
Prediction of Methane Outbreak in Coal Mines
from Historical Sensor Data

under Distribution Drift

Marc Boullé

Orange Labs,
2 avenue Pierre Marzin,
22300 Lannion, France

marc.boulle@orange.com

http://www.marc-boulle.fr

Abstract. We describe our submission to the IJCRS’15 Data Mining
Competition, where the objective is to predict methane outbreaks from
multiple sensor readings. Our solution exploits a selective naive Bayes
classifier, with optimal preprocessing, variable selection and model av-
eraging, together with an automatic variable construction method that
builds many variables from time series records. One challenging part of
the challenge is that the input variables are not independent and iden-
tically distributed (i.i.d.) between the train and test datasets, since the
train data and test data rely on different time periods. We suggest a
methodology to alleviate this problem, that enabled to get a final score
of 0.9439 (team marcb), second among the 50 challenge competitors .

Keywords: Multi-relational data mining, supervised classification, fea-
ture selection, drift detection

1 Introduction

The IJCRS’15 Data Mining Competition1 is related to a problem of prediction
of methane outbreaks in a coal mine. The coal mine is equipped with 28 sensors
of different types (barometer, anemometer, temperature meter, humidity meter,
methane meter...). Sensor readings are available as time series for time periods
of 10 minutes long with measurements taken every second. The train data con-
sists of 51,700 samples (time periods of 10 minutes long), whereas the test data
contains 5,076 samples with time periods that do not overlap with those in the
train data. The objective is to predict whether a warning threshold has been
reached in a delay between three and six minutes after the end of the time pe-
riod, for three methane meters. The evaluation criterion is the mean AUC of the
three target classes. In this paper, we present our submission to the challenge.
It exploits a Selective Naive Bayes classifier together with an automatic variable
construction method (Section 2). We motivate the choice of this classification

1 https://knowledgepit.fedcsis.org/contest/view.php?id=109



framework and describe its application to the challenge in Section 3. A good
classifier trained on the train data obtained a poor leaderboard score. This is
not caused by over-fitting, but by a severe distribution drift between the train
and test data. We suggest in Section 4 a methodology to alleviate this problem.
Finally, Section 5 summarizes the paper.

2 Supervised Classification Framework

We summarize the Selective Naive Bayes (SNB) classifier introduced in [4]. It
extends the Naive Bayes classifier [16] using an optimal estimation of the class
conditional probabilities, a Bayesian variable selection and a Compression-based
Model Averaging. We also describe the automatic variable construction frame-
work presented in [5], used to get a tabular representation from the times series.

2.1 Optimal Discretization

The Naive Bayes (NB) classifier has proved to be very effective in many real
data applications [16, 10]. It is based on the assumption that the variables are
independent within each class, and solely relies on the estimation of univari-
ate conditional probabilities. The evaluation of these probabilities for numerical
variables has already been discussed in the literature [8, 18]. Experiments demon-
strate that even a simple equal width discretization brings superior performance
compared to the assumption using a Gaussian distribution per class. Using a dis-
cretization method, each numerical variable is recoded as a categorical variable,
with a distinct value per interval. Class conditional probabilities are assumed
to be piecewise constant per interval, and obtained by counting the number of
instances per class in each interval. These class conditional probabilities are used
as inputs for the naive Bayes classifier.

In the MODL approach [3], the discretization is turned into a model selection
problem and solved in a Bayesian way. First, a space of discretization models
is defined. The parameters of a specific discretization model M are the num-
ber of intervals, the bounds of the intervals and the class frequencies in each
interval. Then, a prior distribution is proposed on this model space. This prior
exploits the hierarchy of the parameters: the number of intervals is first chosen,
then the bounds of the intervals and finally the class frequencies. The choice
is uniform at each stage of the hierarchy. Finally, the multinomial distributions
of the class values in each interval are assumed to be independent from each
other. A Bayesian approach is applied to select the best discretization model,
which is found by maximizing the maximum a posteriori (MAP) model. Owing
to the definition of the model space and its prior distribution, the Bayes formula
is applicable to derive an exact analytical criterion to evaluate the posterior
probability of a discretization model. The optimized criterion is p(M)p(D|M),
where p(M) is the prior probability of a preprocessing model and p(D|M) the
conditional likelihood of the data given the model.

Efficient search heuristics allow to find the most probable discretization given
the data sample. Extensive comparative experiments report high performance.



Univariate informativeness evaluation A 0-1 normalized version of the optimized
criterion provides a univariate informativeness evaluation of each input variable.
Taking the negative log of the MAP criterion, c(M) = −(log p(M)+log p(D|M)),
the approach receives a Minimim Description Length (MDL) [21] interpretation,
where the objective is to minimize the coding length of the model plus that of
the data given the model. The null model M∅ is the preprocessing model with
one single interval, which represents the case with no correlation between the
input and output variables. We then introduce the I(V) criterion in Equation 1
to evaluate the informativeness of a variable V .

I(V ) = 1− c(M)

c(M∅)
. (1)

The value of I(V ) grows with the informativeness of an input variable. It is a
between 0 and 1, 0 for irrelevant variables uncorrelated with the target variable
and 1 for variables that perfectly separate the target values.

2.2 Bayesian Approach for Variable Selection

The naive independence assumption can harm the performance when violated.
In order to better deal with highly correlated variables, the Selective Naive Bayes
approach [17] exploits a wrapper approach [13] to select the subset of variables
which optimizes the classification accuracy. Although the Selective Naive Bayes
approach performs quite well on datasets with a reasonable number of variables,
it does not scale on very large datasets with hundreds of thousands of instances
and thousands of variables, such as in marketing applications or text mining. The
problem comes both from the search algorithm, whose complexity is quadratic in
the number of variables, and from the selection process which is prone to overfit-
ting. In [4], the overfitting problem is tackled by relying on a Bayesian approach,
where the best model is found by maximizing the probability of the model given
the data. The parameters of a variable selection model are the number of se-
lected variables and the subset of variables. A hierarchic prior is considered, by
first choosing the number of selected variables and second choosing the subset
of selected variables. The conditional likelihood of the models exploits the Naive
Bayes assumption, which directly provides the conditional probability of each
class. This allows an exact calculation of the posterior probability of the models.
Efficient search heuristic with super-linear computation time are proposed, on
the basis of greedy forward addition and backward elimination of variables.

2.3 Compression-Based Model Averaging

Model averaging has been successfully exploited in bagging [6] using multiple
classifiers trained from re-sampled datasets. In this approach, the averaged clas-
sifier uses a voting rule to classify new instances. Unlike this approach, where
each classifier has the same weight, the Bayesian Model Averaging (BMA) ap-
proach [11] weights the classifiers according to their posterior probability. In the



case of the Selective Naive Bayes classifier, an inspection of the optimized mod-
els reveals that their posterior distribution is so sharply peaked that averaging
them according to the BMA approach almost reduces to the MAP model. In this
situation, averaging is useless. In order to find a trade-off between equal weights
as in bagging and extremely unbalanced weights as in the BMA approach, a
logarithmic smoothing of the posterior distribution, called Compression-based
Model Averaging (CMA), is introduced in [4]. The weighting scheme on the mod-
els reduces to a weighting scheme on the variables, and finally results in a single
Naive Bayes classifier with weights per variable. Extensive experiments demon-
strate that the resulting Compression-based Model Averaging scheme clearly
outperforms the Bayesian Model Averaging scheme. In the rest of the paper, the
classifier resulting from model averaging is called Selective Naive Bayes (SNB).

2.4 Automatic Variable Construction for Multi-Table

In a data mining project, the data preparation phase aims at constructing a data
table for the modeling phase [20, 7]. The data preparation is both time consum-
ing and critical for the quality of the mining results. It mainly consists in the
search of an effective data representation, based on variable construction and
selection. Variable construction [19] has been less studied than variable selection
[9] in the literature. However, learning from relational data has recently received
an increasing attention. The term Multi-Relational Data Mining (MRDM) was
initially introduced in [12] to address novel knowledge discovery techniques from
multiple relational tables. The common point between these techniques is that
they need to transform the relational representation. Methods named by propo-
sitionalisation [14, 15, 1] try to flatten the relational data by constructing new
variables that aggregate the information contained in non target tables in order
to obtain a classical tabular format.

In [5], an automatic variable construction method is proposed for supervised
learning, in the multi-relational setting using a propositionalisation-based ap-
proach. Domain knowledge is specified by describing the multi-table structure
of the data and choosing construction rules. The formal description of the data
structure relies on a root table that contains the main statistical units and sec-
ondary tables in 0 to 1 or 0 to n relationship with the root table. For example,
Figure 1 describes the structure of the data for the challenge. The construction
rules available for automatic construction of variables are detailed below:

– Selection(Table, Num)→Table: selection of records from a secondary table
according to a conjunction of selection terms (membership in a numerical
interval of a variable Num in the secondary table),

– Count(Table)→Num: count of records in a table,
– Mean(Table, Num)→Num: mean value of variable Num,
– Median(Table, Num)→Num: median value,
– Min(Table, Num)→Num: min value,
– Max(Table, Num)→Num: max value,
– StdDev(Table, Num)→Num: standard deviation,



– Sum(Table, Num)→Num: sum of values.

The space of variables that can be constructed is virtually infinite, which
raises both combinatorial and over-fitting problems. When the number of con-
structed variables increases, the chance for a variable to be wrongly considered as
informative becomes critical. A prior distribution over all the constructed vari-
ables is introduced. This provides a Bayesian regularization of the constructed
variables, which allows to penalize the most complex variables. An effective al-
gorithm is introduced as well to draw samples of constructed variables from this
prior distribution. Experiments show that the approach is robust and efficient.

3 Applying the Framework for the Challenge

We motivate our choice of the classification framework2, then describe how we
apply it on the challenge dataset.

3.1 Choice of the Classification Framework

In all our challenge submissions, we exploit the framework described in Section 2
to train a selective naive Bayes classifier, with optimal discretization, variable
selection and model averaging. The classifier is trained on a flat data represen-
tation, obtained using the automatic variable construction method (Section 2.4)
that builds many variables from the time series records data. Once the data
schema is specified, the only parameter is the number of variables to construct.
The method is fully automatic, scalable and highly robust, with test performance
mainly equivalent to train performance.

The SNB classifier is resilient to noise and to redundancies between the input
variables, but it is blind to non-trivial interactions between the variables. This
can be leveraged by feature engineering, relying on domain expertise rather than
on statistical expertise. More accurate classification methods are available, such
as random forests, gradient boosting methods, support vector machines or neural
networks. However, these methods require intensive feature engineering to get a
flat input data table representation, are prone to over-fitting, are mainly black-
box, not suitable for an easy interpretation of the models and finally require fine
parameter tuning, both time consuming and expertise intensive. In an industrial
context like the Orange telecommunication operator, the major issue is to quickly
provide an accurate, robust and interpretable solution to many data mining
problems, rather than a very accurate solution to few problems. In this context,
the generic framework described in Section 2 and used in this challenge offers a
good solution.

3.2 Application to the Challenge Dataset

For the IJCRS’15 Data Mining Competition, coal mines are described using a
root table that contains the three class variables and a secondary table for the

2 Available as a shareware at http://www.khiops.com



sensor readings. An identifier variable Id is added in each record of both tables,
to enable the join between the root and secondary tables.

CoalMine
#Id: Cat
 Class1: Cat
 Class2: Cat
 Class3: Cat
 Sensor: Table(SensorReading)

SensorReading
#Id: Cat
 Second: Num
 AN311: Num
 AN422: Num
 ...
 V: Num

Fig. 1. Multi-table representation for the data of the IJCRS’15 challenge

The multi-table representation of the challenge data is presented in Figure 1.
The root table (CoalMine) contains 51,700 train instances, with 4 variables:
Id and the three class variables. The secondary table (SensorReading) contains
51,700 × 600 records, with 30 variables: Id as a join key, the time variable Second
and the 28 time series variables for the sensor readings (AN311, AN422, . . . ,
V ). Using the data structure presented in Figure 1 and the construction rules
introduced in Section 2.4, one can for example construct the following variables
(“name” = formula: comment) to enrich the description of a CoalMine:

– “Mean(Sensor.TP1721)” =

Mean(Sensor, TP1721 ):

mean of the temperature sensor TP1721 readings,

– “Count(Sensors) where AN422 ∈]1.75, 1.85]” =

Count(Selection(Sensor, AN422 ∈]1.75, 1.85])):

number of sensor readings where the anemometer AN422 value is between 1.75
and 1.85,

– “Max(Sensors.MM263) where Second > 300” =

Max (Selection(Sensor, Second > 300), MM263 ):

max of the methane meter sensor MM263 readings in the last five minutes.

The number of variables to construct is the only user parameter. An input
flat data table representation is then obtained from the set of all automatically
constructed variables. All these variables are then preprocesses using the opti-
mal discretization method (cf. Section2.1) to assess their informativeness and
evaluate their class conditional probabilities, before training the SNB classifier.

4 Challenge Submissions

In this section, we describe our submissions to the challenge and suggest a
methodology to alleviate the problem of the drift between the train and test
distributions of the challenge dataset.



4.1 Preliminary Trials

To get familiar with the challenge evaluation protocol, we made preliminary
trials, using all the sensor variables and constructing 100, 1000 and 10000 vari-
ables to summarize the sensors times series. We collect in Table 1 the train and
test AUC (averaged over the three target classes) using a 70%-30% split of the
train dataset as well as the leaderboard score obtained using the corresponding
submissions.

Table 1. Performance per number of constructed variables

Variables Train AUC Test AUC Leaderboard score
100 0.9760 0.9684 0.8067
1000 0.9835 0.9766 0.7419
10000 0.9885 0.9802 0.7876

We obtained surprisingly robust and high train AUC. With only 100 vari-
ables constructed from the 28 sensors, the train AUC is about 0.97, with less than
1% difference between the train and test splits. However, these promising per-
formance dropped down on the challenge leaderboard, with a non monotonous
behavior w.r.t. the number of constructed variables. This large drop of perfor-
mance was not cause by over-fitting, but by a drift between the train and test
(based on two distinct time periods).

4.2 A Methodology to Reduce the Drift Problem

Let us consider two tasks: classification of the methane outbreaks and detection
of the drift. The drift detection task can be turned into a classification task
as in [2], by merging the train and test datasets and using the dataset label
(’train’ or ’test’) as the target variable. Using the initial input representation (cf.
Section 4.1) with 10000 constructed variables, the drift detection task achieved
an almost perfect performance with an AUC of 0.9999. This means that the train
and test distributions can be well separated using the sensors data. As the data
is not i.i.d, obtaining good classification performance on the train data does not
guarantee good performance on the test data. Intuitively, if we are able to select
an input representation with good classification performance on the train data
but poor drift detection, we expect that our classifier will be less sensitive to
drift and its performance drop on the test dataset will be reduced.

The objective is then to explore varying input representations and select
the one with the best classification performance together with the poorest drift
detection. To do so, we represent in Figure 2 the informativeness (cf. Formula 1)
of the 10,000 constructed variables for the classification and drift detection tasks.
The results show that there are variables with large drift informativeness and
small classification informativeness (top-left of the figure), or on the contrary
variables with small drift informativeness and large classification informativeness



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

D
ri

ft
 d

e
te

c
ti

o
n

 i
n

fo
rm

a
ti

v
e

n
e

s
s

Classification informativeness

Fig. 2. Informativeness of 10,000 variables

(bottom-right). The interesting variables are those on the right and close to the
X axis, with small drift informativeness.

To gain further insights, we collect the mean informativeness (cf. formula 1)
per input sensor (gathering all constructed variables involving each sensor) and
per target class.

All sensors Methane sensors Target1 sensor Target2 sensor Target3 sensor

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4

D
ri

ft
 d

e
te

ct
io

n
 i

n
fo

rm
a

ti
v
e

n
e

ss

Classification informativeness for Target1

All sensors

Methane sensors

Target1 sensor

Target2 sensor

Target3 sensor

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4

D
ri

ft
 d

e
te

ct
io

n
 i

n
fo

rm
a

ti
v
e

n
e

ss

Classification informativeness for Target2

All sensors

Methane sensors

Target1 sensor

Target2 sensor

Target3 sensor

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4

D
ri

ft
 d

e
te

ct
io

n
 i

n
fo

rm
a

ti
v
e

n
e

ss

Classification informativeness for Target3

All sensors

Methane sensors

Target1 sensor

Target2 sensor

Target3 sensor

Fig. 3. Mean informativeness per sensor for each target

The results, shown in Figure 3, suggest to consider the following subsets of
variables, by decreasing number of variables with high drift informativeness.

1. all the 28 input sensors,
2. only the 11 sensors related to methane,
3. only the 3 sensors related to the three target classes,
4. only one sensor per target class.

We then build classifiers using only 100 constructed variables (which seems
enough from Section 4.1), and obtain the classification and drift detection train
AUC as well as the leaderboard scores, reported in Table 2.

Table 2 shows that the drift detection AUC rapidly decreases with smaller
number of sensors while the train classification AUC remains almost the same.
Meanwhile, the leaderboard score increases, from 0.8067 using all the sensors to
0.9304 when only the target sensor is used for the prediction.



Table 2. Performance per number of input sensors

Input sensors Drift AUC Train AUC Leaderboard AUC
28 0.9998 0.9684 0.8067
11 0.9996 0.9723 0.8978
3 0.7625 0.9742 0.9225
1 0.6210 0.9675 0.9304

4.3 Simplification of the Solution

As only 100 variables and one single sensor per target variable where enough
to get a good leaderboard score, we made several trials and errors to simplify
the solution, improve its interpretability and performance. We finally kept four
time periods (full 10 minutes period, last 5 minutes, last 2 minutes 30 seconds,
and last minute) and two construction rules (Mean and Max ), representing the
input data by only 8 variables per target class.

4.4 Further Improvement

According to the challenge organizers, the time periods in the training data are
overlapping and are given in a chronological order. This raises an additional is-
sue, where instances in short time periods are non i.i.d. and over-sampled: this
might cause additional over-fitting. Inspecting the data, we estimated that the
over-sampling factor was about 10, and decided to train again the solution de-
scribed in Section 4.3, using 10% of the train data. To improve the robustness,
we divided the train data into 10 folds, trained the solution on each fold and av-
eraged the predictions. Using this method, our final chosen submission obtained
a leaderboard score of 0.9461, very close to our final score of 0.9439.

Interestingly, many time series problems suffer from the two same kind of
problems: different time periods that cause drift between the distributions in
case of non stationary data, and over-sampled data when the sampling rate is
large compared to the typical size of the time windows that govern the behavior
of the time series. For example, for climate time series (temperature, humidity,
pressure...), different data collection periods (e.g. winter and summer) involve
distinct distributions of the data. And for a given period, a dataset with one
record every second is clearly over-sampled, compared to the typical change rate
in climate times series. This results in dramatic over-fitting, since predicting
future value to be the same as the last past value is likely to be very accurate
for a prediction windows of one second, but valueless for longer windows.

4.5 Insights on Relevant Variables

The IJCRS’2015 challenge comes with abundant data: 28 sensors with records
every seconds during 10 minutes, which amounts to 28*600=16,800 values per
train instance. Remarkably, our final solution exploits only 8 variables per class:
mean and max of the target methane meter readings during the last 10mins,
5mins, 2mins 30secs and last min.



Max of methane meter MM264 in last 5mins, I(V ) = 0.4561

Max of methane meter MM264 in last 2mins 30secs, I(V ) = 0.4367

Max of methane meter MM264 in last 10min, I(V ) = 0.4252

Max of methane meter MM264 in last min, I(V ) = 0.4115

Mean of methane meter MM664 in last min, I(V ) = 0.4105

Mean of methane meter MM664 in last 2mins 30secs, I(V ) = 0.4074

Mean of methane meter MM664 in last 5mins, I(V ) = 0.4038

Mean of methane meter MM664 in last 10mins, I(V ) = 0.3772

Fig. 4. Optimal discretizations of the input variables for the second class



To get further insights on these variables, we inspect their discretizations,
obtained from the first fold in our ten fold process described in Section 4.4. The
overall behavior is of the same kind for the three classes, with slight differences.
The variables are all discretized into 3 intervals for the first class, into 3 to 5
intervals for the second class, and into 3 or 4 intervals for the third class. Figure 4
displays the optimal discretizations for the 8 variables related to the second
class (methane meter MM264, with two class values: normal and warning). For
example, the first histogram is related to the variable “Max of methane meter
MM264 in last 5mins”, which have the highest informativeness (I(V ) = 0.4561)
among the 8 variables. The three intervals cover respectively 85%, 12% and 3%
of the instances. The overall mean coverage of the minority class value warning
is represented by the horizontal line (2.6%). The coverage of warning per interval
is represented by the diamonds: 0.16% in the first interval, 6% in the second one
and 54% in the last one.

The optimal discretizations consist of 3 to 5 intervals, but they all represent
the same kind of information. Most of the instances belong to the first interval,
with very small value of the input variable and very small proportion of the
warning target value. The second interval comes beyond a first threshold (typ-
ically between 0.5 and 0.75) and the last one is generally beyond a threshold
of about 0.9. The proportion of warning quickly grows with the value of input
variable, with between 40% and 80% of warning in the last interval.

Overall, the probability of a methane outbreak in the next few minutes
quickly increases with the value of the related methane meter in the last minutes.
This behavior, represented for the second class, is the same for the other classes
(not displayed in this paper). The methodology presented in this paper allowed
to retrieve this interpretable behavior and to quantify it precisely.

5 Conclusion

Whereas most data mining methods rely on i.i.d. data, this is not the case
in IJCRS’15 Data Mining Competition, where the train and test data where
collected from two different time periods. In this case, a robust classifier was
able to achieve 0.98 AUC in a 70%-30% split of the train data, with a severe
drop of the test performance down to 0.80. This is not an overfitting problem, but
a problem of distribution drift between the train and test data. In this paper,
we have suggested a methodology to alleviate this problem by evaluating the
informativeness of each variable for the classification and drift detection tasks.
We follow the intuition that the classifiers that exploit input variables with high
class informativeness and low drift informativeness are more likely to be resilient
to drift. We explored several axis for choosing representations that are robust to
drift: selection of sensors, selection of construction rules that summarize sensor
readings and number of constructed variables. In the end, we kept only one
sensor per target class, summarized by 8 input variables. We were then able to
build a classifier with 0.9439 final score, which is a large improvement compared
to our initial solution.



References

1. Blockeel, H., De Raedt, L., Ramon, J.: Top-Down Induction of Clustering Trees.
In: Proceedings of the Fifteenth International Conference on Machine Learning.
pp. 55–63. Morgan Kaufmann (1998)

2. Bondu, A., Boullé, M.: A supervised approach for change detection in data streams.
In: Proceedings of International Joint Conference on Neural Networks. pp. 519–526
(2011)

3. Boullé, M.: MODL: a Bayes optimal discretization method for continuous at-
tributes. Machine Learning 65(1), 131–165 (2006)

4. Boullé, M.: Compression-based averaging of selective naive Bayes classifiers. Jour-
nal of Machine Learning Research 8, 1659–1685 (2007)

5. Boullé, M.: Towards automatic feature construction for supervised classification.
In: ECML/PKDD 2014. pp. 181–196. Springer-Verlag (2014)

6. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
7. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C.,

Wirth, R.: CRISP-DM 1.0 : step-by-step data mining guide. Tech. rep., The
CRISP-DM consortium (2000)

8. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization
of continuous features. In: Proceedings of the 12th International Conference on
Machine Learning. pp. 194–202. Morgan Kaufmann, San Francisco, CA (1995)

9. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.): Feature Extraction: Founda-
tions And Applications. Springer (2006)

10. Hand, D., Yu, K.: Idiot’s bayes ? not so stupid after all? International Statistical
Review 69(3), 385–399 (2001)

11. Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: A
tutorial. Statistical Science 14(4), 382–417 (1999)

12. Knobbe, A.J., Blockeel, H., Siebes, A., Van Der Wallen, D.: Multi-Relational Data
Mining. In: Proceedings of Benelearn ’99 (1999)

13. Kohavi, R., John, G.: Wrappers for feature selection. Artificial Intelligence 97(1-2),
273–324 (1997)

14. Kramer, S., Flach, P.A., Lavrač, N.: Propositionalization approaches to relational
data mining. In: Džeroski, S., Lavrač, N. (eds.) Relational data mining, chap. 11,
pp. 262–286. Springer-Verlag (2001)

15. Krogel, M.A., Wrobel, S.: Transformation-based learning using multirelational ag-
gregation. In: ILP. pp. 142–155. Springer (2001)

16. Langley, P., Iba, W., Thompson, K.: An analysis of Bayesian classifiers. In: 10th
National Conference on Artificial Intelligence. pp. 223–228. AAAI Press (1992)

17. Langley, P., Sage, S.: Induction of selective Bayesian classifiers. In: Proceedings of
the 10th Conference on Uncertainty in Artificial Intelligence. pp. 399–406. Morgan
Kaufmann (1994)

18. Liu, H., Hussain, F., Tan, C., Dash, M.: Discretization: An enabling technique.
Data Mining and Knowledge Discovery 4(6), 393–423 (2002)

19. Liu, H., Motoda, H.: Feature Extraction, Construction and Selection: A Data Min-
ing Perspective. Kluwer Academic Publishers (1998)

20. Pyle, D.: Data preparation for data mining. Morgan Kaufmann Publishers, Inc.
San Francisco, USA (1999)

21. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)


