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Abstract— This paper introduces a new method1 to auto-
matically, rapidly and reliably evaluate the class conditional
information of any subset of variables in supervised learning.
It is based on a partitioning of each input variable, in intervals
in the numerical case and in groups of values in the categorical
case. The cross-product of the univariate partitions forms a
multivariate partition of the input representation space into
a set of cells. This multivariate partition, called data grid,
allows to evaluate the correlation between the input variables
and the output variable. The best data grid is searched owing
to a Bayesian model selection approach and to combinatorial
algorithms.

Three classification techniques exploiting data grids differ-
ently are presented and evaluated in the Agnostic Learning
vs. Prior Knowledge Challenge. These preliminary experiments
demonstrate the interest of using data grid in machine learning
tasks.

I. INTRODUCTION

Univariate partitioning methods have been studied exten-
sively in the past, mainly in the context of decision trees
[1], [2], [3], [4]. Supervised discretization methods split the
numerical domain into a set of intervals and supervised value
grouping methods partition the input values into groups. Fine
grained partitions allow an accurate discrimination of the
output values, whereas coarse grain partitions tend to be more
reliable. When the size of the partition is a free parameter, the
trade-off between information and reliability is an issue. In
the MODL approach, supervised discretization [5] (or value
grouping [6]) is considered as a non-parametric model of
dependence between the input and output variables. The best
partition is found using a Bayesian model selection approach.

In this paper, we describe an extension of the MODL
approach to the bivariate case for pairs of numerical input
variables [7], and introduce its generalization to any subset
of variables of any types, numerical, categorical or mixed
types. Each input variable is partitioned, in intervals in the
numerical case and in groups of values in the categorical
case. This joint partitioning defines a distribution of the
instances in a multi-dimensional input data grid. The cor-
relation between the cells of this data grid and the output
values allows to quantify the joint predictive information. The
tradeoff between information and reliability is established
using a Bayesian model selection approach.

Sophisticated algorithms are necessary to explore the
search space of data grid. They have to strike a balance
between the quality of the optimization and the computa-
tion time. Several optimization heuristics, including greedy
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search, meta-heuristic and post-optimization are introduced
to efficiently search the best possible data grid.

The paper is organized as follows. Section II summarizes
the MODL method in the univariate discretization case.
Section III describes the extension of the approach to the
bivariate discretization case. Section IV presents an overview
of the optimization algorithms in the bivariate case. Section
V introduces the extension of data grids to the multivariate
case, for supervised and unsupervised learning. Section VI
describes three ways of building classifiers from data grids
and section VII evaluates these classifiers on the Agnostic
Learning vs. Prior Knowledge Challenge datasets. Finally,
section VIII gives a summary and discusses future work.

II. THE MODL DISCRETIZATION METHOD

This section summarizes the MODL approach for super-
vised discretization, fully detailed in [5].

The objective of supervised discretization is to induce a
list of intervals which splits the numerical domain of a con-
tinuous input variable, while keeping the information relative
to the output variable. A compromise must be found between
information quality (homogeneous intervals in regard to the
output variable) and statistical quality (sufficient sample size
in every interval to ensure generalization).

In the MODL approach, the discretization is turned into
a model selection problem. First, a space of discretization
models is defined. The parameters of a specific discretization
are the number of intervals, the bounds of the intervals
and the frequencies of the output values in each interval.
Then, a prior distribution is proposed on this model space.
This prior exploits the hierarchy of the parameters: the
number of intervals is first chosen, then the bounds of the
intervals and finally the frequencies of the output values.
The choice is uniform at each stage of the hierarchy. Finally,
we assume that the multinomial distributions of the output
values in each interval are independent from each other.
A Bayesian approach is applied to select the best discre-
tization model, which is found by maximizing the probability
p(Model|Data) of the model given the data. Using the
Bayes rule and since the probability p(Data) is constant
under varying the model, this is equivalent to maximizing
p(Model)p(Data|Model).

Let N be the number of instances, J the number of output
values, I the number of intervals for the input domain. Ni.

denotes the number of instances in the interval i, and Nij the
number of instances of output value j in the interval i. In the
context of supervised classification, the number of instances
N and the number of classes J are supposed to be known.



A discretization model M is then defined by the parameter
set

{
I, {Ni.}1≤i≤I , {Nij}1≤i≤I,1≤j≤J

}
.

Owing to the definition of the model space and its prior
distribution, the Bayes formula is applicable to exactly calcu-
late the prior probabilities of the models and the probability
of the data given a model. Taking the negative log of the
probabilities, this provides the evaluation criterion given in
formula 1.

c(M) = log N + log
(

N + I − 1
I − 1

)
+

I∑
i=1

log
(

Ni. + J − 1
J − 1

)
+

I∑
i=1

log
Ni.!

Ni1!Ni2! . . . NiJ !

(1)

The first term of the criterion stands for the choice of the
number of intervals and the second term for the choice of
the bounds of the intervals. The third term corresponds to the
choice of the output distribution in each interval and the last
term represents the conditional likelihood of the data given
the model. Therefore “complex” models with large numbers
of intervals are penalized.

Once the optimality of the evaluation criterion is estab-
lished, the problem is to design a search algorithm in order
to find a discretization model that minimizes the criterion.
In [5], a standard greedy bottom-up heuristic is used to
find a good discretization. In order to further improve the
quality of the solution, the MODL algorithm performs post-
optimizations based on hill-climbing search in the neighbor-
hood of a discretization. The neighbors of a discretization
are defined with combinations of interval splits and interval
merges. Overall, the time complexity of the algorithm is
O(JN log N).

The MODL discretization method for classification pro-
vides the most probable discretization given the data sam-
ple. Extensive comparative experiments report high quality
performance.

III. EXTENSION TO BIVARIATE DISCRETIZATION

In this section, we describe the extension of the MODL
approach to the supervised bivariate discretization of input
variables [7]. We first introduce the approach using an
illustrative example and then present the bivariate evaluation
criterion in the case of two numerical variables.

A. Interest of the joint partitioning of two input variables

Figure 1 draws the multiple scatter plot (per class value)
of the input variables V1 and V7 of the Wine dataset [8].
This diagram allows to visualize the conditional probability
of the output values given the pair of input variables. The
V1 variable taken alone cannot separate Class 1 from Class
3 for input values greater than 13. Similarly, the V7 variable
is a mixture of Class 1 and Class 2 for input values greater
than 2. Taken jointly, the two input variables allow a better
separation of the class values.

Extending the univariate case, we partition the dataset
on the cross-product of the input variables to quantify the
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Fig. 1. Multiple scatterplot (per class value) of the input variables V1 and
V7 of the Wine dataset. The optimal MODL supervised bivariate partition
of the input variables is drawn on the multiple scatterplot

relationship between the input and output variables. Each
input variable is partitioned into a set of parts (intervals in
the numerical case and groups of values in the categorical
case). The cross-product of the univariate input partitions
defines a data grid, which partitions the instances into a set
of data cells. Each data cell is defined by a pair of parts.
The connection between the input variables and the output
variable is evaluated owing to the distribution of the output
values in each cell of the data grid. It is noteworthy that the
considered partitions can be factorized on the input variables.

For instance in Figure 1, the V1 variable is discretized
into 2 intervals (one bound 12.78) and the V7 variable into
3 intervals (two bounds 1.235 and 2.18). The instances of
the dataset are distributed in the resulting bidimensional
data grid. In each cell of the grid, the distribution of the
output values can be estimated by counting. For example,
the cell defined by the intervals ]12.78,+∞[ on V1 and
]2.18,+∞[ on V7 contains 63 instances. These 63 instances
are distributed on 59 instances for Class 1 and 4 instances
for Class 3.

Coarse grain data grids tend to be reliable, whereas fine
grain data grids allow a better separation of the output values.
In our example, the MODL optimal data grid is drawn on
the multiple scatter plot on Figure 1.

B. Evaluation criterion for pairs of numerical variables

We extend the MODL approach to find the best tradeoff
between information and reliability. We introduce in Defini-
tion 1 a family of bivariate partitioning models and select the
best model owing to a Bayesian model selection approach.

Definition 1: A data grid model is a bivariate partitioning
model defined by a partition of each input variable in a set
of intervals and by a multinomial distribution of the output
values in each cell of the data grid resulting from the cross-
product of the univariate partitions.

Notation.
• Y : output variable,
• X1, X2: input variables,
• N : number of instances,
• J : number of output values,
• I1, I2: number of intervals for each input variable,



• Ni1..: number of instances in the interval i1 of X1,
• N.i2.: number of instances in the interval i2 of X2,
• Ni1i2.: number of instances in the input data cell (i1, i2),
• Ni1i2j : number of instances of output value j in the

input data cell (i1, i2).

A data grid model describes the distribution of the output
values given the input values. It is completely defined by the
numbers of intervals I1 and I2, the bounds of the intervals
{Ni1..} and {N.i2.} and the distribution of the output values
{Ni1i2j} in each cell (i1, i2) of the data grid . It is noteworthy
that the numbers of instances per cell {Ni1i2.} do not belong
to the parameters of the data grid models: they are derived
from the definition of the two univariate partitions and from
the dataset.

Any input information is used to define the family of the
model. The bounds of the univariate partition come from the
input values and the frequencies of the input data cells come
from the dataset. In that sense, the data grid models are data
dependent. What is described in the model is the connection
between the input variables and the output variable.
We now introduce in Definition 2 a prior distribution on the
parameters of the data grid models. This prior exploits the
hierarchy of the parameters and is uniform at each stage of
this hierarchy.

Definition 2: The hierarchical prior of the data grid
models is defined as follows:

• the numbers of input intervals are independent from
each other, and uniformly distributed between 1 and N ,

• for each input variable and for a given number of
intervals, every partition in intervals is equiprobable,

• for each cell of the data grid, every distribution of the
output values is equiprobable,

• the distributions of the output values in each cell are
independent from each other.

We apply the Bayesian model selection approach and
obtain the evaluation criterion of a data grid model M in
formula 2.

c(M) = log N + log
(

N + I1 − 1
I1 − 1

)
+ log N + log

(
N + I2 − 1

I2 − 1

)
+

I1∑
i1=1

I2∑
i2=1

log
(

Ni1i2. + J − 1
J − 1

)

+
I1∑

i1=1

I2∑
i2=1

log
Ni1i2.!

Ni1i21!Ni1i22! . . . Ni1i2J !

(2)

As in the case of univariate discretization (formula 1), the
two first terms correspond to the prior probability of the
parameters (number of intervals and choice of the bounds)
of the discretization of the input variable X1. Similarly, the
two following terms correspond to the prior probability of
the discretization of the input variable X2. The binomial
term in the first double sum represents the choice of the

multinomial distribution of the output values in each cell.
The multinomial term in the last double sum represents the
conditional likelihood of the output values given the data grid
model.

IV. BIVARIATE OPTIMIZATION ALGORITHMS

The space of data grid models is so large that straightfor-
ward algorithms almost surely fail to obtain good solutions
within a practicable computational time. Given that the
MODL criterion is optimal w.r.t the prior asumptions, the
design of sophisticated optimization algorithms is both nec-
essary and meaningful. In this section, we give an overview
of the data grid optimization algorithms in the case of
supervised bivariate discretization. They finely exploit the
sparseness of the data grids and the additivity of the MODL
criterion, and allow a deep search in the space of data grid
models with O(N) memory complexity and a O(N log N)
time complexity.

The optimization of a data grid is a combinatorial problem.
For each input variable X1 and X2, there are 2N possible
univariate discretizations, which represents

(
2N

)2
possible

bivariate discretizations. An exhaustive search through the
whole space of models is unrealistic. We exploit a greedy
bottom up merge heuristic (GBUM) to optimize the data
grids. The method starts with the maximum data grid MMax,
which corresponds to the finest possible univariate discretiza-
tions, with N single value intervals. It evaluates all the
merges between adjacent intervals, and performs the best
merge if the evaluation criterion decreases after the merge.
The process is reiterated until no further merge decreases the
criterion.

Each evaluation of a data grid requires O(N2) time, since
the initial data grid model MMax contains N2 cells. Each
step of the algorithm relies on O(N) evaluations of interval
merges, and there are at most O(N) steps, since the data
grid becomes equal to the null model M∅ once all the
possible merges have been performed. Overall, the time
complexity of the algorithm is O(N4) using a straightforward
implementation of the algorithm. However, the method can
be optimized in O(N log N) time. The optimized algorithm
mainly exploits the sparseness of the data and the additivity
of the evaluation criterion. Although a data grid may contain
O(N2) cells, at most N cells are non empty. Thus, each
evaluation of a data grid can be performed in O(N) owing
to a specific algorithmic data structure. The additivity of the
evaluation criterion means that the criterion can be decom-
posed on the hierarchy of the components of the data grid:
variables, parts and cells. Using this additivity property, all
the merges between adjacent parts can be evaluated in O(N)
time. Furthermore, when the best merge is performed, the
only impacted merges that need to be reevaluated for the next
optimization step are the merges that share instances with
the best merge. Since the data grid is sparse, the number of
reevaluations of data grids is small on average. Sophisticated
algorithmic data structures and algorithms are necessary to
exploit these optimization principles and guarantee a time



complexity of O(N log N).
The optimized version of the greedy heuristic is time

efficient, but it may fall into a local optimum. First, the
greedy heuristic may stop too soon and produce too many
intervals for each input variable. Second, the boundaries of
the intervals may be sub-optimal since the merge decisions of
the greedy heuristic are never rejected. The post-optimization
algorithms described in [5] in the case of univariate discre-
tization are applied alternatively to each input variable, for a
frozen partition of the other input variable.

While post-optimizations may help to refine a good so-
lution, the main heuristic may be unable to obtain such
an initial good solution. This problem is tackled using the
Variable Neighborhood Search (VNS) meta-heuristic [9],
which mainly benefits from multiple runs of the algorithms
with different random initial solutions.

V. DATA GRIDS FOR ANY SUBSET OF VARIABLES

In this section, we present an overview of the extension of
data grid models to any subset of variables, in the supervised
case then in the unsupervised case.

A. Supervised data grid models
The MODL approach has been studied in the case of

univariate supervised partitioning for numerical variables [5]
and categorical variables [6]. The extension to the multivari-
ate case applies the same principles as those described in
section III. Each input variable is partitioned, in intervals in
the numerical case and in groups of values in the categorical
case. Taking the cross-product of the univariate partitions,
we obtain a data grid of input cells, the content of which
allows to characterize the distribution of the output values.

The space of multivariate data grid models is very large
and prone to overfitting. A Bayesian model selection ap-
proach is employed to find the best data grid model given the
data. The parameters of the data grid models are precisely
defined, and a prior is proposed that exploits the hierarchy of
the parameters, is uniform at each stage of the hierarchy, and
assumes the independence of the output distribution within
each cell. We then obtain an analytic formula that evaluates
the posterior probability of each data grid model, and exploit
extensions of the algorithms summarized in section IV to
efficiently search the space of data grid models.

B. Unsupervised data grid models
Data grid models are generalized to unsupervised learning.

Each variable is partitioned into a set of intervals (or groups
of values), and the cross-product of the univariate partitions
forms a data grid of cells. The instances are distributed in
the cells of the grid according to a multinomial distribution.
Such models describe the joint distribution between the
variables. For example, in case of independent variables,
the distribution of the instances in the cells is homogeneous
(w.r.t. the variable ranks, not their values), where as it is
unbalanced in the case of correlated variables.

Applying the MODL approach, a prior is defined on the
model parameters, and the MAP Data Grid is optimized using
the same search algorithms as in the supervised case.

VI. BUILDING CLASSIFIERS FROM DATA GRID MODELS

In this section, we describe three ways of building clas-
sifiers from data grid models. This is preliminary work and
we expect that the evaluation of these approaches on the
Agnostic Learning vs. Prior Knowledge Challenge [10] will
guide future research.

A. Data grid

In this evaluation of data grid models, we consider one
single data grid, the MAP one. We build a classifier from a
data grid model by first retrieving the cell related to a test in-
stance, and predicting the output conditional probabilities of
the retrieved cell. For empty cells, the conditional probability
used for the prediction is that of the entire grid.

Data grid models can be considered as a feature selection
methods, since the input variables whose partition reduces to
a single part can be ignored. The purpose of this experiment
is to focus on understandable models and evaluate the
balance between the number of selected variables and the
predictive performance.

B. Data grid ensemble

In this evaluation, we focus on the predictive performance
rather than on understandability, by the mean of averaging
the prediction of a large number of classifiers. This principle
was successfully exploited in Bagging [11] using multiple
classifiers trained from re-sampled datasets. This was gener-
alized in Random Forests [12], where the subsets of variables
are randomized as well. In these approaches, the averaged
classifier uses a voting rule to classify new instances. Unlike
this approach where each classifier has the same weight, the
Bayesian Model Averaging (BMA) approach [13] weights
the classifier according to their posterior probability. The
BMA approach has stronger theoretical foundations, but it
requires both to be able to evaluate the posterior probability
of classifiers and to sample their posterior distribution.

In the case of data grid models, the posterior probability of
each model is given by an analytic criterion. Concerning the
problem of sampling the posterior distribution of data grid
models, we have to strike a balance between the quality of the
sampling and the computation time. We adopt a pragmatic
choice by just collecting all the data grids evaluated during
training, using the optimization algorithm introduced in sec-
tion IV. We keep all the local optima encountered in the VNS
meta-heuristic and eliminate the duplicates. An inspection of
the collected data grids reveals that their posterior distribution
is so sharply peaked that averaging them according to the
BMA approach almost reduces to the MAP model. In this
situation, averaging is useless. The same problem has been
noticed in [14] in the case of averaging Selective Naive
Bayes models. To find a trade-off between equal weights
as in bagging and extremely unbalanced weights as in the
BMA approach, we exploit a logarithmic smoothing of
the posterior distribution called compression-based model
averaging (CMA), like that introduced in [14].

To summarize, we collect the data grid models encoun-
tered during the data grid optimization algorithm and weight



them according to a logarithmic smoothing of their posterior
probability to build a Data Grid Ensemble classifier.

C. Coclustering of instances and variables

We first introduce the application of unsupervised data
grids to the coclustering problem, then describe how to build
a classifier on the basis of coclustering.

1) Coclustering: A coclustering [15] is the simultaneous
clustering of the rows and columns of a matrix. In case
of binary sparse datasets, coclustering is an appealing data
preparation technique to identify correlation between clusters
of instances and clusters of variables. Let us notice that
continuous variables can be transformed into binary variables
according to whether their value is null or non null.

Let us consider a sparse dataset with N instances, K
variables and V non-null values. A sparse dataset can be
represented in tabular format, with two columns and V
raws. This corresponds to a new dataset with two variables
named “Instance ID” and “Variable ID” where each instance
is a couple of values (Instance ID, Variable ID). Bivariate
unsupervised data grid models are applied to form groups of
instances IDs and groups of variable IDS, so as to maximize
the correlation between instances and variables. We expect
to find “natural” patterns both in the space of instances and
in the space of variables. It is noteworthy that the clusters
retrieved by data grid models are non-overlapping, since they
form a partition of the whole dataset.

2) Application to supervised learning: We apply a semi-
supervised learning approach [16] to exploit all the data from
the train, validation and test datasets. In a first step, all the
instances are processed without any output label to identify
the “natural” clusters of instances owing to the data grid
coclustering technique. In a second step, the available labeled
instances are used to describe the output distribution in each
cluster of instances. The label of a test instance is then
predicted according to the output distribution of its cluster.

Preprocessing the data with semi-supervised coclustering
makes sense under the assumption that the “natural” clusters
are correlated with the output values (predefined clusters).
We expect that this assumption is true for some datasets,
especially in the pattern recognition domain.

VII. EVALUATION OF DATA GRID MODELS

In the section, we first summarize the evaluation protocol
of the challenge, then describe which data grid models are
used to build classifiers, and finally report the results.

A. The Agnostic Learning vs. Prior Knowledge Challenge

The purpose of the challenge [10], [17] is to assess the
real added value of prior domain knowledge in supervised
learning tasks. Five datasets coming from different domains
are selected to evaluate the performance of agnostic clas-
sifiers vs. prior knowledge classifiers. These datasets come
into two formats, as shown in Table I. In the agnostic format,
all the input variables are numerical. In the prior knowledge
format, the input variables are both categorical and numerical

for three datasets and have a special format in the two other
datasets: chemical structure or text.

TABLE I
CHALLENGE DATASETS

Name Domain Num. ex. Prior Agnostic
(train) features features

Ada Marketing 4147 14 48
Gina Digit reco. 3153 784 970
Hiva Drug discovery 3845 Struct. 1617
Nova Text classif. 1754 Text 16969
Sylva Ecology 13086 108 216

The size of each train dataset is reported in Table I.
The validation datasets are ten times smaller than the train
datasets, which is too small for efficient model selection.
The test datasets are ten times larger than the train datasets,
which is large enough for reliable performance evaluation.
The predictive performance is evaluated using the Balanced
Error Rate (BER) criterion.

B. Data grid models used for classification

We use all the datasets in their agnostic format and only
three of them in their prior format (we have neither domain
knowledge nor time to exploit the chemical structure in the
Hiva dataset or the native text format in the Nova dataset).

We exploit directly the native format of the datasets,
numerical only in the agnostic case, either numerical or cate-
gorical in the prior case. We apply only one transformation to
the representation space, in the case of the Sylva dataset in its
prior format. We replace each subset of 40 binary “SoilType”
variables by one single categorical variable with 40 values.
The resulting dataset has only 30 variables instead of 108.

We apply the three classification techniques based on
multivariate data grid models introduced in section VI : data
grid (DG), data grid ensemble (DGE) and semi-supervised
coclustering (DGCC). The classifiers are trained using the
train and validation labeled instances. The DGCC methods
exploits all the available unlabeled data in its preprocessing.
It is applied on the three sparse datasets: Gina in its Prior
Knowledge format (PK), Hiva and Nova in their Agnostic
Learning format (AL).

All these techniques are able to predict the output con-
ditional probabilities for each test instance. When the eval-
uation criterion is the classification accuracy, predicting the
class with the highest conditional probability is optimal. This
is not the case for the BER criterion used in the challenge.
We post-process each trained classifier by optimizing the
probability threshold in order to maximize the BER. This
optimization is performed directly on the train dataset.

C. Evaluation results

We report in Table II the BER obtained by our methods
on the challenge datasets. The BER is evaluated using a
stratified ten-cross validation on the train+validation datasets.
The missing results correspond to the datasets with complex



TABLE II
CHALLENGE BER RESULTS

Name Prior Mixed Agnostic Rank
DGE DG DGCC DGE DG PK AL

Ada 0.192 0.213 0.192 0.225 1 2
Gina 0.140 0.184 0.052 (PK) 0.147 0.182 4 10
Hiva 0.320 (AL) 0.310 0.340 - 8
Nova 0.075 (AL) 0.135 0.243 - 3
Sylva 0.008 0.009 0.022 0.021 4 6

prior format (Hiva and Nova), and to the datasets with dense
representation in the case of the coclustering method.

We also report the rank of our best submission in the
Agnostic Learning (AL) track and Prior Knowledge (PK)
track, available on the challenge web site [10]. The final
results will be published after August 1st 2007.

The Data Grid classifiers obtain good results on the Ada
and Sylva datasets, especially on the prior track. Let us now
focus on understandability and inspect the number of selected
variables in each trained Data Grid model. In the agnostic
track, the MAP data grid exploits only 5 variables for Ada,
5 for Gina, 4 for Hiva, 8 for Nova and 8 for Sylva. In the
prior track, the MAP data grid exploits 6 variables for Ada,
7 for Gina and 3 for Sylva. These numbers of variables are
remarkably small w.r.t the BER performance of the models.

The Data Grid Ensemble classifiers confirm the benefits
of compression-based model averaging. They obtain a very
significant improvement of the BER criterion compared to
the Data Grid classifiers. This focus on predictive perfor-
mance is realized at the expense of understandability, since
each trained Data Grid Ensemble averages several hundreds
of elementary Data Grid models.

The Data Grid semi-supervized coclustering classifier ob-
tain significantly better results on the Gina and Nova datasets
than the Data Grid Ensemble classifiers. The assumption
that the “natural” patterns are correlated with the classes
looks true in the problems of digit recognition and text
classification. For the Hiva dataset, the BER result is not
much competitive. In this dataset, the “natural” patterns in the
representation space of the challenge does not seem highly
correlated with the classes.

Although its predictive performance is still far from the
best results, the coclustering technique carries valuable in-
sights on datasets. For example, in the case of text classi-
fication (Nova), about 1000 clusters of words (themes) and
300 clusters of texts (“natural” classes) are identified. In the
case of digit recognition (Gina), about 100 clusters of pixels
(regions) and 500 clusters of images (“natural” patterns) are
identified. Further investigation is necessary to inspect these
clusters and evaluate their impact on data understanding, data
reduction or modeling.

Apart from their use of the type of each input variable
(categorical or numerical), data grid models are agnostic
learners. It is noteworthy that in this challenge, our BER

results are always better in the prior track than in the agnostic
track, which tends to confirm the assumption that prior
knowledge and specialized representation space makes the
learning task easier.

VIII. CONCLUSION

The data grid models introduced in this paper are based on
a partitioning model of each input variables, in intervals for
numerical variables and in groups of values for categorical
variables. The cross-product of the univariate partitions,
called a data grid, allows to quantify the conditional in-
formation relative to the output variable. We have detailed
this technique in the case of bivariate numerical variables
and presented an overview for the extension of data grids to
the multivariate case, both for supervised and unsupervised
learning.

We have introduced three ways of building classifiers from
data grids and experimented them on the Agnostic Learning
vs. Prior Knowledge challenge. This preliminary evaluation
looks promising and provides usefull informations to drive
our future research.
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