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Abstract. In supervised machine learning, some algorithms are restricted to 
discrete data and need to discretize continuous attributes. The Khiops* 
discretization method, based on chi-square statistics, optimizes the chi-square 
criterion in a global manner on the whole discretization domain. In this paper, 
we propose a major evolution of the Khiops algorithm, that provides guarantees 
against overfitting and thus significantly improve the robustness of the 
discretizations. This enhancement is based on a statistical modeling of the 
Khiops algorithm, derived from the study of the variations of the chi-square 
value during the discretization process. This modeling, experimentally checked, 
allows to modify the algorithm and to bring a true control of overfitting. 
Extensive experiments demonstrate the validity of the approach and show that 
the Khiops method builds high quality discretizations, both in terms of accuracy 
and of small interval number. 

1   Introduction 

Discretization of continuous attributes is a problem that has been studied extensively 
in the past [5,9,10,13]. Many induction algorithms rely on discrete attributes and need 
to discretize continuous attributes, i.e. to slice their domain into a finite number of 
intervals. For example, decision tree algorithms exploit a discretization method to 
handle continuous attributes. C4.5 [11] uses the information gain based on Shannon 
entropy. CART [4] applies the Gini criterion (a measure of the impurity of the 
intervals). CHAID [7] relies on a discretization method close to ChiMerge [8]. 
SIPINA takes advantage of the Fusinter criterion [12] based on measures of 
uncertainty that are sensitive to sample size. The Minimum Description Length 
Principle [6] is an original approach that attempts to minimize the total quantity of 
information both contained in the model and in the exceptions to the model. 

The Khiops discretization method [2] is a bottom-up method based on the global 
optimization of chi-square. The Khiops method starts the discretization from the 
elementary single value intervals. It evaluates all merges between adjacent intervals 
and selects the best one according to the chi-square criterion applied to the whole set 
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of intervals. The stopping rule is based on the confidence level computed with chi-
square statistics. The method automatically stops merging intervals as soon as the 
confidence level, related to the chi-square test of independence between the 
discretized attribute and the class attribute, does not decrease anymore. The Khiops 
method optimizes a global criterion which evaluates the entire partition of the domain 
into intervals and not a local criterion applied to two neighboring intervals as in the 
ChiSplit top down method or the ChiMerge bottom-up method. 

The set of intervals resulting from a discretization provides an elementary 
univariate classifier, which predicts the local majority class in each learned interval. A 
discretization method can be considered as an inductive algorithm, therefore subject 
to overfitting. This overfitting problem has not yet been deeply analyzed in the field 
of discretization. The initial Khiops discretization uses a heuristic control of 
overfitting by constraining the frequency of the intervals to be greater than the square 
root of the sample size. In this paper, we introduce a significant improvement of the 
Khiops algorithm which brings a true control of overfitting. The principle is to 
analyze the behavior of the algorithm during the discretization of an explanatory 
attribute independent from the class attribute. We study the statistics of the variations 
of the chi-square values during the merge of intervals and propose a modeling of the 
maximum of these variations in a complete discretization process. The algorithm is 
then modified in order to force any merge whose variation of chi-square value is 
below the maximum variation predicted by our statistical modeling. This change in 
the algorithm yields the interesting probabilistic guarantee that any independent 
attribute will be discretized within a single terminal attribute and that any attribute 
whose discretization consists of at least two intervals truly contains predictive 
information upon the class attribute. 

The remainder of the document is organized as follows. Section 2 briefly 
introduces the initial Khiops algorithm. Section 3 presents the statistical modeling of 
the algorithm and its evolution. Section 4 proceeds with an extensive experimental 
evaluation. 

2   The Initial Khiops Discretization Method 

In this section, we recall the principles of the chi-square test and present the Khiops 
algorithm, whose detailed description and analysis can be found in [3]. 

2.1   The Chi-square Test: Principles and Notations 

Let us consider an explanatory attribute and a class attribute and determine whether 
they are independent. First, all instances are summarized in a contingency table, 
where the instances are counted for each value pair of explanatory and class 
attributes. The chi-square value is computed from the contingency table, based on 
table 1 notations. 



Table 1. Contingency table used to compute the chi-square value 

nij: Observed frequency for ith explanatory value   A B C Total 
   and jth class value  a n11 n12 n13 n1. 
ni.: Total observed frequency for ith explanatory value  b n21 n22 n23 n2. 
n.j: Total observed frequency for jth class value  c n31 n32 n33 n3. 
N: Total observed frequency  d n41 n42 n43 n4. 
I: Number of explanatory attribute values  e n51 n52 n53 n5. 
J: Number of class values Total n.1 n.2 n.3 N 

 
Let eij = ni..n.j / N, stand for the expected frequency for cell (i, j) if the explanatory 

and class attributes are independent. The chi-square value is a measure on the whole 
contingency table of the difference between observed frequencies and expected 
frequencies. It can be interpreted as a distance to the hypothesis of independence 
between attributes. 
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Within the null hypothesis of independence, the chi-square value is subject to chi-
square statistics with (I-1).(J-1) degrees of freedom. This is the basis for a statistical 
test which allows to reject the hypothesis of independence; the higher the chi-square 
value, the smaller the confidence level. 

2.2   Algorithm 

The chi-square value depends on the local observed frequencies in each individual 
row and on the global observed frequencies in the whole contingency table. This is a 
good candidate criterion for a discretization method. The chi-square statistics is 
parameterized by the number of explanatory values (related to the degrees of 
freedom). In order to compare two discretizations with different interval numbers, we 
use the confidence level instead of the chi-square value. 

The principle of Khiops algorithm is to minimize the confidence level between the 
discretized explanatory attribute and the class attribute by the means of chi-square 
statistics. The chi-square value is not reliable to test the hypothesis of independence if 
the expected frequency in any cell of the contingency table falls below some 
minimum value. The algorithm copes with this constraint. 

The Khiops method is based on a greedy bottom-up algorithm. It starts with initial 
single value intervals and then searches for the best merge between adjacent intervals. 
Two different types of merges are encountered. First, merges with at least one interval 
that does not meet the constraint and second, merges with both intervals fulfilling the 
constraint. The best merge candidate (with the highest chi-square value) is chosen in 
priority among the first type of merges (in which case the merge is accepted 
unconditionally), and otherwise, if all minimum frequency constraints are respected, it 
is selected among the second type of merges (in which case the merge is accepted 
under the condition of improvement of the confidence level). The algorithm is 



reiterated until both all minimum frequency constraints are respected and no further 
merge can decrease the confidence level. 

The computational complexity of the algorithm can be reduced to O(N log(N)) with 
some optimizations [3]. 

2.3   Minimum Frequency per Interval 

In order to be reliable, the chi-square test requires that every cell of the 
contingency table have an expected value of at least 5. This is equivalent to a 
minimum frequency constraint for each interval of the discretization. Furthermore, to 
prevent overfitting, the initial Khiops algorithm heuristically increases the minimum 
frequency per interval constraint up to the square root of the sample size. In this 
paper, we show how to replace this heuristic solution by a method with theoretical 
foundations to avoid overfitting. 

3   Statistical Analysis of the Algorithm 

The Khiops algorithm chooses the best merge among all possible merges of intervals 
and iterates this process until the stopping rule is met. When the explanatory attribute 
and the class attribute are independent, the resulting discretization should be 
composed of a single interval, meaning that there is no predictive information in the 
explanatory attribute. In the following, we study the statistical behavior of the initial 
Khiops algorithm. 

In the case of two independent attributes, the chi-square value is subject to chi-
square statistics, with known expectation and variance. We study the DeltaChi2 law 
(variation of the chi-square value after the merge of two intervals) in the case of two 
independent attributes. During a discretization process, a large number of merges are 
evaluated, and at each step, the Khiops algorithm chooses the merge that maximizes 
the chi-square value; i.e. the merge that minimizes the DeltaChi2 value since the chi-
square value before the merge is fixed. The stopping rule is met when the best 
DeltaChi2 value is too large. However, in the case of two independent attributes, the 
merging process should continue until the discretization reaches a single terminal 
interval. The largest DeltaChi2 value encountered during the algorithm merging 
decision steps must then be accepted. We will try to estimate this MaxDeltaChi2 
value in the case of two independent attributes and modify the algorithm in order to 
force the merges as long as this bound is not reached. 

3.1   The DeltaChi2 Law 

The expectation and the variance of chi-square statistics with k degrees of freedom 
and a sample of size N are: 

( ) kChiE =2  , 
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Let us focus on two rows r and r’ of the contingency table, with frequencies n and 
n’, and row probabilities of the class values p1, p2, … pJ and p’1, p’2, … p’J. 

 
     Total 
 … … … … … 
 … … … …  

row r p1 n p2 n … pJ n n 
row r’ p’1 n’ p’2 n’ … p’J n’ n’ 

 … … … …  
 … … … …  

Total P1 N P2 N … PJ N N 
 
Owing to the additivity of the chi-square criterion, the variation of the chi-square 

value is based on the row contribution of the two rows before and after the merge. 
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This variation of the chi-square value is always negative and is equal to zero only 
when the two rows hold exactly the same proportions of class values. The chi-square 
value of a contingency table can only decrease when two rows are merged. In the 
following, we define the DeltaChi2 value with the absolute value of the variation of 
the chi-square value for ease of use. 
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We proved in [3] that in the case of an explanatory attribute independent from a 
class attribute with J class values, the DeltaChi2 value resulting from the merge of 
two rows with the same frequencies is asymptotically distributed as the chi-square 
statistics with J-1 degrees of freedom. Under these assumptions, we can derive the 
following properties of the DeltaChi2 statistics. 

( ) ( )xChipxDeltaChip JJ ≥≥ −12~2  . 

( ) 1~2 −JDeltaChiE J  . 

( ) ( )12~2 −JDeltaChiV J  . 

3.2   Statistics of the Merges of the Khiops Algorithm 

During the complete discretization process toward a single terminal interval, the 
number of merges is equal to the sample size. A straightforward modeling of the 
Khiops algorithm is that all these merges are equi-distributed, independent and that 



they follow the theoretical DeltaChi2 statistics. This is an approximate modeling, 
mainly for the following reasons: 

- the merges are not independent, 
- the DeltaChi2 statistics is valid only asymptotically and for intervals with the 

same frequency, 
- the Khiops algorithms uses a minimum frequency constraint that induces a 

hierarchy among the possible merges, 
- at each step, the completed merge is the best one among all possible merges. 
In order to evaluate this statistical modeling of the Khiops algorithm, we proceed 

with an experimental study. This experiment consists in discretizing an explanatory 
continuous attribute independent of a class attribute whose two class values are equi-
distributed. In order to draw their repartition function, all the DeltaChi2 values 
associated with the completed merges are collected until one terminal interval is built. 
This process is applied on samples of sizes 100, 1000 and 10000. The resulting 
empirical repartition functions of the DeltaChi2 values are displayed on figure 1 and 
compared with the theoretical DeltaChi2 repartition function. 
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Fig. 1. Repartition functions of the DeltaChi2 values of the merges completed by the Khiops 
algorithm during the discretization of an explanatory attribute independent of the class attribute 

The experiment shows that the DeltaChi2 empirical law is independent of the 
sample size and fits well the theoretical DeltaChi2 law, especially above the value 
p~0.85. 

3.3   Statistics of the MaxDeltaChi2 Values of the Khiops Algorithm 

The purpose is to settle a MaxDeltaChi2 threshold for the Khiops algorithm, so that in 
the case of two independent attributes, the algorithm converges toward a single 
terminal interval with a given probability p (p=0.95 for instance). All evaluated 
merges must be accepted as long as their DeltaChi2 value is below the MaxDeltaChi2 
value. Based on the previous modeling where all the merges are independent, the 



probability that all the merges are accepted is equal to the probability that one merge 
is accepted, to the power N. 

The MaxDeltaChi2 value is given by: 

( ) piMaxDeltaChDeltaChiP N
I ≥≤ 22  . 

Using the theoretical DeltaChi2 law: 

( ) N
J piMaxDeltaKhChiP 1

1 22 ≥≤−  . 

( )N
J pprobInvChiiMaxDeltaCh 1

122 ≥= −  . (3) 

In order to validate this modeling of the MaxDeltaChi2 statistics, we proceed with 
a new experiment and collect the MaxDeltaChi2 value instead of all the DeltaChi2 
values encountered during the algorithm. The experiment is applied on the same two 
independent attributes, on samples of sizes 100, 1000, 10000 and 100000. In order to 
gather many MaxDeltaChi2 values, it is repeated 1000 times for each sample size. 
The empirical MaxDeltaChi2 repartition functions are drawn on figure 2 and 
compared with the theoretical repartition functions derived from equation 3. 
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Fig. 2. Empirical and theoretical repartition function of the MaxDeltaChi2 values 

The empirical and theoretical repartition functions have very similar shapes for 
each sample size. The theoretical values are upper bounds of the empirical values, 
with a moderate margin. We must keep in mind that these theoretical values result 
from an approximate statistical modeling of the Khiops algorithm. Their behavior as 
upper bounds is not proved but merely empirically observed. 

3.4   The Robust Khiops Algorithm 

The Khiops algorithm performs the merges of intervals as long as the confidence level 
of the chi-square test decreases. We keep the constraint of minimum frequency of 5 in 
each cell of the contingency table to ensure the reliability of the chi-square test, but 



we replace the former heuristic minimum frequency constraint used to prevent 
overfitting by a new method based on the study of the MaxDeltaChi2 statistics. 

In the case of two independent attributes, the discretization should result in a single 
terminal interval. For a given probability p, the statistical modeling of the Khiops 
algorithms provides a theoretical value MaxDeltaChi2(p) that will be greater than all 
the DeltaChi2 values of the merges completed during the discretization, with 
probability p (probability higher than p according to the experimental study). The 
Khiops algorithm is then modified in order to force all the merges whose DeltaChi2 
value is smaller than MaxDeltaChi2(p). This ensures the expected behavior of the 
algorithm with probability p. In the case of two attributes with unknown dependency 
relationship, this enhancement of the algorithm guarantees that when the discretized 
attribute consists of at least two intervals, the explanatory attribute truly holds 
information concerning the class attribute with probability higher than p. We suggest 
to set p=0.95, in order to ensure reliable discretization results. 

 
Algorithm Robust Khiops 
1. Initialization 

1.1 Compute the MaxDeltaChi2 value with formula 3 
1.2 Sort the explanatory attribute values 
1.3 Create an elementary interval for each value 

2. Optimization of the discretization: repeat the following steps 
2.1 Evaluate all possible merges between adjacent intervals 
2.2 Search for the best merge 
2.3 Merge and continue as long as one of the following conditions is relevant 

- At least one interval does not respect the minimum frequency constraint 
- The confidence level of the discretization decreases after the merge 
- The DeltaChi2 value of the best merge is below the MaxDeltaChi2 value 

 
The impact on the initial Khiops algorithm is restricted to the evaluation of the 

stopping rule and keeps the supra-linear computational complexity of the optimized 
version of the algorithm. 

3.5   Post-optimization of the Discretizations 

The Khiops method is a greedy bottom-up algorithm that allows identifying fine grain 
structures within efficient computation time. We propose a very simple post-
processing of the discretizations in order to refine the boundaries of the intervals. For 
each pair of adjacent intervals, the post processing searches for the best boundary 
between the two intervals. This local optimization step is reiterated on all the pairs of 
intervals of the whole discretization, until no more improvement can be found. 
Experiments showed that this elementary post-optimization of the discretizations 
repeatedly brought slight improvements. 



4   Experiments 

In our experimental study, we compare the Khiops method with other supervised and 
unsupervised discretization algorithms. In order to evaluate the intrinsic performance 
of the discretization methods and eliminate the bias of the choice of a specific 
induction algorithm, we use a protocol similar as [13], where each discretization 
method is considered as an elementary inductive method, that predicts the local 
majority class in each learned interval. The discretizations are evaluated for two 
criteria: accuracy and interval number. 

We gathered 15 datasets from U.C. Irvine repository [1], each dataset has at least 
one continuous attribute and at least a few tenths of instances for each class value. 
Table 2 describes the datasets; the last column corresponds to the accuracy of the 
majority class.  

Table 2. Datasets 

Dataset Continuous Nominal Size Class Majority 
 Attributes Attributes  Values Accuracy 
Adult 7 8 48842 2 76.07 
Australian 6 8 690 2 55.51 
Breast 10 0 699 2 65.52 
Crx 6 9 690 2 55.51 
German 24 0 1000 2 70.00 
Heart 10 3 270 2 55.56 
Hepatitis 6 13 155 2 79.35 
Hypothyroid 7 18 3163 2 95.23 
Ionosphere 34 0 351 2 64.10 
Iris 4 0 150 3 33.33 
Pima 8 0 768 2 65.10 
SickEuthyroid 7 18 3163 2 90.74 
Vehicle 18 0 846 4 25.77 
Waveform 21 0 5000 3 33.92 
Wine 13 0 178 3 39.89 

 
The discretization methods studied in the comparison are: 
- Khiops: the method described in this paper, 
- Initial Khiops: the previous version of the method, described in section 2, 
- MDLPC: Minimum Description Length Principal Cut [6], 
- ChiMerge: bottom-up method based on chi-square [8], 
- ChiSplit: top-down method based on chi-square, 
- Equal Width, 
- Equal Frequency. 
The MDLPC and initial Khiops methods have an automatic stopping rule and do 

not require any parameter setting. For the ChiMerge and ChiSplit methods, the 
significance level is set to 0.95 for chi-square threshold. For the Equal Width and 
Equal Frequency unsupervised discretization methods, the interval number is set to 
10. We have re-implemented these alternative discretization approaches in order to 



eliminate any variance resulting from different cross-validation splits. The 
discretizations are performed on the 181 single continuous attributes of the datasets, 
using a stratified tenfold cross-validation. In order to determine whether the 
performances are significantly different between the Khiops method and the 
alternative methods, the t-statistics of the difference of the results is computed. Under 
the null hypothesis, this value has a Student’s distribution with 9 degrees of freedom. 
The confidence level is set to 5% and a two-tailed test is performed to reject the null 
hypothesis. 

4.1   Accuracy of Discretizations 

The whole result tables are too large to be printed in this paper. The accuracy results 
are summarized in table 3, which reports for each dataset the mean of the dataset 
attribute accuracies and the number of significant Khiops wins (+) and losses (-) of 
the elementary attribute classifiers for each method comparison. The results show that 
the supervised methods (except ChiMerge) perform clearly better than the 
unsupervised methods. The ChiMerge method is slightly better than the EqualWidth 
method, but not as good as the EqualFrequency method. The MDLPC method is 
clearly better than the EqualFrequency, ChiMerge and EqualWidth methods. The 
modified Khiops method outperforms the initial Khiops method. The Khiops and the 
ChiSplit methods obtain the best results of the experiment. 

Table 3. Means of accuracies, number of significant wins and losses per dataset, for the 
elementary attribute classifiers 

Dataset Khiops Init. Khiops MDLPC ChiMerge ChiSplit Eq. Width Eq. Freq. 
+ - + - + - + - + - + - 

Adult 77.3 77.2 2 1 77.3 0 2 75.7 2 2 77.3 0 2 76.8 2 1 76.6 2 1
Australian 64.8 64.5 1 0 65.0 0 0 64.7 0 0 65.1 0 0 61.4 3 0 65.7 0 0
Breast 85.8 86.0 0 1 86.1 0 1 85.6 0 1 85.9 0 1 86.0 0 1 85.7 1 1
Crx 65.0 64.5 0 0 65.2 0 0 63.8 2 0 65.3 0 0 61.1 3 0 65.6 0 1
German 70.1 70.0 0 0 70.0 0 0 70.0 0 0 70.1 0 0 70.1 0 2 70.0 0 0
Heart 64.4 63.8 0 0 64.0 0 0 64.0 0 0 63.8 0 0 63.9 2 0 64.5 1 0
Hepatitis 79.6 79.4 0 0 79.3 0 0 77.8 3 0 79.3 0 0 79.8 0 0 79.9 0 0
Hypothyroid 96.1 96.0 0 1 96.1 0 1 96.0 3 0 96.1 1 0 95.4 3 1 95.2 3 1
Ionosphere 79.7 78.7 5 0 77.6 10 2 75.7 21 0 79.5 4 3 73.9 19 1 75.0 22 0
Iris 78.8 77.7 0 0 75.5 1 0 77.0 0 0 78.8 0 0 76.5 1 0 76.3 0 0
Pima 66.3 66.8 1 1 66.1 0 0 65.6 2 0 66.5 0 0 66.8 0 1 66.3 0 1
SickEuthyroid 91.3 91.4 0 0 91.3 0 0 91.3 1 0 91.3 0 0 90.7 2 0 91.0 1 0
Vehicle 41.5 40.9 3 1 40.5 4 0 41.4 2 1 42.1 0 3 40.8 3 0 40.3 3 0
Waveform 49.3 49.1 2 0 49.3 0 0 48.7 6 0 49.1 4 0 49.2 3 3 49.5 1 4
Wine 60.0 62.0 1 3 60.1 0 1 59.6 1 0 60.4 0 1 61.4 2 2 60.8 1 2

Synthesis 68.6 68.4 15 8 68.0 15 7 67.4 43 4 68.6 9 10 67.2 43 12 67.6 35 11

 
A close look at table 3 indicates a special behaviour of the ionosphere dataset, 

where the Khiops and ChiSplit methods largely dominate the other methods. An 



inspection of the discretizations performed by the Khiops algorithm reveals 
unbalanced sets of intervals and non-monotonic distributions. The unsupervised 
methods cannot match the changes in the distributions since they cannot adjust the 
boundaries of the intervals. Furthermore, the discretizations present a frequent pattern 
consisting of an interesting interval nested between two regular intervals. This kind of 
pattern, easily detected by the Khiops bottom-up approach, is harder to discover for 
the MDLPC top-down algorithm since it requires two successive splits with the first 
one not very significant. The ChiSplit top-down method, which produces twice the 
interval number of the MDLPC method, manages to detect the interesting patterns at 
the expense of some unnecessary intervals. The ChiMerge method generates far too 
many intervals and over-learns the attributes. 

All in all, the differences of accuracy may seem unimportant, but they are 
significant and must be compared to the average accuracy of the majority class 
classifier, which is 57.4%. Furthermore, the performances are averaged on a large 
variety of explanatory continuous attributes. It is interesting to analyze the differences 
of accuracy for the 181 attributes in more details. Figure 3 shows the repartition 
function of the differences of accuracy between the Khiops methods and the other 
discretization methods. 
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Fig. 3. Repartition function of the differences of accuracy between the Khiops method and the 
other discretization methods 

On the left of the figure, the Khiops method is dominated by the other methods 
and, on the right, it outperforms the other algorithms. For about 40% of the attributes 
(between x-coordinates 20 and 60), all the discretization methods obtain equivalent 
results. Compared to the MDLPC method, the Khiops method is between 0 and 3% 
less accurate in about 10% of the discretizations, but is between 3 and 10% more 
accurate in about 10% of the discretizations. The average difference of 0.6% is thus 
significant and reflects potential large differences of accuracy on individual attributes. 



The accuracy criterion suggests the following ranking of the tested methods: 
1. Khiops, ChiSplit 
2. Initial Khiops, MDLPC 
3. EqualFrequency, ChiMerge 
4. EqualWidth 

4.2   Interval Number of Discretizations 

The interval number results are summarized in table 4. The EqualWidth and 
EqualFrequency methods do not always reach the 10 required intervals, for reasons of 
lack of distinct explanatory values. The Khiops and MDLPC methods produce small 
size discretizations and are not significantly different for this criterion. The modified 
Khiops method generates almost half the interval number of the initial Khiops 
method. The ChiSplit method builds discretization with more than twice the interval 
number of the Khiops method. The ChiMerge method generates considerable interval 
numbers, especially for the larger samples. 

Table 4. Means of interval numbers, number of significant wins and losses per dataset, for the 
elementary attribute classifiers 

Dataset Khiops Init. Khiops MDLPC ChiMerge ChiSplit Eq. Width Eq. Freq. 
+ - + - + - + - + - + - 

Adult 8.5 20.8 2 4 8.8 2 3 1264 0 7 28.2 0 6 9.4 2 4 6.6 4 2
Australian 2.1 5.3 0 6 2.0 0 0 16.1 0 6 5.2 0 6 8.1 0 6 8.8 0 6
Breast 2.6 3.7 0 5 2.9 0 5 11.6 0 9 4.9 0 9 9.2 0 10 5.9 0 10
Crx 2.1 5.3 0 6 2.1 0 0 15.8 0 6 5.1 0 6 8.2 0 6 8.7 0 6
German 1.3 2.6 0 20 1.2 2 0 2.4 0 12 2.0 0 12 3.8 0 23 3.4 0 21
Heart 1.7 3.1 0 6 1.7 0 0 5.0 0 5 2.5 0 5 5.9 0 8 6.1 0 8
Hepatitis 1.7 2.6 1 4 1.4 1 0 6.4 0 6 2.8 0 5 8.6 0 6 9.2 0 6
Hypothyroid 3.5 4.3 3 3 3.1 3 0 15.3 0 7 6.0 0 7 9.6 0 7 8.3 0 7
Ionosphere 4.3 5.1 3 21 3.9 11 6 30.0 0 32 8.0 0 30 9.4 0 32 8.9 0 32
Iris 2.8 3.3 0 2 2.8 1 0 3.7 0 3 3.6 0 3 9.7 0 4 9.5 0 4
Pima 2.3 4.5 0 8 2.1 2 1 13.2 0 8 5.0 0 8 9.5 0 8 9.3 0 8
SickEuthyroid 3.4 7.7 0 6 3.0 3 0 17.2 0 6 5.8 0 5 9.6 0 7 8.3 0 6
Vehicle 4.0 5.8 0 16 3.9 3 3 9.7 0 18 8.0 0 18 9.6 0 18 9.6 0 18
Waveform 4.5 9.4 1 19 4.9 1 9 49.0 0 21 13.6 0 21 10.0 0 21 10.0 0 21
Wine 2.6 3.5 0 11 2.8 1 3 6.7 0 13 4.8 0 12 9.8 0 13 10.0 0 13

Synthesis 3.3 5.6 10137 3.2 30 30 66.1 0159 7.2 0153 8.5 2173 8.0 4 168

 
The interval number criterion suggests the following ranking of the tested 

supervised methods: 
1. Khiops, MDLPC 
2. Initial Khiops 
3. ChiSplit 
4. ChiMerge 



4.3   Multi-criteria Analysis of the Performances 

The preceding results allow the ranking of the tested discretization methods on each 
criterion. It is interesting to use multi-criteria methodology to better understand the 
relations between accuracy and interval number. Let us recall some principles of 
multi-criteria analysis. A solution dominates (or is non-inferior to) another one if it is 
better for all criteria. A solution that cannot be dominated is Pareto optimal: any 
improvement on one of the criteria causes deterioration on another criterion. The 
Pareto surface (Pareto curve for two criteria) is the set of all the Pareto optimal 
solutions. 

In order to study the importance of the parameters, we proceed with the previous 
experiments, using a wide range of parameters for each method. Figure 4 summarizes 
all the results on a two-criteria plan with the accuracy on the x-coordinate and the 
interval number on the y-coordinate. 
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Fig. 4. Bi-criteria evaluation of the discretization methods for the accuracy and the interval 
number. The curves show the impact of the parameters on the performances for each method. 
The default parameters are located on the large size symbols 

The unsupervised EqualWidth and EqualFrequency methods are largely dominated 
by the supervised methods. The ChiMerge method is the least performant among the 
supervised methods, especially for the interval number criterion. With its parameter 
set to 0.95, it produces 66 intervals on average. The MDLPC method builds very few 
intervals, but it is outperformed on accuracy by the other supervised methods, 



principally the Khiops and ChiSplit methods, since their parameter can be tuned. The 
ChiSplit method exhibits high level performances on both criteria, but it is extremely 
sensitive to its parameter. Its top accuracy reaches that of the Khiops method, but it 
always needs significantly more intervals to obtain the same level of accuracy. 

The Khiops method obtains the best results for both criteria and its curve 
corresponds to the Pareto curve for all the tested methods. For example, with Khiops 
parameter set to 0.95, the MDLPC methods constructs a similar interval number but is 
significantly outperformed on accuracy, whereas the ChiSplit method (with best 
parameter 0.99) achieves the same level of accuracy with a notably greater interval 
number. Compared to the initial Khiops method, the changes in the robust version of 
the algorithm bring notable enhancements on both criteria.  

The ChiMerge and ChiSplit methods display similar curves on the two-criteria 
plan. With very strict parameters (probability almost equal to 1), they produce few 
intervals at the expense of a low accuracy. The interval number and the accuracy 
increase when the parameter is slightly relaxed, until a maximum is reached (with 
parameter 0.99 for ChiSplit and 0.999 for ChiMerge). Beyond this parameter 
threshold, the two methods are clearly subject to overfitting and display an increasing 
interval number associated with a deteriorating accuracy. 

The Khiops method displays a steady behavior in the range of parameters between 
0.95 and 0.5. With conservative parameters (probability almost equal to 1), it 
produces few intervals with poor accuracy. When the parameter moves to the 
“reasonable” range around 0.95, the accuracy quickly improves with a marginal 
increase of the interval number. After a maximum around parameter 0.5, the decrease 
of the parameter involves an increasing interval number, but surprisingly no decay in 
accuracy. An analysis of this behavior shows that the new intervals correspond to 
small statistical fluctuations whose cumulated effect on accuracy is not meaningful. 

To conclude, the Khiops method demonstrates the best trade off between accuracy 
and interval number and has a stable behavior concerning its parameter. On the range 
of parameters between 0.95 and 0.5, the Khiops method dominates all the other tested 
discretization methods whatever the choice of the parameter. 

5   Conclusion 

The principle of the Khiops discretization method is to minimize the confidence level 
related to the test of independence between the discretized explanatory attribute and 
the class attribute. During the bottom-up process of the algorithm, numerous merges 
between intervals are performed that produce variations of the chi-square value of the 
contingency table. Owing to a statistical modeling of these variations when the 
explanatory attribute is independent of the class attribute, we enhanced the Khiops 
algorithm in order to guarantee that the discretizations of independent attributes are 
reduced to a single interval. This attested resistance to overfitting is an interesting 
alternative to the classical cross-validation approach. 

Extensive comparative experiments show that the Khiops method outperforms the 
other tested discretization methods. A multi-criteria analysis of the results in terms of 
accuracy and interval number is very instructive and reveals an interesting behavior of 



the Khiops algorithm, whose accuracy does not decrease even when the choice of its 
parameter might cause over-learning. 

The Khiops method is an original approach that incorporates struggle against 
overfitting in its algorithm and exhibits both a high accuracy and small size 
discretizations. 
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