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Abstract

The naive Bayes classifier has proved to be very effective on many real data applications. Its
performance usually benefits from an accurate estimation of univariate conditional probabilities
and from variable selection. However, although variable selection is a desirable feature, it is prone
to overfitting. In this paper, we introduce a Bayesian regularization technique to select the most
probable subset of variables compliant with the naive Bayes assumption. We also study the limits of
Bayesian model averaging in the case of the naive Bayes assumption and introduce a new weighting
scheme based on the ability of the models to conditionally compress the class labels. The weighting
scheme on the models reduces to a weighting scheme on the variables, and finally results in a naive
Bayes classifier with “soft variable selection”. Extensive experiments show that the compression-
based averaged classifier outperforms the Bayesian model averaging scheme.
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1. Introduction

The naive Bayes classification approach (see Langley et al., 1992; Mitchell, 1997; Domingos and
Pazzani, 1997; Hand and Yu, 2001) is based on the assumption that the variables are independent
within each output label, and simply relies on the estimation of univariate conditional probabilities.
The evaluation of the probabilities for numeric variables has already been discussed in the literature
(see Dougherty et al., 1995; Liu et al., 2002; Yang and Webb, 2002). Experiments demonstrate that
even a simple equal width discretization brings superior performance compared to the assumption
using a Gaussian distribution.

The naive independence assumption can harm the performance when violated. In order to better
deal with highly correlated variables, the selective naive Bayes approach of Langley and Sage (1994)
exploits a wrapper approach (see Kohavi and John, 1997) to select the subset of variables which
optimizes the classification accuracy. In the method of Boullé (2006a), the area under the receiver
operating characteristic (ROC) curve (see Fawcett, 2003) is used as a selection criterion and exhibits
a better predictive performance than the accuracy criterion.

Although the selective naive Bayes approach performs quite well on data sets with a reason-
able number of variables, it does not scale on very large data sets with hundreds of thousands of
instances and thousands of variables, such as in marketing applications. The problem comes both
from the search algorithm, whose complexity is quadratic in the number of the variables, and from
the selection process which is prone to overfitting.
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In this paper, we present a new regularization technique to compromise between the num-
ber of selected variables and the performance of the classifier. The resulting variable selection
criterion is optimized owing to an efficient search heuristic whose computational complexity is
O(KN log(KN)), where N is the number of instances and K the number of variables. We also apply
the Bayesian model averaging approach of Hoeting et al. (1999) and extend it with a compression-
based averaging scheme, which better accounts for the distribution of the models. We show that
averaging the models turns into averaging the contribution of the variables in the case of the selec-
tive naive Bayes classifier. Finally we proceed with extensive experiments to evaluate our method.

The remainder of the paper1 is organized as follows. Section 2 introduces the assumptions and
recalls the principles of the naive Bayes and selective naive Bayes classifiers. Section 3 presents
the regularization technique for variable selection based on Bayesian model selection and Section 4
applies the Bayesian model averaging method to selective naive Bayes classifiers. In Section 5, the
new selective naive Bayes classifiers are evaluated on an illustrative example. Section 6 analyzes
the limits of Bayesian model averaging and proposes a new model averaging technique based on
model compression coefficients. Section 7 proceeds with extensive experimental evaluations and
Section 8 reports the results obtained in the performance prediction challenge organized by Guyon
et al. (2006c). Finally, Section 9 concludes this paper and outlines research directions.

2. Selective Naive Bayes Classifier

This section formally states the assumptions and notations and recalls the naive Bayes and selective
naive Bayes approaches.

2.1 Assumptions and Notation

Let X = (X1,X2, . . .XK) be the vector of the K explanatory variables and Y the class variable. Let
λ1,λ2, . . .λJ be the J class labels of Y .

Let N be the number of instances and D = {D1,D2, . . . ,DN} the labeled database containing the
instances Dn = (x(n),y(n)).

Let M = {Mm} be the set of all the potential selective naive Bayes models. Each model Mm is
described by K parameter values amk, where amk is 1 if variable k is selected in model Mm and 0
otherwise.

Let us denote by P(λ j) the prior probabilities P(Y = λ j) of the class values, and by P(Xk|λ j)
the conditional probability distributions P(Xk|Y = λ j) of the explanatory variables given the class
values.

We assume that the prior probabilities P(λ j) and the conditional probability distributions
P(Xk|λ j) are known, once the preprocessing is performed.

In the paper, the class conditional probabilities are estimated using the MODL discretization
method of Boullé (2006b) for the numeric variables and the MODL grouping method of Boullé
(2005a,b) for the categorical variables. MODL stands for minimum optimized description length
and refers to the principle of minimum description length (MDL) of Rissanen (1978) as a model
selection technique. More specifically, the MODL preprocessing methods exploit a maximum a
posteriori (MAP) technique (see Robert, 1997) to select the most probable model of discretization

1. This paper is an extended version of the 2006 IJCNN conference paper (Boullé, 2006c).
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(resp. value grouping) given the input data. The choice of the prior distribution of the models is
optimized for the task of data preparation, and the search algorithms are deeply optimized.

Using the Bayes optimal MODL preprocessing methods to estimate the conditional probabil-
ities has proved to be very efficient in detecting irrelevant variables (see Boullé, 2006a). In the
experimental section, the P(λ j) are estimated by counting and the P(Xk|λ j) are computed using the
contingency tables, resulting from the preprocessing of the explanatory variables. The conditional
probabilities are estimated using a m-estimate (support + mp)/(coverage + m) with m = J/N and
p = 1/J, in order to avoid zero probabilities.

2.2 Naive Bayes Classifier

The naive Bayes classifier assigns to each instance the class value having the highest conditional
probability

P(λ j|X) =
P(λ j)P(X |λ j)

P(X)
.

Using the assumption that the explanatory variables are independent conditionally to the class
variable, we get

P(λ j|X) =
P(λ j)∏K

k=1 P(Xk|λ j)

P(X)
. (1)

In classification problems, Equation (1) is sufficient to predict the most probable class given
the input data, since P(X) is constant. In problems where a prediction score is needed, the class
conditional probability can be estimated using

P(λ j|X) =
P(λ j)∏K

k=1 P(Xk|λ j)

∑J
i=1 P(λi)∏K

k=1 P(Xk|λi)
. (2)

The naive Bayes classifier is poor at predicting the true class conditional probabilities, since
the independence assumption is usually violated in real data applications. However, Hand and Yu
(2001) show that the prediction score given by Equation (2) often provides an effective ranking of
the instances for each class value.

2.3 Selective Naive Bayes Classifier

The selective naive Bayes classifier reduces the strong bias of the naive independence assumption,
owing to variable selection. The objective is to search among all the subsets of variables, in order
to find the best possible classifier, compliant with the naive Bayes assumption.

Langley and Sage (1994) propose to evaluate the selection process with the accuracy criterion,
estimated on the train data set. However, this criterion suffers from some limits, even when the
predictive performance is the only concern. In case of a skewed distribution of class labels for
example, the accuracy may never be better than the majority accuracy, so that the selection process
ends with an empty set of variables. This problem also arises when several consecutive selected
variables are necessary to improve the accuracy. In the method proposed by Langley and Sage
(1994), the selection process is iterated as long as there is no decay in the accuracy. This solution
raises new problems, such as the selection of irrelevant variables with no effect on accuracy, or even
the selection of redundant variables with either insignificant effect or no effect on accuracy.
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Provost et al. (1998) propose to use receiver operating characteristic (ROC) analysis rather than
the accuracy to evaluate induction models. This ROC criterion, estimated on the train data set (as
in Langley and Sage, 1994), is used by Boullé (2006a) to assess the quality of variable selection for
naive Bayes classifier. The method exploits the forward selection algorithm to select the variables,
starting from an empty subset of variables. At each step of the algorithm, the variable which brings
the best increase of the area under the ROC curve (AUC) is chosen and the selection process stops as
soon as this area does not rise anymore. This allows capturing slight enhancements in the learning
process and helps avoiding the selection of redundant variables or probes that have no effect on the
ROC curve.

Altogether, the variable selection method can be implemented in O(K2N logN) time. The pre-
processing step needs O(KN logN) to discretize or group the values of all the variables. The forward
selection process requires O(K2N logN) time, owing to the decomposability of the naive Bayes for-
mula on the variables. The O(N logN) term in the complexity is due to the evaluation of the area
under the ROC curve, based on the sort of the training instances.

3. MAP Approach for Variable Selection

After introducing the aim of regularization, this section applies the Bayesian approach to derive a
new evaluation criterion for variable selection and presents the search algorithm used to optimize
this criterion.

3.1 Introduction

The naive Bayes classifier is a very robust algorithm. It can hardly overfit the data, since no hy-
pothesis space is explored during the learning process. On the opposite, the selective naive Bayes
classifier explores the space of all subsets of variables to reduce the strong bias of the naive indepen-
dence assumption. The size of the searched hypothesis space grows exponentially with the number
of variables, which might cause overfitting. Experiments show that during the variable selection
process, the last added variables raise the “complexity” of the classifier while having an insignifi-
cant impact on the evaluation criterion (AUC for example). These slight improvements during the
training step, which have an insignificant impact on the test performance, are detrimental to the ease
of deployment of the models and to their understandability.

We propose to tackle this overfitting problem by relying on a Bayesian approach, where the
MAP model is found by maximizing the probability P(Model|Data) of the model given the data.
In the following, we describe how we compute the likelihood of the models P(Data|Model) and
propose a prior distribution P(Model) for variable selection.

3.2 Likelihood of Models

For a given model Mm parameterized by the set of selected variable indicators {amk}, the estimation
of the class conditional probability Pm(λ j|X) turns into

Pm(λ j|X) =
P(λ j)∏K

k=1 P(Xk|λ j)
amk

P(X)

=
P(λ j)∏K

k=1 P(Xk|λ j)
amk

∑J
i=1 P(λi)∏K

k=1 P(Xk|λi)amk
. (3)
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Equation (3) provides the class conditional probability distribution for each model Mm on the
basis of the parameter values amk of the model. For a given instance Dn, the probability of observing
the class value y(n) given the explanatory values x(n) and given the model Mm is Pm(Y = y(n)|X =
x(n)). The likelihood of the model is obtained by computing the product of these quantities on the
whole data set. The negative log-likelihood of the model is given by

− logP(D|Mm) =
N

∑
n=1

− logPm(Y = y(n)|X = x(n)).

3.3 Prior for Variable Selection

The parameters of a variable selection model Mm are the Boolean values amk. We propose a hier-
archic prior, by first choosing the number of selected variables and second choosing the subset of
selected variables.

For the number Km of variables, we propose to use a uniform prior between 0 and K variables,
representing (K +1) equiprobable alternatives.

For the choice of the Km variables, we assign the same probability to every subset of Km vari-
ables. The number of combinations

( K
Km

)

seems the natural way to compute this prior, but it has the
disadvantage of being symmetric. Beyond K/2 variables, every new variable makes the selection
more probable. Thus, adding irrelevant variables is favored, provided that this has an insignificant
impact on the likelihood of the model. As we prefer simpler models, we propose to use the number
of combinations with replacement

(K+Km−1
Km

)

.
Taking the negative log of this prior, we get the following code length l(Mm) for the variable

selection models

l(Mm) = log(K +1)+ log

(

K +Km−1
Km

)

.

Using this prior, the “informational cost” of the first selected variables is about logK and about
log2 for the last variables.

To summarize our prior, each number of Km variable is equiprobable, and for a given Km, each
subset of Km variables randomly chosen with replacement is equiprobable. This means that each
specific small subset of variables has a greater probability than each specific large subset of vari-
ables, since the number of variable subsets of given size grows with Km.

3.4 Posterior Distribution of the Models

The posterior probability of a model Mm is evaluated as the product of the prior and the likelihood.
This is equivalent to the MDL approach of Rissanen (1978), where the code length of the model
plus the data given the model has to be minimized:

l(Mm)+ l(D|Mm) = log(K +1)+ log

(

K +Km−1
Km

)

−
N

∑
n=1

logPm(y(n)|X = x(n)). (4)

The first two terms encode the complexity of the model and the last one the fit of the data. The
compromise is found by minimizing this criterion.

We can notice a trend of increasing attention to the predicted probabilities in the evaluation
criteria proposed for variable selection. Whereas the accuracy criterion focuses only on the majority
class and the area under the ROC curve evaluates the correct ordering of the predicted probabilities,
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our regularized criterion evaluates the correctness of all the predicted probabilities (not only their
rank) and introduces a regularization term to balance the complexity of the models.

3.5 An Efficient Search Heuristic

Many heuristics have been used for variable selection (see Guyon et al., 2006b). The greedy forward
selection heuristic evaluates all the variables, starting from an empty set of variables. The best
variable is added to the current selection, and the process is iterated until no new variable improves
the evaluation criterion. This heuristic may fall in local optima and has a quadratic time complexity
with respect to the number of variables. The forward backward selection heuristic allows to add or
drop one variable at each step, in order to avoid local optima. The fast forward selection heuristic
evaluates each variable one at a time, and adds it to the selection as soon as this improves the
criterion. This last heuristic is time effective, but its results exhibit a large variance caused by the
dependence over the order of the variables.

Algorithm 1 Algorithm MS(FFWBW)
Require: X ← (X1,X2, . . .XK) {Set of input variables}
Ensure: B {Best subset of variables}

1: B← /0 {Start with an empty subset of variables}
2: for Step=1 to log2 KN do
3: {Fast forward backward selection}
4: S← /0 {Initialize an empty subset of variables}
5: Iter← 0
6: repeat
7: Iter← Iter +1
8: X ′← Shuffle(X) {Randomly reorder the variables to add}
9: {Fast forward selection}

10: for Xk ∈ X ′ do
11: if cost(S∪{Xk}) < cost(S) then
12: S← S∪{Xk}
13: end if
14: end for
15: X ′← Shuffle(X) {Randomly reorder the variables to remove}
16: {Fast backward selection}
17: for Xk ∈ X ′ do
18: if cost(S−{Xk}) < cost(S) then
19: S← S−{Xk}
20: end if
21: end for
22: until no improvement or Iter ≥MaxIter
23: {Update best subset of variables}
24: if cost(S) < cost(B) then
25: B← S
26: end if
27: end for
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We introduce a new search heuristic called fast forward backward selection (FFWBW), based
on a mix of the preceding approaches. It consists in a sequence of fast forward selection and fast
backward selection steps. The variables are randomly reordered between each step, and evaluated
only once during each forward or backward search. This process is iterated as long as two successive
(forward and backward) search steps bring at least one improvement of the criterion or when the
iteration number exceeds a given parameter MaxIter. In practice, the whole process converges very
quickly, in one or two steps in most of the cases. Setting MaxIter = 5 for example is sufficient to
bound the worst case complexity without decreasing the quality of the search algorithm.

Evaluating a selective naive Bayes model requires O(KN) computation time, mainly to evaluate
all the class conditional probabilities. According to Equation (3), these class conditional proba-
bilities can be updated in O(1) per instance and O(N) for the whole data set when one variable
is added or removed from the current subset of selected variables. Each fast forward selection or
fast backward selection step considers O(K) additions or removals of variables and requires O(KN)
computation time. The total time complexity of the FFWBW heuristic is O(KN), since the number
of search steps is bounded by the constant parameter MaxIter.

In order to further reduce both the possibility of local optima and the variance of the results, this
FFWBW heuristic is embedded into a multi-start (MS) algorithm, by repeating the search heuristic
starting from several random orderings of the variables. The number of repetitions is set to log2 KN,
which offers a reasonable compromise between time complexity and quality of the optimization.
Overall, the time complexity of the MS(FFWBW) heuristic is O(KN logKN). The heuristic is
detailed in Algorithm 1.

4. Bayesian Model Averaging of Selective Naive Bayes Classifiers

Model averaging consists in combining the prediction of an ensemble of classifiers in order to reduce
the prediction error. This section reminds the principles of Bayesian model averaging and applies
this averaging scheme to the selective naive Bayes classifier.

4.1 Bayesian Model Averaging

The Bayesian model averaging (BMA) method (Hoeting et al., 1999) aims at accounting for the
model uncertainty. Whereas the MAP approach retrieves the most probable model given the data,
the BMA approach exploits every model in the model space, weighted by their posterior probability.
This approach relies on the definition of a prior distribution on the models, on an efficient compu-
tation technique to estimate the model posterior probabilities and on an effective method to sample
the posterior distribution. Apart from these technical difficulties, the BMA approach is an appealing
technique, with strong theoretical results concerning the optimality of its long-run performance, as
shown by Raftery and Zheng (2003).

The BMA approach has been applied to the naive Bayes classifier by Dash and Cooper (2002).
Apart from the differences in the weighting scheme, their method (DC) differs from ours mainly on
the initial assumptions. The DC method does not manage the numeric variables and assumes multi-
nomial distributions with Dirichlet priors for the categorical variables, which requires the choice of
hyper-parameters for each variable. Structure modularity of the Bayesian network is also assumed:
each selection of a variable is independent from the others. The DC approach estimates the full data
distribution (explanatory and class variables), whereas we focus on the class conditional probabili-
ties. Once the prior hyper-parameters are fixed, the DC method allows to compute an exact model
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averaging, whereas we rely on an heuristic to estimate the averaged model. Compared to the DC
method, our method is not restricted to categorical attributes and does not need any hyper-parameter.

4.2 From Bayesian Model Averaging to Expectation

For a given variable of interest ∆, the BMA approach averages the predictions of all the models
weighted by their posterior probability.

P(∆|D) = ∑
m

P(∆|Mm,D)P(Mm|D).

This formula can be written, using only the prior probabilities and the likelihood of the models.

P(∆|D) =
∑m P(∆|Mm,D)P(Mm)P(D|Mm)

∑m P(Mm)P(D|Mm)
.

Let f (Mm,D) = P(∆|Mm,D) and f (D) = P(∆|D). Using these notations, the BMA formula can
be interpreted as the expectation of function f for the posterior distribution of the models

E( f ) = ∑
m

f (Mm,D)P(Mm|D).

We propose to extend the BMA approach in the case where f is not restricted to be a probability
function.

4.3 Expectation of the Class Conditional Information

The selective naive Bayes classifier provides an estimation of the class conditional probabilities.
These estimated probabilities are the natural candidates for averaging. For a given model Mm defined
by the variable selection {amk}, we have

f (Mm,D) =
P(Y )∏K

k=1 P(Xk|Y )amk

P(X)
. (5)

Let I(Mm,D) = − log f (Mm,D) be the class conditional information. Whereas the expectation
of f relates to a (weighted) arithmetic mean of the class conditional probabilities, the expectation
of I relates to a (weighted) geometric mean of these probabilities. This puts more emphasis on the
magnitude of the estimated probabilities. Taking the negative log of (5), we obtain

I(Mm,D) = I(Y )− I(X)+
K

∑
k=1

amkI(Xk|Y ). (6)

We are looking for the expectation of this conditional information

E(I) =
∑m I(Mn,D)P(Mm|D)

∑m P(Mm|D)

= I(Y )− I(X)+
∑m P(Mm|D)∑K

k=1 amkI(Xk|Y )

∑m P(Mm|D)

= I(Y )− I(X)+
K

∑
k=1

I(Xk|Y )
∑m amkP(Mm|D)

∑m P(Mm|D)
.
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Let bk = ∑m amkP(Mm|D)
∑m P(Mm|D) . We have bk ∈ [0,1].

The bk coefficients are computed using (4), on the basis of the prior probabilities and of the
likelihood of the models. Using these coefficients, the expectation of the conditional information is

E(I) = I(Y )− I(X)+
K

∑
k=1

bkI(Xk|Y ). (7)

The averaged model thus provides the following estimation for the class conditional probabili-
ties:

P(Y |X) =
P(Y )∏K

k=1 P(Xk|Y )bk

P(X)
.

It is noteworthy that the expectation of the conditional information in (7) is similar to the condi-
tional information estimated by each individual model in (6). The weighting scheme on the models
reduces to a weighting scheme on the variables. When the MAP model is selected, the variables
have a weight of 1 when selected and 0 otherwise: this is a “hard selection” of the variables. When
the above averaging scheme is applied, each variable has a [0,1] weight, which can be interpreted
as a “soft selection”.

4.4 An Efficient Algorithm for Model Averaging

We have previously introduced a model averaging method which relies on the expectation of the
class conditional information. The calculation of this expectation requires the evaluation of all the
variable selection models, which is not computationally feasible as soon as the number of variables
goes beyond about 20. This expectation can heuristically be evaluated by sampling the posterior
distribution of the models and accounting only for the sampled models in the weighting scheme.

We propose to reuse the MS(FFWBW) search heuristic to perform this sampling. This heuristic
is effective for finding high probability models and searching in their neighborhood. The repetition
of the search from several random starting points (in the multi-start meta-heuristics) brings diversity
and allows to escape local optima. We use the whole set of models evaluated during the search to
estimate the expectation.

Although this sampling strategy is biased by the search heuristic, it has the advantage of being
simple and computationally tractable. The overhead in the time complexity of the learning algo-
rithm is negligible, since the only need is to collect the posterior probability of the models and to
compute the weights in the averaging formula. Concerning the deployment of the averaged model,
the overhead is also negligible, since the initial naive Bayes estimation of the class conditional
probabilities is just extended with variable weights.

5. Evaluation on an Illustrative Example

This section describes the waveform data set, introduces three evaluation criteria and illustrates the
behavior of each variant of the selective naive Bayes classifier.

5.1 The Waveform Data Set

The waveform data set introduced by Breiman et al. (1984) contains 5000 instances, 21 continuous
variables and 3 equidistributed class values. Each instance is defined as a linear combination of two
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out of the three triangular waveforms pictured in Figure 1, with randomly generated coefficients and
Gaussian noise. Figure 2 plots 10 random instances from each class.
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W a v e f o r m  1 W a v e f o r m  2 W a v e f o r m  3

Figure 1: Basic waveforms used to generated the 21 input variables of the waveform data set.
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Figure 2: Waveform data.

Learning on the waveform data set is generally considered a difficult task in pattern recognition,
with reported accuracy of 86.8% using a Bayes optimal classifier. The input variables are correlated,
which violates the naive Bayes assumption. Selecting the best subset of variables compliant with
the naive Bayes assumption is a challenging problem.

5.2 The Evaluation Criteria

We evaluate three criteria of increasing complexity: accuracy (ACC), area under the ROC curve
(AUC) and informational loss function (ILF).

The ACC criterion evaluates the accuracy of the prediction, no matter whether its conditional
probability is 51% or 100%.

The AUC criterion (see Fawcett, 2003) evaluates the ranking of the class conditional probabili-
ties. In a two-classes problem, the AUC is equivalent to the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly chosen negative instance. Extending the
AUC criterion to multi-class problems is not a trivial task and has lead to computationally intensive
methods (see for example Deng et al., 2006). In our experiments, we use the approach of Provost
and Domingos (2001) to calculate the multi-class AUC, by computing each one-against-the-others
two-classes AUC and weighting them by the class prior probabilities P(λ j). Although this version
of multi-class AUC is sensitive to the class distribution, it is easy to compute, which motivates our
choice.

The ILF criterion (see Witten and Frank, 2000) evaluates the probabilistic prediction owing to
the negative log of the predicted class conditional probabilities

− logPm(Y = y(n)|X = x(n)).
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The empirical mean of the ILF criterion is equal to

ILF(Mm) =
1
N

N

∑
n=1

− logPm(Y = y(n)|X = x(n)).

The predicted class conditional probabilities in the ILF criterion are given by Equation (2) for
the naive Bayes classifier and by Equation (3) for the selective naive Bayes classifier.

Let M /0 be the “null” model, with no variable selected. The null model estimates the class
conditional probabilities by their prior probabilities, ignoring all the explanatory variables. For the
null model M /0, we obtain

ILF(M /0) =
1
N

N

∑
n=1

− logP(Y = y(n))

= −
J

∑
j=1

P(λ j) logP(λ j)

= H(Y ),

where H(Y ) is the entropy of Shannon (1948) of the class variable.
We introduce a compression rate to normalize the ILF criterion using

CR(Mm) = 1− ILF(Mm)/ ILF(M /0)

= 1− ILF(Mm)/H(Y ).

The normalized CR criterion is mainly ranged between 0 (prediction not better than the basic
prediction of the class priors) and 1 (prediction of the true class probabilities in case of perfectly
separable classes). It can be negative when the predicted probabilities are worse than the basic prior
predictions.

5.3 Evaluation on the Waveform Data Set

We use 70% of the waveform data set to train the classifiers and 30% to test them. These evaluations
are merely illustrative; extensive experiments are reported in Section 7.

In the case of the waveform data set, the MODL preprocessing method determines that 2 vari-
ables (1st and 21st) are irrelevant, and the naive Bayes classifier uses all the 19 remaining variables.
We evaluate four variants of selective naive Bayes methods. The SNB(ACC) method of Langley and
Sage (1994) optimizes the train accuracy and the SNB(AUC) method of Boullé (2006a) optimizes
the area under the ROC curve on the train data set. The SNB(MAP) method introduced in Section
3 selects the most probable subset of variables compliant with the naive Bayes assumption, and the
SNB(BMA) method described in Section 4 averages the selective naive Bayes classifiers weighted
by their posterior probability. In this experiment, we evaluate exhaustively the half a million models
related to the 219 possible variable subsets. This allows us to focus on the variable selection criterion
and to avoid the potential bias of the optimization algorithms.

The selected subsets of variables are pictured in Figure 3. The SNB(ACC) method selects 12
variables and the SNB(AUC) 18 variables. The SNB(MAP) which focuses on a subset of variables
compliant with the naive Bayes assumption selects only 8 variables, which turns out to be a subset
of the variables selected by the alternative methods.
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Figure 3: Variables selected by the selective naive Bayes classifiers for the waveform data set.

The predictive performance for the ACC, AUC and ILF criteria are reported in Figure 4. In
multi-criteria analysis, a solution dominates (or is non-inferior to) another one if it is better for all
criteria. A solution that cannot be dominated is Pareto optimal: any improvement of one of the
criteria causes a deterioration on another criterion (see Pareto, 1906). The Pareto surface is the set
of all the Pareto optimal solutions.
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Figure 4: Evaluation of the predictive performance of selective naive Bayes classifiers on the wave-
form data set.

The SNB(ACC) method is slightly better than the NB method on the ACC criterion. Owing to
its small subset of selected variables, it manages to reduce the redundancy between the variables and
to significantly improve the estimation of the class conditional probabilities, as reported by its ILF
evaluation. The SNB(AUC) method gets the same AUC performance as the NB method with one
variable less. The SNB(MAP) and SNB(BMA) methods almost directly optimizes the ILF criterion
on the train data set, with a regularization term related to the model prior. They get the best ILF
evaluation on the test set, but are dominated by the NB and SNB(ACC) methods on the two other
criteria, as shown in Figure 4. Almost all the methods are Pareto optimal: none of them is the best
on the three evaluated criteria.

Compared to the other variable selection methods, the SNB(MAP) truly focuses on complying
with the naive independence assumption. This results in a much smaller subset of variables and a
better prediction of the class conditional probabilities, at the expense of a decay on the other criteria.
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The SNB(BMA) method exploits a model averaging approach which results in soft variable
selection. Figure 3 shows the weights of each variable. Surprisingly, the selected variables are
almost the same as the 8 variables selected by the SNB(MAP) method. Compared to the hard
variable selection scheme, the soft variable selection exhibits mainly one minor change: a new
variable (V20) is selected with a small weight of 0.15. The other modifications of the variable
weights are insignificant: two variables (V6 and V17) decrease their weight from 1.0 to 0.99 and
three variables (V7, V18 and V19) appear with a tiny weight of 0.01.

Since the variable selection is almost the same as in the MAP approach, the model averaging
approach does not bring any significant improvement in the evaluation results, as shown in Figure
4.

6. Compression Model Averaging of Selective Naive Bayes Classifiers

This section analyzes the limits of Bayesian model averaging and proposes a new weighting scheme
that better exploits the posterior distributions of the models.

6.1 Understanding the Limits of Bayesian Model Averaging

We use again the waveform data set to explain why the Bayesian model averaging method fails to
outperform the MAP method.

Figure 5: Index of the selected variables in the 200 most probable selective naive Bayes models for
the waveform data set. Each line represents a model, where the variables are in black
color when selected.

The variable selection problem consists in finding the most probable subset of variables com-
pliant with the naive Bayes assumption among about half a million (219) potential subsets. In order
to study the posterior distribution of the models, all these subsets are evaluated. The MAP model
selects 8 variables (V5, V6, V9, V10, V11, V12, V13, V17). A close look at the posterior distri-
bution shows that most of the good models (in the top 50%) contain around 10 variables. Figure 5
displays the selected variables in the top 200 models (0.05%). Five variables (V5, V9, V10, V11,
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V12) among the 8 MAP variables are always selected, and the other models exploit a diversity of
subsets of variables. The potential benefit of model averaging is to account for all these models,
with higher weights for the most probable models.

However, the posterior distribution is very sharp everywhere, not only around the MAP. Variable
V18 is first selected in the 3rd model, which is about 40 times less probable than the MAP model.
Variable V4 is first selected in the 10th model, about 4000 times less probable than the MAP model.
Figure 6 displays the repartition function of the posterior probabilities, using a log scale. Using
this logarithmic transformation, the posterior distribution is flattened and can be visualized. The
MAP model is 101033 times more probable than the minimum a posteriori model, which selects no
variable.
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Figure 6: Repartition function of the posterior probabilities of half a million variable selection mod-
els evaluated for the waveform data set, sorted by increasing posterior probability. For
example, the 10% models on the left represent the models having the lowest posterior
probability.

In the waveform example, averaging using the posterior probabilities to weight the models is
almost the same as selecting the MAP model (which itself is hard to find with a heuristic search) and
model averaging is almost useless. In theory, BMA is optimal (see Raftery and Zheng, 2003), but
this optimality result assumes that the true distribution of the data belongs to the space of models.
In the case of the selective naive Bayes classifier, this assumption is violated on most real data sets
and BMA fails to build effective model averaging.

6.2 Model Averaging with Compression Coefficients

When the posterior distribution is sharply peaked around the MAP, averaging is almost the same
as selecting the MAP model. These peaked posterior distributions are more and more likely to
happen when the number of instances rises, since a few tens of instances better classified by a model
are sufficient to increase its likelihood by several orders of magnitude. Therefore, the algorithmic
overhead is not valuable if averaging turns out to be the same as selecting the MAP.

In order to have a theoretical insight on the relation between MAP and BMA, let us analyze
again the model selection criterion (4). It is closely related to the ILF criterion described in Section
5.2, according to

l(Mm)+ l(D|Mm) =− logP(Mm)+N ILF(Mm).
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For the the “null” model M /0, with no variable selected, we have:

l(M /0)+ l(D|M /0) =− logP(M /0)+N H(Y ).

The posterior probability P(Mm|D) of a model Mm relative to that of the null model is

P(Mm|D)

P(M /0|D)
=

P(Mm)

P(M /0)

(

H(Y )

ILF(Mm)

)N

. (8)

Equation (8) shows that the posterior probability of the models is exponentially peaked when
N goes to infinity. Small improvements in the estimation of the conditional entropy brings very
large differences in the posterior probability of the models, which explains why Bayesian model
averaging is asymptotically equivalent to selecting the MAP model.

We propose an alternative weighting scheme, whose objective is to better account for the set of
all models. Let us precisely define the compression coefficient c(Mm,D) of a model. The model
selection criterion l(Mm)+ l(D|Mm) defined in Equation (4) represents the quantity of information
required to encode the model plus the class values given the model. The code length of the null
model M /0 can be interpreted as the quantity of information necessary to describe the classes, when
no explanatory data is used to induce the model.

Each model Mm can potentially exploit the explanatory data to better “compress” the class con-
ditional information. The ratio of the code length of a model to that of the null model stands for a
relative gain in compression efficiency. We define the compression coefficient c(Mm,D) of a model
as follows:

c(Mm,D) = 1−
l(Mm)+ l(D|Mm)

l(M /0)+ l(D|M /0)
.

The compression coefficient is 0 for the null model, is maximal when the true class conditional
probabilities are correctly estimated and tends to 1 in case of separable classes. This coefficient can
be negative for models which provide an estimation worse than that of the null model.

In our heuristic attempt to better account for all the models, we replace the posterior probabilities
by their related compression coefficient in the weighting scheme.

Let us focus again on the variable weights bk introduced in Section 4 in our first model averaging
method. Dividing the posterior probabilities by those of the null model, we get

bk =
∑m amk

P(Mm|D)
P(M /0|D)

∑m
P(Mm|D)
P(M /0|D)

.

We introduce new ck coefficients by taking the log of the probability ratios and normalizing by
the code length of the null model. We obtain

ck =
∑m amkc(Mm,D)

∑m c(Mm,D)
.

Mainly, the principle of this new heuristic weighting scheme consists in smoothing the expo-
nentially peaked posterior probability distribution of Equation (8) with the log function.

In the implementation, we ignore the “bad” models and consider the positive compression co-
efficients only. We evaluate the compression based model averaging (CMA) model using the model
averaging algorithm introduced in Section 4.4.
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6.3 Evaluation on the Waveform Data Set

We use the protocol introduced in Section 5 to evaluate the SNB(CMA) compression model aver-
aging method on the waveform data set, with an exhaustive evaluation of all the models to avoid the
potential bias of the optimization algorithms.

Figure 7 shows the weights of each variable resulting from the soft variable selection of the
SNB(CMA) compression model averaging method. Contrary to the SNB(BMA) method, the aver-
aging has a significant impact on variable selection.
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Figure 7: Variables selected by the SNB(CMA) method and the alternative selective naive Bayes
classifiers for the waveform data set.

Instead of “hard selecting” about half of the variables as in the SNB(MAP) method, the
SNB(CMA) method selects all the variable with weights around 0.5. Interestingly, the variable
selection pattern is similar to that of the alternative variable selection methods, in a smoothed ver-
sion. A central group of variables is emphasized around variable V11, between two less important
groups of variables around variables V5 and V17.
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Figure 8: Evaluation of the predictive performance of selective naive Bayes classifiers on the wave-
form data set.
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In the waveform data set, all the variables are informative, but the most probable subsets of
variables compliant with the naive Bayes assumption select only half of the variables. In other
words, whereas many good SNB classifiers are available, none of them is able to account for all the
information contained in the variables. Since the BMA model is almost the same as the MAP model,
it fails to perform better than one single classifier . Our CMA approach averages complementary
subsets of variables and exploits more information than the BMA approach. This smoothed variable
selection results in improved performance, as shown in Figure 8. The SNB(CMA) method is the
best one: it dominates all the other methods on the three evaluated criteria.

7. Experiments

This section presents an experimental evaluation of the performance of the selective naive Bayes
methods described in the previous sections.

7.1 Experimental Setup

The experiments aim at comparing the performance of model averaging methods versus the MAP
method, the standard selective naive Bayes (SNB) and naive Bayes (NB) methods. All the classi-
fiers except the last one exploit the same MODL preprocessing, allowing a fair comparison. The
evaluated methods are:

• No variable selection

– NB(EF): NB with 10 bins equal frequency discretization and no value grouping,

– NB: NB with MODL preprocessing,

• Variable selection

– SNB(ACC): optimization of the accuracy,

– SNB(AUC): optimization of the area under the ROC curve,

– SNB(MAP): MAP SNB model,

• Variable selection and model averaging

– SNB(BMA): Bayesian model averaging,

– SNB(CMA)2 : compression-based model averaging.

The three last SNB classifiers (SNB(MAP), SNB(BMA) and SNB(CMA)) represent our con-
tribution in this paper. All the SNB classifiers are optimized with the same MS(FFWBW) search
heuristic, except the SNB(ACC), based on the forward selection greedy heuristic. The DC method
(Dash and Cooper, 2002), similar to the SNB(BMA) approach, was not evaluated since it is re-
stricted to categorical attributes.

The evaluated criteria are the same as for the waveform data set: accuracy (ACC), area un-
der the ROC curve (AUC) and informational loss function (ILF) (with its compression rate (CR)
normalization).

2. The method is implemented in a tool available as a shareware at
http://www.francetelecom.com/en/group/rd/offer/software/technologies/middlewares/khiops.html.
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Name Instances Numerical Categorical Classes Majority
variables variables accuracy

Abalone 4177 7 1 28 16.5
Adult 48842 7 8 2 76.1
Australian 690 6 8 2 55.5
Breast 699 10 0 2 65.5
Crx 690 6 9 2 55.5
German 1000 24 0 2 70.0
Glass 214 9 0 6 35.5
Heart 270 10 3 2 55.6
Hepatitis 155 6 13 2 79.4
HorseColic 368 7 20 2 63.0
Hypothyroid 3163 7 18 2 95.2
Ionosphere 351 34 0 2 64.1
Iris 150 4 0 3 33.3
LED 1000 7 0 10 11.4
LED17 10000 24 0 10 10.7
Letter 20000 16 0 26 04.1
Mushroom 8416 0 22 2 53.3
PenDigits 7494 16 0 10 10.4
Pima 768 8 0 2 65.1
Satimage 6435 36 0 6 23.8
Segmentation 2310 19 0 7 14.3
SickEuthyroid 3163 7 18 2 90.7
Sonar 208 60 0 2 53.4
Spam 4307 57 0 2 64.7
Thyroid 7200 21 0 3 92.6
TicTacToe 958 0 9 2 65.3
Vehicle 846 18 0 4 25.8
Waveform 5000 21 0 3 33.9
Wine 178 13 0 3 39.9
Yeast 1484 8 1 10 31.2

Table 1: UCI Data Sets

We conduct the experiments on two collections of data sets: 30 data sets from the repository
at University of California at Irvine (Blake and Merz, 1996) and 10 data sets from the NIPS 2003
feature selection challenge (Guyon et al., 2006a) and the IJCNN 2006 performance prediction chal-
lenge (Guyon et al., 2006c). A summary of some properties of these data sets is given in Table 1 for
the UCI data sets and in Table 2 for the challenge data sets. We use stratified 10-fold cross validation
to evaluate the criteria. A two-tailed Student test at the 5% confidence level is performed in order
to evaluate the significant wins or losses of the SNB(CMA) method versus each other method.

7.2 Results

We collect and average the three criteria owing to the stratified 10-fold cross validation, for the
seven evaluated methods on the forty data sets. The results are presented in Table 3 for the UCI data
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Name Instances Numerical Categorical Classes Majority
variables variables accuracy

Arcene 200 10000 0 2 56.0
Dexter 600 20000 0 2 50.0
Dorothea 1150 100000 0 2 90.3
Gisette 7000 5000 0 2 50.0
Madelon 2600 500 0 2 50.0
Ada 4147 48 0 2 75.2
Gina 3153 970 0 2 50.8
Hiva 3845 1617 0 2 96.5
Nova 1754 16969 0 2 71.6
Sylva 13086 216 0 2 93.8

Table 2: Challenge Data Sets

sets and in Table 4 for the challenge data sets. They are summarized across the data sets using the
mean, the number of wins and losses (W/L) for the SNB(CMA) method and the average rank, for
each of the three evaluation criteria.

Method ACC AUC CR
Mean W/L Rank Mean W/L Rank Mean W/L Rank

SNB(CMA) 0.824 2.2 0.920 1.9 0.577 2.2
SNB(BMA) 0.817 9/2 3.7 0.916 11/0 3.3 0.559 12/6 2.6
SNB(MAP) 0.813 11/1 4.5 0.913 17/1 4.4 0.549 15/6 3.6
SNB(AUC) 0.820 8/0 3.3 0.918 10/2 3.1 0.532 17/4 4.4
SNB(ACC) 0.817 5/1 3.5 0.910 14/0 4.5 0.536 13/2 4.5
NB 0.814 11/0 4.0 0.913 16/1 4.6 0.476 19/2 5.3
NB(EF) 0.796 15/1 4.6 0.911 13/3 4.8 0.401 15/2 5.3

Table 3: Evaluation of the methods on the UCI data sets

The three ways of aggregating the results (mean, W/L and rank) are consistent, and we choose
to display the mean of each criterion to ease the interpretation. Figure 9 summarizes the results for
the UCI data sets and Figure 10 for the challenge data sets.

The results of the two NB methods are reported mainly as a sanity check. The MODL pre-
processing in the NB classifier exhibits better performance than the equal frequency discretization
method in the NB(EF) classifier.

The experiments confirm the benefit of selecting the variables, using the standard selection
methods SNB(ACC) and SNB(AUC). These two methods achieve comparable results, with an em-
phasis on their respective optimized criterion. They significantly improve the results of the NB
methods, especially for the estimation of class conditional probabilities measured by the CR crite-
rion. It is noteworthy that the NB and NB(EF) classifiers obtain poor CR results. Their mean CR
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Method ACC AUC CR
Mean W/L Rank Mean W/L Rank Mean W/L Rank

SNB(CMA) 0.883 1.9 0.904 1.0 0.510 1.0
SNB(BMA) 0.872 3/0 3.5 0.882 6/0 2.9 0.446 9/0 2.3
SNB(MAP) 0.865 4/0 4.5 0.863 6/0 5.1 0.425 9/0 3.7
SNB(AUC) 0.872 6/0 3.6 0.888 7/0 2.7 0.331 10/0 4.1
SNB(ACC) 0.875 3/2 2.9 0.869 8/0 4.8 0.365 9/0 4.3
NB 0.841 7/0 4.9 0.846 9/0 5.3 -0.321 9/0 5.9
NB(EF) 0.823 9/0 6.6 0.833 9/0 6.2 -0.423 10/0 6.7

Table 4: Evaluation of the methods on the challenge data sets
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Figure 9: Mean of the ACC, AUC and CR evaluation criteria on the 30 UCI data sets.

result is less than 0 in the case of the challenge data sets, which means that their estimation of the
class conditional probabilities is worse than that of the null model (which selects no variable).

The three regularized methods SNB(MAP), SNB(BMA) and SNB(CMA) focus on the estima-
tion of the class conditional probabilities, which are evaluated using the compression rate criterion.
They clearly outperform the other methods on this criterion, especially for the challenge data sets
where the improvement amounts to about 50%. However, the SNB(MAP) method is not better than
the two standard SNB methods for the accuracy and AUC criteria. The MAP method increases the
bias of the models by penalizing the complex models, leading to a decayed fit of the data.
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Figure 10: Mean of the ACC, AUC and CR evaluation criteria on the 10 challenge data sets.
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The model averaging approach exploited in SNB(BMA) method offers only slight enhance-
ments compared to the SNB(MAP) method. This confirms the analysis drawn from the waveform
case study.

The compression-based averaging method SNB(CMA) clearly dominates all the other methods
on all the criteria. On average, the number of significant wins is about 10 times the number of
significant losses, and amounts to more than half of the 40 data sets. On the 10 challenge data
sets, having very large numbers of variables, the SNB(CMA) method always gets the best results
on the AUC and CR criteria, and almost always on the accuracy criterion. The domination of
the SNB(CMA) method increases with the complexity of the criteria: it is noteworthy for accuracy
(ACC), important for the ordering of the class conditional probabilities (AUC) and very large for the
prediction of the class conditional probabilities (CR). This shows that the regularized and averaged
naive Bayes classifier becomes effective for conditional probability estimation, whereas the standard
naive Bayes classifier is usually considered to be poor at estimating these probabilities.

To summarize, this experiment demonstrates that variable selection is useful to improve the
classification accuracy of the naive Bayes classifier. The MAP selection approach presented in
Section 3 allows to find a selective naive Bayes classifier which is as compliant as possible with the
naive Bayes assumption. Although this has little impact on the classification accuracy, this greatly
improves the estimation of the class conditional probabilities.

Model averaging aims at improving the predictive performance at the expense of models which
are more difficult to understand and to deploy. From this point of view, the experiment indicates
that Bayesian model averaging is not much useful, since it does not significantly outperform the
MAP model. On the opposite, our compression model averaging scheme introduced in Section 6
takes benefit from the full posterior distribution of the models and obtains superior results for all the
evaluated criteria.

8. Evaluation on the Performance Prediction Challenge

This section reports the results obtained by our compression-based averaging method on the perfor-
mance prediction challenge of Guyon et al. (2006c).

8.1 The Performance Prediction Challenge

The purpose of the performance prediction challenge is “to stimulate research and reveal the state-
of-the art in model selection”. Each method is evaluated according to its predictive performance
and to its ability to guess its performance. The performance is assessed using the balanced error
rate (BER) criterion to account for skewed distributions. The BER guess error is evaluated as
the absolute value of the difference between the test BER and the predicted BER. A test score is
computed as a combination of the test BER and the BER guess error to rank the participants.

Five data sets are used in the challenge (the five last data sets in Table 2). The ada data set comes
from the marketing domain, the gina data set from handwriting recognition, the hiva data set from
drug discovery, the nova data set from text classification and the sylva data set from ecology. The
test sets used to assess the performance are 10 times larger than the train data sets.
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8.2 Details of the Submissions

All our entries are based on the compression-based averaging of the selective naive Bayes classifier
SNB(CMA).

The method computes the posterior probabilities of the classes, which is convenient when the
accuracy criterion or the area under the ROC curve is evaluated. In a two-classes problem, any
instance whose class posterior probability is beyond a threshold τ = 0.5 is classified as positive,
and otherwise as negative. For the challenge, the BER criterion is the main criterion, and it is no
longer optimal to predict the most probable class. In order to improve the BER criterion, we adjust
the decision threshold τ in a post-optimization step. We sort the train instances by decreasing class
posterior probabilities, which determines N possible values of the threshold τ. We then loop on the
instances, and for each τ, we compute the confusion matrix between the prediction outcome and the
actual class value. We keep the threshold that maximizes the BER of the related confusion matrix.
Post-optimizing the BER criterion requires 0(N logN) computation time to sort the instances and
O(N) to compute the N possible confusion matrices, since evaluating each successive τ involves the
move of only one instance in the confusion matrix.

For the challenge, we perform several trials of feature construction in order to evaluate the
computational and statistical scalability of the method, and to leverage the naive Bayes assumption:

• 10k F(2D): 10 000 features constructed for each data set, each one is the sum of two randomly
selected initial features,

• 100k F(2D): 100 000 features constructed (sums of two features),

• 10k F(3D): 10 000 features constructed (sums of three features).

The performance prediction guess is computed using a stratified tenfold cross-validation on the
train data set.

8.3 Results

The challenge started Friday September 30, 2005, and ended Monday March 1, 2006. About 145
entrants participated to the challenge and submitted more than 4000 “development entries”. A total
of 28 participants competed for the final ranking by providing valid challenge entries (results on
train, validation, and test sets for all five tasks of the challenge). Each participant was allowed to
submit at most 5 entries.

In the challenge, we rank 7th out of 28, according to the average rank computed by the orga-
nizers. On 2 of the 5 five data sets (ada and sylva), our best entry ranks 1st , as shown in Table 5.
The AUC criterion, which evaluates the ranking of the class posterior probabilities, indicates high
performance for our method, which ranks 3rd on this criterion.

The detailed results of our entries are presented in Figure 11, together with all the final entries
of the 28 finalists. The analysis of Guyon et al. (2006c) reveals that the top ranking entries exploit
a variety of methods: ensembles of decision trees, support vector machines (SVM) kernel methods,
Bayesian neural networks, ensembles of linear methods. On three out of the five data sets (gina,
hiva and nova), the data set winner exploits a SVM kernel method. This type of the method is the
most frequently used by the challenge participants, but their performance shows a lot of variance, so
they need human expertise to adjust their parameters. On the contrary, ensembles of decision trees,
like the method of the challenge winner, perform consistently well on all the data sets. Overall, the
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Data Set Our best entry The challenge best entry

Test BER Guess Test Test BER Guess Test
BER Guess Error Score BER Guess Error Score

Ada 0.1723 0.1650 0.0073 0.1793 0.1723 0.1650 0.0073 0.1793
Gina 0.0733 0.0770 0.0037 0.0767 0.0288 0.0305 0.0017 0.0302
Hiva 0.3080 0.3170 0.0090 0.3146 0.2757 0.2692 0.0065 0.2797
Nova 0.0776 0.0860 0.0084 0.0858 0.0445 0.0436 0.0009 0.0448
Sylva 0.0061 0.0060 0.0001 0.0062 0.0061 0.0060 0.0001 0.0062
Overall 0.1307 0.1306 0.0096 0.1399 0.1090 0.1040 0.0079 0.1165

Table 5: Results of our best entry on the performance prediction challenge data sets.

top five ranked methods get an average test BER of 11%. Our method gets an average test BER of
13% and is ranked only 11th on the BER criterion, even though it obtains very good results on the
ada and sylva data sets.

The main limitation of our SNB(CMA) method comes from the naive Bayes assumption. Our
method fails to correctly approximate the true class conditional distribution when the representation
space of the data set does not contain any competitive subset of variables compliant with the naive
Bayes assumption. For example, the gina data set consists of a set of image pixels, where the clas-
sification problem is to predict the parity of a number. On the initial representation of the gina data
set, our test BER is only 13%, far from the best result which is about 3%. However, when the con-
structed features allow to “partially” circumvent the naive Bayes assumption, the method succeeds
in significantly improving its performance, from 13% down to 7%. According to the challenge orga-
nizers, the hiva and nova data sets are also highly non-linear, which explains our poor BER results.
For example, the nova data set is a text classification problem with approximately 17000 variables
in a bag-of-words representation. In the case of this sparse data set, adding randomly constructed
features is useless and results mainly in duplicating the variables. This explains why all our nova
entries obtained the same BER results of 8%, far from the best result which is about 4%.

It is noteworthy that our method is very robust and ranks 4th on average on the guess error
criterion. Although we use all the train data to select our model without reserving validation data,
our method is not prone to overfitting. In our feature construction schemes, we expand the size of the
initial representation space of the data sets by a one hundred factor, which turns variable selection
into a challenging problem. However, adding many variables never decreases the performance
of our method. This means that our method correctly account for many useless and redundant
variables, and is able to benefit from the potentially informative constructed variables, like in the
gina data set for example.

Our method is evaluated with data sets having almost one billion values (up to 100 000 con-
structed features). Figure 12 reports the training time for all our submissions in the challenge. Our
method is highly scalable and resistant to noisy or redundant features: it is able to quickly process
about 100 000 constructed features without decreasing the predictive performance.
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Ada

0 %

1 %

2 %

3 %

4 %

5 %

1 5 % 2 0 % 2 5 %

Te s t

BER

Gu e s s

e r r o r
Gina

0 %

1 %

2 %

3 %

0 % 5 % 1 0 % 1 5 %

Tes t

B E R

Gu es s

er r o r
Hiva

0 %

5 %

1 0 %

1 5 %

2 5 % 3 0 % 3 5 % 4 0 %

Test

B E R

G uess

error

Nova

0 %

5 %

1 0 %

4 % 1 0 %

Test

B E R

G uess

error

Sylva

0 %

1 %

2 %

0 % 1 % 2 % 3 % 4 % 5 %

Test

B E R

G uess

error

All challenge entries

SNB(CMA)

SNB(CMA) + 10k F(2D) 

SNB(CMA) + 100k F(2D) 

SNB(CMA) + 10k F(3D) 

Figure 11: Detailed results of all of our entries on the performance prediction challenge data sets.
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Figure 12: Training times for the SNB(CMA) classifier for all our entries in the performance pre-
diction challenge.

9. Conclusion

The naive Bayes classifier is a popular method that is often highly effective on real data sets and is
competitive with or even sometimes outperforms much more sophisticated classifiers. This paper
confirms the potential benefit of variable selection to obtain still better performance.

We have proposed a MAP approach to select the best subset of variables compliant with the
naive Bayes assumption and introduced an efficient search algorithm which time complexity is
O(KN log(KN)), where K is the number of variables and N the number of instances. We have also
showed empirically that Bayesian model averaging is not much useful, since it does not perform
significantly better that the MAP model.

1682



COMPRESSION-BASED AVERAGING OF SELECTIVE NAIVE BAYES CLASSIFIERS

On the basis of experimental and theoretical evidence that indicates that the posterior distribu-
tion of the models is exponentially peaked, we have shown that choosing a logarithmic smooth-
ing of the posterior distribution makes sense. We have empirically demonstrated that the result-
ing compression-based model averaging scheme clearly outperforms the Bayesian model averaging
scheme. This is encouraging and suggests that further research could be done to design a still more
effective averaging scheme with more grounded foundations.

Our method consistently improves the performance of the naive Bayes classifier, but is outper-
formed by more sophisticated methods when the naive Bayes assumption is too harmful. In future
work, we plan to exploit multivariate preprocessing methods in order to circumvent the naive Bayes
assumption. On the basis of a set of univariate and multivariate conditional density estimators, our
goal is to build a classifier that better approximates the true conditional density. In this setting, we
think that compression-based model averaging might still be superior to Bayesian model averaging
to account for the whole posterior distribution of the models.
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