rather than on the
conditional probability. Let us reuse the notation of Section 2.3, with miCjXjY the number
of points for cell (iC , jX , jY ) of the data grid, and miC the number of points for cluster iC .
We have

p(X ∈ intervaljX , Y ∈ intervaljY |C ∈ clusteriC ) =
miCjXjY

miC

.

Figure 20 displays a summary of a subset of 100 randomly chosen clusters. Each cluster
summary is a representation of a joint distribution, which highlights the dense regions in
the bidimensional X, Y space. Interestingly, the shapes in the joint distribution space are
very close to digits, and even more readable than the original digit curves, such as those
presented in Figure 19.

Given this proximity of cluster summaries to digit shapes, we decide to reorganize the
clusters according to their majority digit. For each cluster, we compute the number of
curves per digit and assign the cluster to its majority digit. Figure 21 shows all the clusters
for six among the 10 digits, sorted by decreasing frequency of their majority digit. Digit
“1” is the easiest, with only 35 clusters and an overall 98.0% of the curves assigned to
the digit “1”. The clusters are related to few shapes, but with a variety of orientation,
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Figure 21: Handwritten digits datasets: clusters organized according to their majority digit,
for digits “1”, “4”, “5”, “7”, “8”, “9”.
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thickness and (slight) curvature. Digits “4”, “5” and “7” are a bit more complex, with
44, 52 and 47 clusters and a probability of correct assignment of 96.1%, 95.1% and 97.4%.
Digits “8” and “9” are clearly the most difficult, with 78 and 48 clusters and a probability
of correct assignment of 84.8% and 83.7%. Digit “8” exhibits the largest variety of shapes.
Although it always consist of two loops, the variety comes from the thickness of the curve
itself, the width and orientation of the overall shape and the respective size of the upper
and lower loop of the “8”. It is noteworthy that in this representation space X, Y without
any preprocessing, the “8” shapes are not always close to each other and do not even share
many pixels. Constraining the clustering technique by a maximum number of clusters may
have blurred the summaries and hidden potentially informative insights.

   C0         C1          C2              C3           C4        C5        C6         C7            C8           C9 

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Figure 22: Handwritten digits datasets: distribution of digits per cluster.

To study the correlation between the clusters and the digits, we sort the clusters by
decreasing majority frequency and report the probability of each digit inside the clusters.
The results are presented in Figure 22. Each column represent all the clusters with the
same majority digit, sorted by decreasing frequency of this digit. Each row represent the
distribution of a given cluster on the digits. For example, the narrowest column “C1” report
the distribution of digits in each of the 35 clusters assigned to “1”, which almost contain
100% of digit “1” (see row “D1”). The largest column “C8” report the distribution of digits
in the 78 clusters assigned to “8”, which is a far more difficult digit. The last clusters have
significant percentages of the other digits, with overall 0.9% of “0”, 1.9% of “2”, 4.5% of
“3”, 3.7% of “5”, and 1.9% of “9”. The most difficult digit is “9”, but the the errors are
mainly related to two other digits, with 8.6% of “4” and 5.5% of “7”.

Figure 23 displays two clusters of “9”. The first one contains a random subset of the
170 curves of the cluster, almost of them being labeled “9” (with two exceptions: one “4”
and one “7”). The second one is one the most mixed among all the clusters, with 97 curves
and only 35% of them being labeled “9” (precisely with one “1”, three “2”, twenty three
“4”, one “5”, thirty “7”, five “8” and thirty four “9”).
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Figure 23: Handwritten digits datasets: two clusters related to digit “9”, the one on the
top is almost pure whereas the other one on the bottom is very noisy.
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Finally, we evaluate the clusters as a preprocessing method for digit classification, using
a semi-supervised learning setting (Chapelle et al., 2006). All the train and test examples
are used without the class labels (the digits) to train the unsupervised clustering model and
produce the clusters. Then, each cluster is assigned to its majority class, using the train
labels only. This class assignment is then used for prediction for the test examples. To
summarize, each image, initially described by a vector of 28 ∗ 28 = 784 pixels, is recoded
with one single variable, the index of a cluster, and classified by counting inside each cluster.
Using this protocol, where the test labels are ignored during the learning process, we obtain
a test error rate of 5.9%.

Our reformatting of the initial handwritten digit dataset has kept only the pixels with
gray level above 128, which results in some unknown information loss. Still, we can compare
our test error rate with that of dedicated classification methods. This dataset has been
widely used as a benchmark for tens of classification methods4. The test error rate of a
basic linear classifier (one layer neural network) is 12.0% without preprocessing and 8.4%
after deskewing. That of a k-nearest neighbors classifier with L2 norm and 3 neighbors
is 5.0% without preprocessing and 2.4% with after deskewing. Two-layer neuron networks
with 300 hidden units achieved an error rate of 4.7% without preprocessing and 1.6% after
deskewing. Support vector machines were also tried with Gaussian kernel or polynomial
kernels with degree from 4 to 9; they obtained up to 0.8% error rate. Finally, convolutional
networks with up to seven layers and boosting obtained a 0.7% error rate. These first results
were reported in a vast comparative benchmark (Lecun et al., 1998) and have since been
improved with up to 0.4% error rate.

Our exploratory analysis method does not compete with the most sophisticated classi-
fiers, but it performs remarkably well for a task it was not intended to and with an incom-
plete representation. Furthermore, it brings many informative insights w.r.t. the natural
patterns in the dataset, which may suggest new preprocessing or normalization techniques
to reduce the number of patterns and facilitate the task of digit recognition.

One new issue arises in this context of using the clusters as a preprocessing for a clas-
sification task. In real world settings, semi-supervised learning cannot be applied and it is
necessary to assign new unknown curves to the trained clusters. This will be discussed in
Section 5.

Overall, this last experiment on the MNIST handwritten digit dataset has demonstrated
the scalability of our approach and its ability to process a complex curve dataset and discover
potentially interesting patterns.

5. Introducing a Similarity between Clusters of Curves

This section is mainly intended to suggest and motivate future work. We show how a
similarity can derived from our approach and bring new features that extend the possibilities
of functional data exploratory analysis.

4. See http://yann.lecun.com/exdb/mnist for a synthesis with many results and reference papers
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5.1 Similarity between Clusters of Curves

Most clustering techniques like K-means, Kohonen maps, or any agglomerative hierarchical
algorithm are based on a similarity between instances. Determining such a similarity is a
critical task, that results from many choices, such as the representation in the initial feature
space, the use of a modeling technique to transpose the instances into a parameter space or
the distance (Euclidian, Manhattan...).

We show here how the approach introduced in Section 2.3 can be used to derive a
similarity between clusters of curves. The evaluation criterion c(M) (see Formula 1) is
related to the posterior probability of a functional data clustering model M . Let MMax

be the best model obtained using Algorithm 1, with kC clusters of curves and a jX ∗ jY

bivariate discretization of the point dimensions and let iC1, iC2 ∈ {1, . . . , kC} be the indexes
of two clusters. Let MiC1∪iC2 be the model resulting from the merge of the two clusters iC1

and iC2 of curves, keeping the same bivariate discretization of the point dimensions. We
then suggest the following similarity between the clusters as:

δ(iC1, iC2) =c(MiC1∪iC2)− c(MMax),

= log
p(MMax|P)

p(MiC1∪iC2)|P)
.

(5)

Since the best model MMax obtained using Algorithm 1 results from a bottom-up ag-
glomerative heuristic, each merge can only decrease the criterion and we have δ(iC1, iC2) ≥
0. Intuitively, if two clusters share a similar distribution on the X, Y space, the total coding
length of the data (see criterion c(M)) is not much different between the cases where the
clusters are coded jointly or separately, so that δ will be close to 0. On the opposite, mixing
two clusters that have a significantly different distributions on X, Y results in an important
loss of information and thus a large value of δ.

In the bottom-up agglomerative Algorithm 1, minimizing the cost c(M) of a model by
merging clusters of curves is exactly the same as merging the two clusters that are the most
similar w.r.t. the similarity introduced in Formula 5. This provides a preliminary validation
of the proposed similarity.

5.2 Exploiting the Similarity

Contrary to standard similarities which rely on representation choices prior to the analysis,
the proposed similarity comes after the modeling of the data. We suggest several uses of
this similarity and the criterion c(M), which can be applied to post-process the analysis
results.

Bottom-Up Agglomeration of the Clusters. As shown in Section 4.2, the density
estimation models can be too fine grained and result in too many clusters of curves. The
theory behind the method tells that more clusters would overfit the data, whereas fewer
clusters would underfit the data. Still, in the task of exploratory analysis, fewer clusters may
ease the interpretation and we suggest to perform a bottom-up agglomeration of the clusters,
using the similarity defined in Formula 5. More precisely, at each step of the agglomerative
algorithm, the best best merge (that with the smallest decay w.r.t. the optimized criterion)
is performed. The best merge can be related to two clusters of curves, or two adjacent
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intervals of X or Y , such that the granularity of the data grid model remains homogeneous
whatever be the number of clusters of curves. Given the obtained hierarchy of curves, the
data analyst can explore the results at any granularity from the most coarsened, where only
the global trends are observable, to the finest grained clustering, potentially up to one curve
per cluster. For each intermediate clustering the criterion c(M) provides an indicator on
how much information is retained (c(MMax) ≤ c(M) ≤ c(M∅)).

Identification of the Most Representative Curves inside Clusters. The similarity
between clusters defined in Formula 5 can be applied to evaluate the similarity between
a cluster and one curve, considered as a singleton cluster. This may allow to identify
which curves are the most representative of their clusters, by assuming they are close to
their cluster and far from the others, whereas “boundary” curves are closer from the other
clusters.

Assignment of New Curves to Clusters. As shown in Section 4.3, the clustering
technique may be used as a preprocessing step for a curve classification task. Therefore,
assigning new curves to existing clusters is a required step before classifying them in a
deployment phase. This can be done by looking for the cluster which is the closest from the
curve, which reduces to evaluating the insertion of the curve in each cluster and selecting
the cluster with the smallest resulting criterion c(M).

Recoding for Supervised Analysis. In Section 4.3, each curve is recoded owing to
the identifier of its cluster as a preprocessing step for supervised analysis. An alternative
and potentially more informative recoding consists in exploiting the similarity between the
curve and each cluster and representing the curve by the vector of its similarities.

The potential of the suggested similarity needs to be investigated and validated through-
out experiments in future work.

6. Conclusion

In this paper, we have presented a new exploratory analysis method for functional data.
Instead of considering a functional dataset as a data sample where the curves are the
observations with variable-length representation, we chose to work with the fixed-size point
dataset which instances are the curve points and variables are both one “curve identifier”
categorical variable and the numerical point variables. The MODL approach based on
data grid models introduced in (Boullé, 2010) is applied to the case of functional datasets.
By clustering the curves and discretizing each point variable, the method behaves as a
nonparametric estimator of the joint density of both the curve and point variables. The
validity of the approach is assessed in a controlled experiment using artificial data, which
attests that the method is both resilient to noise and able to recover predefined complex
patterns. Experiments on three medium size to large real datasets show the benefits of the
approach, which bring new insights in the exploratory analysis task, such as discovering
the “natural” granularity of the point variables, the number of clusters, the estimation
of the joint density in the point dimensions for each clusters of curves, with potentially
multi-modal behavior, beyond the usual functional assumption.
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Most alternative functional data analysis methods rely on strong assumptions, such
as simple trends, smoothness, equally spaced observations, and require parameter tuning
regarding the choice of the basis functions in the parametric case or the choice of the kernel
parameters or the distance in the nonparametric case. On the contrary, our approach is
both nonparametric, since it can can fit any functional data and even density data, and
parameter-free, since no user parameter is required. The main originality of the modeling
approach is that it is data dependent and non-asymptotic in essence: it aims at modeling
the finite functional sample directly. The modeling task is then easier, with finite modeling
space and model priors which essentially reduce to counting. The controlled experiments
with artificial data provides a first validation regarding the asymptotic convergence of the
estimated density towards the true density in the point dataset. Still, obtaining a theoretical
proof of asymptotic convergence remains a challenging result, left for future work.

Interestingly, whereas the primary purpose of the method is density estimation, it comes
with insightful byproducts such as the clustering of the curves and the discretization of the
curves, which reduces the dimensionality of the curves in a fixed-size space. As the method
automatically infers the optimal granularity of the clustering, its tends to build more and
more clusters as the amounts of data increases, up to potentially one cluster per curve. We
have suggested to organize the clusters into a hierarchy in order to alleviate the exploratory
analysis task, owing to a “natural” similarity emerging from the approach. This will be
investigated in future work.
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