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Abstract. In supervised machine learning, some algorithms are restricted to discrete data and 
have to discretize continuous attributes. Many discretization methods, based on statistical 
criteria, information content, or other specialized criteria, have been studied in the past. In 
this paper, we propose the discretization method Khiops*, based on the chi-square statistic. In 
contrast with related methods ChiMerge and ChiSplit, this method optimizes the chi-square 
criterion in a global manner on the whole discretization domain and does not require any 
stopping criterion. A theoretical study followed by experiments demonstrates the robustness 
and the good predictive performance of the method. 
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1 Introduction 

Discretization of continuous attributes is a problem that has been studied 
extensively in the past (Catlett, 1991; Holte, 1993; Dougherty, Kohavi & Sahami, 
1995; Zighed & Rakotomalala, 2000). Many induction algorithms rely on discrete 
attributes, and need to discretize continuous attributes, i.e. to slice their domain into 
a finite number of intervals. For example, decision tree algorithms exploit a 
discretization method to handle continuous attributes. C4.5 (Quinlan, 1993) uses the 
information gain based on Shannon entropy. CART (Breiman, 1984) applies the 
Gini criterion (a measure of the impurity of the intervals). CHAID (Kass, 1980) 
relies on a discretization method close to ChiMerge (Kerber, 1991). SIPINA takes 
advantage of the Fusinter criterion (Zighed, 1998) based on measures of uncertainty 
that are sensitive to sample size. While most discretization methods are employed as 
a preprocessing step to an induction algorithm, there are still other approaches, 
similar to the wrapper approach involved in the feature selection field. For example, 
(Bertelsen and Martinez, 1994) and (Burdsall and Giraud-Carrier, 1997) propose 
approaches that allow to refine the discretization of the continuous explanatory 
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attributes by taking feedback from an induction algorithm. 
Most discretization methods are divided into top-down and bottom-up methods. 

Top-down methods start from the initial interval and recursively split it into smaller 
intervals. Bottom-up methods start from the set of single value intervals and 
iteratively merge neighboring intervals. Some of these methods require user 
parameters to modify the behavior of the discretization criterion or to set up a 
threshold for the stopping rule. In the discretization problem, a compromise must be 
found between information quality (homogeneous intervals in regard to the attribute 
to predict) and statistical quality (sufficient sample size in every interval to ensure 
generalization). The chi-square-based criteria focus on the statistical point of view 
whereas the entropy-based criteria focus on the information point of view. Other 
criteria (such as Gini or Fusinter criterion) try to find a trade off between information 
and statistical properties. The Minimum Description Length (MDL) criterion 
(Fayyad, 1992) is an original approach that attempts to minimize the total quantity of 
information both contained in the model and in the exceptions to the model. 

We present a new discretization method named Khiops. This is a bottom-up 
method based on the global optimization of chi-square. The most similar existing 
methods are the top-down and bottom-up methods using the chi-square criterion in a 
local manner. The top-down method based on chi-square is ChiSplit (Bertier & 
Bouroche, 1981). It searches for the best split of an interval, by maximizing the chi-
square criterion applied to the two sub-intervals adjacent to the splitting point: the 
interval is split if both sub-intervals substantially differ statistically. The ChiSplit 
stopping rule is based on a user-defined chi-square threshold to reject the split if the 
two sub-intervals are too similar. The bottom-up method based on chi-square is 
ChiMerge (Kerber, 1991). It searches for the best merge of adjacent intervals by 
minimizing the chi-square criterion applied locally to two adjacent intervals: they are 
merged if they are statistically similar. The stopping rule is based on a user-defined 
chi-square threshold to reject the merge if the two adjacent intervals are 
insufficiently similar. 

The Khiops method proposed in this paper starts the discretization from the 
elementary single value intervals. It evaluates all merges between adjacent intervals 
and selects the best one according to the chi-square criterion applied to the whole set 
of intervals. The stopping rule is based on the confidence level computed with the 
chi-square statistic. The method automatically stops merging intervals as soon as the 
confidence level, related to the chi-square test of independence between the 
discretized attribute and the class attribute, does not decrease anymore. The Khiops 
method optimizes a global criterion that evaluates the partition of the domain into 
intervals, as opposed to a local criterion applied to two neighboring intervals as in 
ChiSplit or ChiMerge. The absence of user parameters makes the method very 
convenient to use and allows to automatically obtain high-quality discretizations. We 
will demonstrate that in spite of this global approach, the Khiops approach can be 
implemented such that its run-time is super-linear in the sample size. This 
computational complexity is the same as that of the optimized version of the 
ChiMerge algorithm. We will compare the Khiops method with other discretization 
methods by means of experiments on standard benchmarks. 
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The remainder of the paper is organized as follows. Section 2 presents the 
Khiops algorithm and its main properties. Section 3 compares the Khiops method 
with the related ChiMerge and ChiSplit methods from a theoretical point of view. 
Section 4 proceeds with an extensive experimental evaluation. 

2 The Khiops discretization method 

In this section, we first recall the principles of the chi-square test and then present 
the Khiops algorithm. Next, we focus on the computational complexity of the 
algorithm, and finally, we discuss some practical issues. 

 
2.1 The chi-square test: principles and notations 

Let us consider an explanatory attribute (a feature) and a class attribute, and 
determine whether they are independent. First, all instances are summarized in a 
contingency table, where the instances are counted for each value pair of explanatory 
and class attributes. The chi-square value is computed from the contingency table. 

Table 1: Contingency table used to compute the chi-square value 

nij: Observed frequency for ith explanatory value   A B C Total 
   and jth class value  a n11 n12 n13 n1. 
ni.: Total observed frequency for ith explanatory value  b n21 n22 n23 n2. 
n.j: Total observed frequency for jth class value  c n31 n32 n33 n3. 
N: Total observed frequency  d n41 n42 n43 n4. 
I: Number of explanatory attribute values  e n51 n52 n53 n5. 
J: Number of class values Total n.1 n.2 n.3 N 

 
Let eij = ni.*n.j/N. eij stands for the expected frequency for cell (i,j) if the 

explanatory and class attributes are independent. 
The chi-square value is a measure on the whole contingency table of the 

difference between observed frequencies and expected frequencies. It can be 
interpreted as a distance to the hypothesis of independence between attributes. 
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If the hypothesis of independence is true, the chi-square value is distributed as a 
chi-square statistic with (I-1)*(J-1) degrees of freedom. This is the basis for a 
statistical test that allows rejecting the hypothesis of independence. The confidence 
level is the probability of the hypothesis of independence. For example, in a 
contingency table of size 5*3 (which corresponds to a chi-square statistic with 8 
degrees of freedom), the confidence level associated to a chi-square value of 20 is 
about 1%. This means that when the explanatory and the class attributes are 
independent, the probability of observing a chi-square value greater than 20 is less 
than 1%. The higher the chi-square value is, the smaller is the confidence level. 
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2.2 Algorithm 

The chi-square value depends both on the local observed frequencies in each 
individual row and on the global observed frequencies in the whole contingency 
table. This is a good candidate criterion for a discretization method. The chi-square 
statistic is parameterized by the number of explanatory values (related to the degrees 
of freedom). In order to compare two discretizations with different interval numbers, 
we will use the confidence level instead of the chi-square value. 

The principle of the Khiops algorithm is to minimize the confidence level 
between the discretized explanatory attribute and the class attribute by means of the 
chi-square statistic. The chi-square value is not reliable to test the hypothesis of 
independence if the expected frequency in any cell of the contingency table is less 
than some minimum value. This is equivalent to a minimum frequency constraint for 
each row of the contingency table, i.e. for each interval of the discretization. The 
algorithm will cope with this constraint. 

The Khiops method is based on a greedy bottom-up algorithm. It starts with 
initial single value intervals and then searches for the best merge between adjacent 
intervals. Two different types of merges are encountered. First, merges with at least 
one interval that does not meet the constraint and second, merges with both intervals 
fulfilling the constraint. The best merge candidate (with the highest chi-square value) 
is chosen in priority among the first type of merges (in which case the merge is 
accepted unconditionally), and otherwise, if all minimum frequency constraints are 
respected, among the second type of merges (in which case the merge is accepted 
under the condition of improvement of the confidence level). The algorithm is 
reiterated until both all minimum frequency constraints are respected and no further 
merge can decrease the confidence level. 

 
Algorithm Khiops 
1. Initialization 

1.1. Sort the explanatory attribute values 
1.2. Create an elementary interval for each value 

2. Optimization of the discretization 
Repeat the following steps: 
2.1. Search for the best merge 

Search among the merges with at least one interval that does not meet the 
frequency constraint if anyone exists, among any merge otherwise 

Merge that maximizes the chi-square value 
2.2. Evaluate the stopping rule 

Stop if all constraints are respected and if no further merge decreases the 
confidence level 

2.3. Merge and continue if the stopping rule is not met 
 
2.3 Minimum frequency per interval 

In order to be reliable, the chi-square test requires that every cell of the 
contingency table has an expected value of at least 5. This reliability constraint is 



KHIOPS: A STATISTICAL DISCRETIZATION METHOD   5 

equivalent to a minimum frequency constraint for each interval of the discretization. 
The purpose of the Khiops discretization algorithm is to approximate the true 

class attribute distribution from the observed distribution of the training sample on 
the basis of intervals, which result from a supervised merging process. This process 
can be considered as an inductive algorithm, therefore subject to overfitting. In order 
to prevent overfitting, a solution is to increase the minimum frequency per interval 
constraint. The Khiops algorithm uses a heuristic control of overfitting by 
constraining the intervals to have a frequency greater than the square root of the 
sample size. This value allows both to improve the statistical reliability of the 
observed distribution in each interval and to refine the precision of the discretization 
owing to a potentially higher number of intervals when the sample size increases. 

To improve the chi-square test reliability and to prevent overfitting, the Khiops 
algorithm is constrained to employ the maximum of the two preceding values. 

 
2.4 Computational complexity 

The computational complexity of the Khiops discretization method is evaluated 
on the basis of a sample of size N. With a straightforward implementation of the 
Khiops algorithm, the computational complexity is O(N3): 

- Initialization: O(N Log(N)) 
- Repeat (at most N steps) 

- Evaluate all possible merges between adjacent intervals: N evaluations 
of the chi-square value (each evaluation requires N steps)  

- Search for the best merge: O(N)  
- Evaluate the stopping rule: O(1) 

We will show that the algorithm can be optimized, so that its computational 
complexity can be decreased to O(N Log(N)). 

The chi-square value is additive and can be decomposed on the rows of the 
contingency table. The computation of the chi-square value on a whole contingency 
table requires N computation steps to evaluate the contributions of rows. 
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Computation of the chi-square value corresponding to the merge of two rows (i.e. 
intervals) i and i’ (i’=i+1) can be formulated in the following way: 

∑∑
><

++=
'

'' 2222
ik

kii
ik

kii rChirChirChiMChi  

''' 22222 iiii
k

kii rChirChirChirChiMChi −−+=∑  

'' 222 iiii DeltaChiChiMChi +=  

Owing to the additivity of the chi-square criterion, the chi-square value resulting 
from the merge between two adjacent intervals can be evaluated in a single step, if 
the initial chi-square value is available. If all the chi-square row values and 
DeltaChi2 values are kept in memory, then the search for the best merge is 
equivalent to the search of the best DeltaChi2. After a merge is completed, the chi-
square row values and DeltaChi2 values need to be updated only for the new interval 
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and its adjacent intervals to prepare the next merge step. 
The critical part of the algorithm corresponds to the search for the best merge. 

This search needs N steps. If the list of all possible merges is initially sorted, and if 
this list remains sorted during the discretization process, the search for the best 
merge takes one step, at the expense of the cost needed to keep the list sorted. 
Balanced binary search trees (such as AVL binary search trees for example) allow to 
keep a list sorted when elements are inserted or deleted, with a logarithmic 
computational complexity. 

Finally, the computational complexity of the optimized version of Khiops 
algorithm can be decreased to O(N Log(N)) if the chi-square row values and the 
DeltaChi2 values are kept in memory, if the chi-square values are computed in an 
additive way and if the merges are stored in a maintained sorted list. 

The memory requirement of the algorithm is also O(N Log(N)). Data that need to 
be kept in memory are the N chi-square row values, the N DeltaChi2 values and the 
sorted list of merges, which has a memory requirement of O(N Log(N)). 

 
Algorithm Optimized Khiops 
1. Initialization 

1.1. Sort the explanatory attribute values: O(N Log(N)) 
1.2. Create an elementary interval for each value: O(N) 
1.3. Compute the chi-square row values and the initial chi-square value: O(N) 
1.4. Compute the DeltaChi2 values: O(N) 
1.5. Sort the possible merges: O(N Log(N)) 
1.6. Compute the confidence level of this first discretization: O(1) 

2. Optimization of the discretization 
Repeat the following steps: at most N steps 
2.1. Search for the best possible merge: O(1) 
2.2. Evaluate the stopping rule: O(1) 

Stop if all constraints are respected and if no further merge decreases the 
confidence level 

2.3. Merge and continue if the stopping rule is not met 
2.3.1. Compute the chi-square row value for the new interval: O(1) 
2.3.2. Compute the DeltaChi2 values for the two intervals adjacent to the 

new interval: O(1) 
2.3.3. Update the sorted list of merges: O(log(N)) 

Remove the merge just completed 
Remove the two merges of the intervals adjacent to the former sub-
intervals of the new interval 
Add the two merges of the intervals adjacent to the new interval 

 
The optimized version of the Khiops algorithm has the same computational 

complexity as the optimized version of the ChiMerge algorithm. This property 
allows the method to be effective on large databases (containing at least 105 
instances). 
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2.5 Practical issues 

There is a potential gap between the principles and the implementation of the 
algorithm. The principle of the algorithm is to search, among all possible sets of 
intervals, the set that minimizes the confidence level of the test of independence 
between the discretized attribute and the class attribute. This confidence level is 
evaluated with the chi-square statistic applied to the corresponding contingency 
table. To improve the statistical reliability of the algorithm, a minimum frequency 
related to the sample size is used to constrain the search of the best set of intervals. 
Based on these principles, the Khiops method seems robust. However, problems so 
far overlooked are now discussed. 

The value used for the minimum frequency constraint is a heuristic choice and 
has no strong foundation. To be more consistent, this value should result from some 
statistical estimation that precisely takes into account the distribution of the class 
values and controls the probability of overfitting. Such an estimation, involving 
complex calculation, is beyond the scope of this paper. 

The search algorithm is a greedy algorithm that tries to follow the minimum 
frequency constraint in a very simple and flexible way. This heuristic leads to super-
linear computation time, which is mandatory as soon as large databases are 
processed. However, the search algorithm can be trapped in a local optimum and has 
no guarantee to find the best set of intervals. It is still not realistic to find the best 
discretization when computation time is an issue. 

The algorithm needs a good evaluation of the chi-square statistic for very large 
chi-square values and degrees of freedom. Such a good evaluation is not presently 
available in standard numerical libraries. Furthermore, the limits of numerical 
precision of computer are rapidly overtaken when the confidence level gets too close 
to zero. 

The practical limits of the Khiops discretization method are principally related to 
its implementation. The most critical issue is the evaluation of the chi-square statistic 
in a very large numerical domain. This problem has been studied and solved in 
(Boullé, 2001). The solution relies on a good approximation of the logarithm of the 
confidence level, and for better accuracy, on a precise evaluation of the variation 
threshold of the chi-square value that controls the stopping rule used in the Khiops 
algorithm. 

We illustrate that in extensive experiments, in spite of the raw value used for the 
minimum frequency constraint and of the greedy search algorithm, the Khiops 
algorithm allows obtaining high quality discretizations together with fast 
computation time. 

3 Theoretical comparison with the chi-square-based discretization methods 

In this section, we compare the Khiops method with the related ChiMerge and 
ChiSplit methods, and show that the Khiops method solves several weaknesses of the 
other methods. 
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3.1 Properties of merges in the Khiops method 

In this section, we demonstrate that when two rows of a contingency table are 
merged, the whole chi-square value can only decrease. However, after a merge, the 
chi-square statistic is based on fewer degrees of freedom. If the whole chi-square 
value decreases very little (or does not decrease at all), the related confidence level 
also decreases; otherwise the confidence level increases. 

 
Theorem. When two rows of a contingency table are merged, the chi-square 

value of the contingency table decreases. 
 
Proof: 
Let p1, p2, …pJ. be the probabilities of the class values in the complete 

contingency table. 1=∑
j

jp . 

Let a1, a2, …aJ. and b1, b2, …bJ. be the probabilities of the class values in two 
adjacent rows of the contingency table with row frequencies n and n’. 

1=∑
j

ja . 1=∑
j

jb . 

The observed and expected frequencies are ajn and pjn in the first row, bjn’ and 
pjn’ in the second row. The chi-square row values Chi2r and Chi2r’ are 
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Let us consider the merge of the two rows. The observed and expected 
frequencies in the merged row are ajn +bjn’ and pj(n + n’). 

The chi-square merged row value Chi2l” is 
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The merge between the two rows causes an update of the whole chi-square value 
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This last formula shows that the chi-square value of the contingency table 
decreases after the merge. 

 
3.2 Comparison with the ChiMerge method 

For the ChiMerge discretization method, let us consider the local contingency 
table restricted to the two rows. Let q1, q2, …qJ. be the probabilities of the class 
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values in this local contingency table. 1=∑
j

jq . ( ) ( )'' nnnbnaq jjj ++= . 

In order to evaluate the merge of the two rows, let us calculate the local chi-
square value. 
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The stopping rules used in the Khiops and ChiMerge methods are based on 

similar mathematical formulas, but the two discretization methods lead to a large 
difference in interpretation of the formulas. The probabilities of the class values are 
global to the whole contingency table for the Khiops method (pj probabilities) 
whereas they are local to the two rows for the ChiMerge method (qj probabilities). 

For the Khiops method, the stopping rule is: 
Prob(Chi2+DeltaChi2, (I-2)*(J-1)) < Prob(Chi2, (I-1)*(J-1))  (6) 
For the ChiMerge method (with a user parameter ProbThreshold), the stopping 

rule is: 
Prob(LocalChi2, J-1) > ProbThreshold (7) 
This demonstrates an important difference between the two methods. The 

ChiMerge method acts locally, whereas the Khiops method takes into account the 
whole distribution of the class values, the whole number of intervals and the global 
chi-square value. 

Example. 

We present an example in table 2, which illustrates the difficulty in choosing the 
ProbThreshold user parameter in the ChiMerge algorithm. In table 2, the initial 
contingency table on the left summarizes a sample with 1000 instances and two 
equidistributed class values. The rows (i.e intervals) of the initial table have an 
increasing proportion of the first class value, and the successive pairs of intervals 
have similar proportions of class values. The “natural” discretization of this table 
ends with the final contingency table shown on the right. The DeltaChi2 and 
LocalChi2 (with related confidence level) evaluations of the possible merges in the 
Khiops and ChiMerge methods are presented in the middle columns. The grayed 
values correspond to the preferred merges for each method. 

The initial contingency table chi-square value is 449.2. Based on formula 6, we 
can derive the threshold of the DeltaChi2 value for the stopping rule, for given 
degrees of freedom and chi-square value. The DeltaChi2 table given in (Boullé, 
2001) indicates that in the case of the present example, the merges are accepted 
when the value of DeltaChi2 is greater than –5. With the Khiops algorithm, the five 
“obvious” merges are accepted and considered as equivalent. Using the ChiMerge 
algorithm, the central merges (near p = 0.5) are fundamentally favored compared to 
the border merges (near p = 0 and p = 1). The “curious” merge (30-70)+(47-53) is 
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even preferred to the “obvious” merge (0-100)+(6-94). It is thus difficult to choose a 
good ProbThreshold for the ChiMerge stopping rule. 

Table 2: Evaluation of the possible merges for the Khiops and ChiMerge methods 

 Initial table Khiops ChiMerge Final table  
0 100  ∆Chi2  LChi2 Prob    
6 94  -0.72  6.19 0.013  6 194 

24 76  -6.48  12.71 0.000    
30 70  -0.72  0.91 0.339  54 146 
47 53  -5.78  6.10 0.013    
53 47  -0.72  0.72 0.396  100 100 
70 30  -5.78  6.10 0.013    
76 24  -0.72  0.91 0.339  146 54 
94 6  -6.48  12.71 0.000    

 100 0  -0.72  6.19 0.013  194 6  
 
This example shows that the ChiMerge method has several intrinsic weaknesses 

that are solved by the Khiops method. The ChiMerge method is based on strictly 
local evaluation of the discretization. This makes the stopping rule parameter very 
difficult to tune. The local evaluation is incorrectly biased in favor of intervals with 
balanced distribution of the class values. Depending on the choice of the probability 
threshold, the merge process may stop either to soon or too late to detect the 
interesting intervals. The Khiops algorithm solves these problems by the use of a 
global evaluation of the discretization and of an automatic adaptable stopping rule 
criterion that allows a fair estimation of each merge and of its impact on the whole 
discretization. 

 
3.3 Comparison with the ChiSplit method 

Since the Khiops method is a bottom-up algorithm and the ChiSplit method is a 
top-down algorithm, the comparison is harder than for the ChiMerge method. The 
stopping rule used in the ChiSplit algorithm is difficult to tune because it relies on 
scaling factors (sample size), on the strength of the specific intervals to extract and 
on the position of these intervals in the contingency table. 

Example. 

The same example described for the ChiMerge comparison illustrates the 
comparison with the ChiSplit method in table 3. The global chi-square value of the 
split and its associated confidence level are presented in the ChiSplit columns. 

According to table 3, the confidence level used for the ChiSplit stopping rule 
should be set between 10-25 and 10-75. For larger sample sizes (more than 10000 
instances), this confidence level would be above the limit of numerical precision of 
computers (about 10-300), and thus the choice of a confidence level becomes 
impossible. Furthermore, the best split found by the ChiSplit method lies exactly in 
the middle of the contingency table. This split produces two intervals (107-393) and 
(393-107) and is actually an excellent split of the table into two intervals. However, 
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this split has definitely separated rows (47-53) and (53-47) that should be 
“intuitively” merged together. 

Table 3: Evaluation of the possible merges for the Khiops and ChiSplit methods 

 Initial table Khiops ChiSplit Final table  
0 100  ∆Chi2  Chi2S Prob    
6 94  -0.72  111.11 5.59E-26  6 194 

24 76  -6.48  220.90 5.76E-50    
30 70  -0.72  274.29 1.32E-61  54 146 
47 53  -5.78  326.67 5.11E-73    
53 47  -0.72  327.18 3.95E-73  100 100 
70 30  -5.78  326.67 5.11E-73    
76 24  -0.72  274.29 1.32E-61  146 54 
94 6  -6.48  220.90 5.76E-50    

 100 0  -0.72  111.11 5.59E-26  194 6  
 

Problem of nested interesting intervals. 

The ChiSplit top-down approach has a more serious drawback. It cannot discover 
interesting intervals nested between regular intervals since this requires two 
successive splits with the first one not very significant. We demonstrate this 
rigorously with the use of artificial data, consisting of two equidistributed intervals 
I1 and I3 with global frequency 1000, surrounding one interesting interval I2 with 
frequency 50: 

- I1: (250-250) 
- I2: (50-0) 
- I3: (250-250) 
With the ChiSplit method, the two possible splits have a chi-square value of 2.17 

related to a confidence level of 0.14. With a ChiSplit stopping criterion threshold set 
to 0.05, the two splits are rejected and thus the interesting interval cannot be found. 
With the Khiops method, the initial contingency table has a chi-square value of 47.7 
related to a confidence level of 4.3 10-11. The two possible merges are rejected 
because they increase the confidence level, and the interesting interval is therefore 
correctly identified. 

In figure 1, we study the impact of the position of the interesting interval I2 (i.e. 
the number of instances in I1) on the behavior of the methods. Table A stands for the 
bipartition {I1∪ I2, I3} of the initial intervals. Table A can be seen both as a split 
after the interesting interval for the ChiSplit method and as a merge of the two first 
intervals for the Khiops method. Table B is defined in the same way with a partition 
{I1, I2∪ I3} of the initial intervals. Figure 1 shows that with the Khiops method, the 
confidence level of the initial table is always below that of the two tables resulting 
from the merges. The merges are thus rejected and the Khiops method always 
correctly detects the interesting interval. With the ChiSplit method, the best split 
among table A and table B corresponds to the table with the lowest confidence level. 
The ChiSplit method therefore detects the interesting interval only if it is situated at 
the beginning of the contingency table (before position 350 and the split leads to 
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table A) or at the end (after position 650 and the split leads to table B). However, in 
about one third of the positions, when the interesting interval is around the middle of 
the contingency table, both splits are rejected because their confidence level are 
above the 5% threshold stopping criterion of the algorithm. 
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Figure 1: Confidence level related to the chi-square test for the initial table {I1, I2, 
I3}, the table A {I1∪ I2, I3} and the table B {I1, I2∪ I3} 

 
The principle used in the ChiSplit method that combines a top-down approach 

and a greedy algorithm exhibits thus several weaknesses that may prevent the 
discovery of local patterns in discretized attributes. 

4 Experiments 

In our experimental study, we compare the Khiops method with other supervised 
and unsupervised discretization algorithms considered as a preprocessing step of the 
Naive Bayes classifier. The Naive Bayes classifier (Langley et al., 1992) assigns the 
most probable class value given the explanatory attribute values, assuming 
independence between the attributes for each class value. After the discretization 
preprocessing step, the probabilities of continuous attributes are estimated using 
counts in each interval. 

We gathered 15 datasets from U.C. Irvine repository (Blake, 1998), each dataset 
has at least one continuous attribute and at least a few tens of instances for each class 
value in order to perform reliable tenfold cross-validations. Table 4 describes the 
datasets; the last column corresponds to the relative frequency of the majority class. 

The discretization methods studied in the comparison are : 
- Khiops: the method described in this paper 
- MDLPC: Minimum Description Length Principal Cut (Fayyad, 1992) 
- ChiMerge: bottom-up method based on chi-square (Kerber, 1991) 
- ChiSplit: top-down method based on chi-square (Bertier & Bouroche, 

1981) 
- Equal Width 
- Equal Frequency 
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The Khiops and MDLPC methods have an automatic stopping rule and do not 
require any parameter setting. For the ChiMerge and ChiSplit methods, the 
significance level is set to 0.95 for chi-square threshold. For the Equal Width and 
Equal Frequency unsupervised discretization methods, the number of intervals is set 
to 10. We have re-implemented these alternative discretization approaches in order 
to eliminate any variance resulting from different cross-validation splits. 

Table 4: Datasets 

Dataset Continuous Nominal Size Class Majority 
 Attributes Attributes  Values Class 
Adult 7 8 48842 2 76.07 
Australian 6 8 690 2 55.51 
Breast 10 0 699 2 65.52 
Crx 6 9 690 2 55.51 
German 24 0 1000 2 70.00 
Heart 10 3 270 2 55.56 
Hepatitis 6 13 155 2 79.35 
Hypothyroid 7 18 3163 2 95.23 
Ionosphere 34 0 351 2 64.10 
Iris 4 0 150 3 33.33 
Pima 8 0 768 2 65.10 
SickEuthyroid 7 18 3163 2 90.74 
Vehicle 18 0 846 4 25.77 
Waveform 21 0 5000 3 33.92 
Wine 13 0 178 3 39.89 

 
As the purpose of our experimental study is to compare the discretization 

methods, we chose to ignore nominal attributes to build the Naive Bayes classifiers. 
We ran a stratified tenfold cross-validation and report the mean and the standard 
deviation of the accuracies. In order to determine whether accuracies are 
significantly different between the Khiops method and the alternative methods, the t-
statistic of the difference of the accuracies is computed. Under the null hypothesis, 
this value has a Student’s distribution with 9 degrees of freedom. A two-tailed test is 
appropriate because we do not know in advance whether the mean of the Khiops 
accuracies is likely to be greater than that of the alternative method or vice versa. 
The confidence level is set to 5%. 

Table 5 shows the mean and the standard deviation of the accuracies of the Naive 
Bayes induction algorithm. The significant wins for the Khiops method are indicated 
with +, and the significant losses with -. The Khiops, MDLPC, ChiSplit and 
EqualFrequency methods have similar results, and perform better than the ChiMerge 
and EqualWidth methods. These results allow to distinguish two groups of methods, 
but are not conclusive enough to further rank the methods. The case of the 
EqualFrequency method (3 wins and 3 losses for the Khiops method) shows that 
there is a need for more experiments. 
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Table 5: Accuracies of the Naive Bayes classifier with different discretization 
methods 

Dataset Khiops MDLPC ChiMerge ChiSplit Eq. Width Eq. Freq. 
Adult 83.1 ±0.5 84.4 ±0.5 - 77.8 ±0.7+ 84.3 ±0.5 - 81.2 ±0.4 + 81.1 ±0.6 +
Australian 78.1 ±3.9 77.4 ±3.6  75.1 ±4.6  78.1 ±3.5  71.0 ±5.3 + 80.4 ±2.4 - 
Breast 97.3 ±1.2 97.1 ±1.1  90.1 ±3.5+ 97.0 ±1.7  96.6 ±1.7 + 97.4 ±1.4  
Crx 77.2 ±4.9 76.5 ±5.8  71.4 ±5.9+ 78.0 ±7.0  70.3 ±3.6 + 79.7 ±6.1 - 
German 75.5 ±3.4 72.5 ±1.8+ 74.3 ±3.6  75.6 ±4.2  75.5 ±3.6  75.5 ±3.9  
Heart 78.1 ±7.5 80.7 ±8.6  72.2 ±6.3+ 78.9 ±8.8  81.1 ±6.5 - 80.7 ±6.6 - 
Hepatitis 78.8 ±12. 76.8 ±13.  81.5 ±11.  78.9 ±9.5  82.6 ±8.5  78.8 ±11.  
Hypothyroid 98.0 ±1.1 98.7 ±0.6 - 98.2 ±0.6  98.5 ±1.0  97.4 ±0.6  97.6 ±0.9 +
Ionosphere 89.7 ±3.2 90.9 ±4.4  86.1 ±5.2  86.3 ±4.0  89.5 ±4.4  91.2 ±3.9  
Iris 92.0 ±2.7 92.7 ±2.0  94.7 ±2.7 - 94.0 ±3.6  95.3 ±4.3  94.7 ±5.0  
Pima 75.1 ±4.4 76.2 ±2.1  72.0 ±2.7  75.0 ±3.0  74.7 ±3.1  74.0 ±3.5  
SickEuthyroid 96.3 ±1.0 95.9 ±1.1  96.3 ±1.3  95.8 ±1.0  92.9 ±1.8 + 93.2 ±1.1 +
Vehicle 61.5 ±2.9 60.2 ±2.3  64.5 ±3.8 - 63.1 ±4.1  63.6 ±3.3  61.4 ±3.3  
Waveform 81.0 ±1.0 80.8 ±0.8  75.9 ±1.6+ 80.0 ±1.8+ 80.8 ±1.2  80.7 ±1.2  
Wine 96.7 ±2.7 96.7 ±3.7  96.6 ±4.5  95.0 ±3.9  95.5 ±6.5  96.6 ±3.7  

Mean 83.9 83.8  81.8  83.9  83.2   84.2   
+ number  1  5  1  5   3   
- number  2  2  1  1   3   

 
In order to analyze the performance of the discretization algorithms more fully, 

we proceed with the same experiment for each individual continuous attribute in 
every dataset. These additional experiments are equivalent to 181 experiments with 
single-attribute datasets. Each discretization method can be evaluated as an 
elementary attribute classifier that predicts the more frequent class value in each 
learned interval. The results are summarized in table 6, which reports for each 
dataset the mean of the dataset attribute accuracies and the number of significant 
wins and losses of the elementary attribute classifiers when compared with the 
Khiops method. 

This experiment is more informative than the previous one. It allows a better 
comparison between the discretization methods, eliminating the bias of the choice of 
a specific induction algorithm. The results show that supervised methods (except 
ChiMerge) perform clearly better than unsupervised methods. The ChiMerge method 
is slightly better than the EqualWidth method, but not as good as the 
EqualFrequency method. The Khiops method and the MDLPC method are clearly 
better than the EqualFrequency, ChiMerge and EqualWidth methods, with a slight 
advantage in favor of the Khiops method over the MDPLC method. The ChiSplit 
method obtains the best results of the experiments. A close look at table 6 indicates a 
special behaviour of the ionosphere dataset, where the ChiSplit method largely 
dominates the other methods with 7 wins in the comparison with the Khiops method. 
An inspection of the discretizations performed by the ChiSplit algorithm reveals 
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intervals with very small frequencies, that cannot be found by the Khiops algorithm 
because of its strict constraint of minimum frequency per interval. 

Table 6: Means of accuracies, number of significant wins and losses per dataset, for 
the elementary attribute classifiers 

Dataset Khiops MDLPC ChiMerge ChiSplit Eq. Width Eq. Freq. 
  + -  + -  + - + - + - 

Adult 77.2 77.3 2 75.7 2 2 77.3 1 2 76.8 2 76.6 2 
Australian 64.5 65.0 1 64.7 65.1 1 61.4 3 1 65.7  
Breast 86.0 86.1 1 1 85.6 85.9 86.0  85.7 1 
Crx 64.5 65.2 63.8 1 65.3 61.1 3 65.6  
German 70.0 70.0 70.0 70.1 70.1  1 70.0  
Heart 63.8 64.0 64.0 63.8 63.9  64.5  
Hepatitis 79.4 79.3 77.8 3 79.3 79.8  79.9  
Hypothyroid 96.0 96.1 96.0 3 96.1 1 95.4 3 95.2 3 
Ionosphere 78.7 77.6 6 5 75.7 14 79.5 7 73.9 14 1 75.0 17 
Iris 77.7 75.5 1 77.0 78.8 76.5 1 76.3  
Pima 66.8 66.1 2 65.6 2 66.5 66.8  66.3  1
SickEuthyroid 91.4 91.3 91.3 1 91.3 90.7 2 91.0 1 
Vehicle 40.9 40.5 3 2 41.4 1 4 42.1 4 40.8 1 1 40.3 2 
Waveform 49.1 49.3 48.7 5 49.1 1 1 49.2 3 1 49.5 1 3
Wine 62.0 60.1 2 59.6 2 60.4 1 61.4 4 1 60.8 1 

68.4 68.0 15 11 67.4 34 6 68.6 4 15 67.2 36 6 67.6 28 4
 
Although both the Khiops method and the MDLPC method yield comparable 

results on average, they often differ on individual cases. For 181 discretized 
attributes, there are 15 wins for the Khiops method and 11 for the MDPLC method. 
It can be noticed that these two methods are based on very different approaches. The 
Khiops method is a bottom-up algorithm with a global criterion based on the chi-
square statistic, whereas the MDLPC method is a top-down algorithm with a local 
criterion based on Shannon entropy. 

Despite some theoretical weaknesses, the ChiSplit method obtains better results 
than the Khiops method. The analysis of partitions of intervals built by the Khiops 
method reveals some limitation related to the minimum frequency constraint. While 
this constraint clearly enhances the reliability of the Khiops method, it prevents it 
from discovering finely-grained patterns in numerical domains. In our future work, 
we plan to investigate on this minimum frequency constraint in order to improve the 
performance of the Khiops method. 

The second set of experiments based on single attributes brings useful additional 
information to the first set of experiments based on the Naive Bayes classifier. All 
these results are based on 15 UCI datasets and 181 continuous attributes, and should 
be interpreted carefully. However, the main trends expressed by the results allow to 
rank the tested discretization methods in the following way: 

1. ChiSplit 
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2. Khiops, MDLPC 
3. EqualFrequency 
4. ChiMerge, EqualWidth 

The ChiSplit method is the best of the tested methods, while the Khiops method 
is at least as good as the MDPLC method. 

5 Conclusion 

The principle of the Khiops discretization method is to minimize the confidence 
level related to the test of independence between the discretized explanatory attribute 
and the class attribute. This optimization is based on the chi-square criterion applied 
to the whole set of intervals of the discretization. This global evaluation carries some 
intrinsic benefits compared with the connected ChiMerge and ChiSplit methods. The 
Khiops automatic stopping rule brings both ease of use and high quality 
discretizations. Its computational complexity is the same as for the fastest other 
discretization methods. 

Extensive evaluations indicate notable accuracy results for the Khiops method. 
For further comparisons, we plan in future works to study other aspects of evaluation 
such as the robustness or the size of discretizations. 
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