
 
 

  

Abstract—The Naïve Bayes classifier has proved to be very 
effective on many real data applications. Its performances 
usually benefit from an accurate estimation of univariate 
conditional probabilities and from variable selection. However, 
although variable selection is a desirable feature, it is prone to 
overfitting. In this paper, we introduce a new regularization 
technique to select the most probable subset of variables and 
propose a new model averaging method. The weighting scheme 
on the models reduces to a weighting scheme on the variables, 
and finally results in a Naïve Bayes with "soft variable 
selection". Extensive experimental results show that the 
averaged regularized classifier outperforms the initial Selective 
Naïve Bayes classifier. 

I. INTRODUCTION 
HE Naïve Bayes modeling approach is based on the 
assumption that the variables are independent within 

each output label, and simply relies on the estimation of 
univariate conditional probabilities. The evaluation of the 
probabilities for numeric variables has already been 
discussed in the literature [10, 18, 22]. Experiments 
demonstrate that even a simple Equal Width discretization 
with 10 bins brings superior performances compared to the 
assumption using a Gaussian distribution. Using the Bayes 
optimal MODL discretization method [4] to estimate the 
conditional probabilities has proved to be very efficient in 
detecting irrelevant variables [5]. Similar improvements can 
be achieved in the case of categorical variable, using the 
Bayes optimal value grouping method presented in [2] and 
extended in [3]. 

The naïve independence assumption can harm the 
performances when violated. In order to better deal with 
highly correlated variables, the Selective Naïve Bayes 
approach [17] uses a greedy forward search to select the 
variables. The accuracy is evaluated directly on the training 
set, and the variables are selected as long as they do not 
degrade the accuracy. One problem with this approach is 
that it does not prevent the selection of irrelevant variables 
having no effect on the accuracy, or even of redundant 
variables having either an insignificant or no effect on the 
accuracy. In [5], the area under the ROC curve [11] is used 
as a selection criterion and exhibits a better predictive 
performance than the accuracy criterion with fewer 
variables. 

Although the Selective Naïve Bayes approach performs 
quite well on datasets with a reasonable number of variables, 
it does not scale on very large datasets with hundreds of 
thousands of instances and thousands of variables, such as in 
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marketing applications. The problem comes both from the 
search algorithm, whose complexity is quadratic in the 
number of the variables, and from the selection process 
which is subject to overfitting. 

In this paper, we present a new regularization technique to 
compromise between the number of selected variables and 
the performance of the classifier. The new criterion is 
optimized owing to a search heuristic with super-linear 
algorithmic complexity in the number of instances and 
variables. We also present a new model averaging method, 
inspired from the Bayesian Model Averaging approach [15]. 
We show that averaging the model turns into averaging the 
contribution of the variables in the case of the Selective 
Bayes Classifier. Finally we proceed with extensive 
experiments to evaluate our method. 

The remainder of the paper is organized as follows. 
Section II presents the regularization technique, section III 
the model averaging technique. Section IV browses related 
work. Section V proceeds with extensive experimental 
evaluations. Appendix summarizes the method and its 
results on the Performance Prediction Challenge [14]. 

II. REGULARIZATION 
After introducing the aim of regularization, this section 

formally states the assumptions and notations, applies the 
Bayesian approach to derive a new evaluation criterion for 
variable selection, and finally presents the search algorithm 
used to optimize this criterion. 

A. Introduction 
The Naïve Bayes classifier is a very robust algorithm. It 

can hardly overfit the data, since no hypothesis space is 
explored during the learning process. The Selective Naïve 
Bayes classifier reduces the strong bias of the naïve 
independence assumption, owing to variable selection. The 
objective is to search among all the subsets of variables, in 
order to find the best possible classifier, compliant with the 
Naïve Bayes assumption. The size of the searched 
hypothesis space grows exponentially with the number of 
variables, which might cause overfitting. Experiments show 
that during the variable selection process, the last added 
variables raise the "complexity" of the classifier while 
having an insignificant impact on the evaluation criterion 
(area under the ROC curve for example). These slight 
improvements during the training step can be detrimental to 
the predictive performance in test. 

We propose to tackle this overfitting problem by relying 
on a Bayesian approach, where the best model is found by 
maximizing the probability P(Model/Data) of the model 
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given the data. Using the Bayes rule and since the 
probability P(Data) is constant while varying the model, this 
is equivalent to maximizing P(Model)P(Data/Model). In the 
following, we describe how we compute the likelihood of 
the models and propose a prior distribution for variable 
selection. 

B. Assumptions and Notation 
Let X=(X1, X2,…, XK) be the vector of the K explanatory 

variables and Y the class variable. Let y1, y2,…, yJ  be the J 
class values of Y. 

Let N be the number of instances, D={Dn} the labeled 
database containing the instances Dn=(x(n), y(n)). 

Let M={Mm} be the set of all the potential Selective Naïve 
Bayes models. Each model Mm is described by K parameter 
values amk, where amk is 1 if variable k is selected in model 
Mm and 0 otherwise. 

Let P(yj) be the prior probabilities of the class values, and 
P(Xk/yj) the conditional probability distributions of the 
explanatory variables given the class values. 

We assume that the prior probabilities P(yj) and the 
conditional probability distributions P(Xk/yj) are known. The 
purpose of the method is to select the best subset of variables 
for Naïve Bayes classification. 

 
In the experimental section, the P(yj) are estimated by 

counting and the P(Xk/yj) are computed using the 
contingency tables, resulting from the preprocessing of the 
explanatory variables. This preprocessing is performed using 
the MODL discretization method [4] for the numeric 
variables and the MODL grouping method [3] for the 
categorical variables. The conditional probabilities are 
estimated using a m-estimate (support+m*p)/(coverage+m) 
with m=J/N and p=1/J, in order to avoid zero probabilities. 

The MODL preprocessing methods are based on a 
Bayesian approach. A space of discretization (or grouping) 
models is defined, and a prior distribution on this model 
space is proposed. This leads to a Bayes optimal evaluation 
criterion of discretization (or grouping) models. 

C. Likelihood of Models 
The Naïve Bayes classifier assigns to each instance the 

class value having the highest conditional probability 
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independent conditionally to the class variable, we get 
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For a given model Mm, the class conditional probability 
estimation Pm(yj/X) turns into 
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Equation (4) provides the class conditional probability 
distribution for each model Mm on the basis of the parameter 
values amk of the model. For a given instance Dn, the 
probability of observing the class value y(n) given the 
explanatory values x(n) and given the model Mm is 
Pm(y(n)/X=x(n)). The likelihood of the model is obtained by 
computing the product of these quantities on the whole 
dataset. The negative log-likelihood of the model is given 
by: 
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This quantity turns out to be the sum over the dataset of 
the Information Loss Function [21]. This quantity is a 
popular criterion for the evaluation of probabilistic 
prediction. It is minimized when the true probabilities are 
predicted. 

D. Prior for Variable Selection 
The parameters of a variable selection model Mm are the 

Boolean values amk. We propose a hierarchic prior, by first 
choosing the number of selected variables and second 
choosing the subset of selected variables. 

For the number Km of variables, we propose to use a 
uniform prior between 0 and K variables, representing (K+1) 
equiprobable alternatives. 

For the choice of the Km variables, we assign the same 
probability to every subset of Km variables. The number of 
combinations C(K, Km) seems the natural way to compute 
this prior, but it has the disadvantage of being symmetric. 
Beyond K/2 variables, every new variable makes the 
selection more probable. Thus, adding irrelevant variables is 
favored, provided that this has an insignificant impact on the 
likelihood of the model. As we prefer simpler models, we 
propose to use the number of combinations with replacement 
C(K+Km-1, Km). 

Taking the negative log of this prior, we get the following 
code length for the variable selection models 

 ( )( ) ( ) ( )( )log log 1 log 1,m m mP M K C K K K− = + + + − .(6) 

Using this prior, the "informational cost" of the first 
selected variables is about log(K) and about log(2) for the 
last variables. 

E. Posterior Distribution of the Models 
The posterior probability of a model is evaluated as the 

product of the prior and the likelihood. This is equivalent to 
a MDL approach [20], where the code length of the model 
plus the data given the model has to be minimized: 
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The first two terms encode the complexity of the model 
and the last one the fit of the data. The compromise is found 
by minimizing this criterion. 

We can notice a trend of increasing attention to the 
predicted probabilities in the evaluation criteria proposed for 
variable selection: whereas the accuracy criterion focuses 
only on the majority class, the area under the ROC curve 
evaluates the correct ordering of the predicted probabilities, 
our regularized criterion evaluates the correctness of all the 
predicted probabilities (not only their rank) and introduces a 
regularization term to balance the complexity of the models. 

F. An Efficient Search Heuristic 
Many heuristics have been used for variable selection. 

The greedy Forward Selection heuristic evaluates all the 
variables, starting from an empty set of variables. The best 
variable is added to the current selection, and the process is 
iterated until no new variable improves the evaluation 
criterion. This heuristic may fall in local optima and has a 
quadratic time complexity with respect to the number of 
variables. The Forward Backward Selection heuristic allows 
to add or drop one variable at each step, in order to avoid 
local optima. The Fast Forward Selection heuristic evaluates 
each variable one at a time, and adds it to the selection as 
soon as this improves the criterion. This last heuristic is time 
effective, but its results exhibit a large variance caused by 
the dependence over the order of the variables. 

We introduce a new search heuristic called Fast Forward 
Backward Selection (FFWBW), based on a mix of the 
preceding approaches. It consists in a sequence of Fast 
Forward Selection and Fast Backward Selection steps. The 
variables are randomly reordered between each step, and 
evaluated only once during each Forward or Backward 
search. This process is iterated as long as two successive 
(Forward and Backward) search steps bring at least one 
improvement of the criterion. Each search step requires O(K) 
evaluations. The whole process converges very quickly, so 
that it still requires O(K) evaluations in practice. Each 
evaluation of a Selective Naïve Bayes model requires O(KN) 
steps, mainly to evaluate all the class conditional 
probabilities. Using the additivity of these probabilities with 
respect to the addition or deletion of variables, the total time 
complexity of the FFWBW heuristic can be reduced down to 
O(KN). 

In order to further reduce both the possibility of local 
optima and the variance of the results, this FFWBW 
heuristic is embedded into a multi-start (MS) algorithm, by 
repeating the search heuristic starting from several random 
orderings of the variables. The number of repetitions is set to 
log2(KN), which offers a reasonable compromise between 
time complexity and quality of the optimization. Overall, the 
time complexity of the MS(FFWBW) heuristic is 
O(KNlog(KN)). 

 
Algorithm MS(FFWBW) 

• Multi-start: repeat log2(KN) times 
o Start with an empty subset of variables 
o Fast Forward Backward Selection 

 Initialize an empty subset of variables 
 Repeat until no improvement 

• Randomly reorder the variables 
• Fast Forward Selection 
• Randomly reorder the variables 
• Fast Backward Selection 

o Update the best subset of variables if improved 
• Return the best subset of variables 

III. MODEL AVERAGING 
Model averaging consists in combining the prediction of 

an ensemble of classifiers in order to reduce the predictive 
error. This section introduces a new model averaging 
method applied to the Selective Naïve Bayes classifier. 

A. From Bayesian Model Averaging to Expectation 
Most inductive methods ignore the uncertainty in model 

selection and are over-confident about their predictive 
performances. The Bayesian Model Averaging (BMA) 
approach [15] provides a consistent method to accounting 
for model uncertainty, by weighting them by their posterior 
probability. For a given variable of interest ∆, this weighting 
scheme is computed according to the following formula: 
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This formula can be written, using only the prior 
probabilities and the likelihood of the models. 
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Let f(Mm,D)=P(∆/Mm,D) and f(D)=P(∆/D). Using these 
notations, the BMA formula can be interpreted as the 
expectation of function f for the posterior distribution of the 
models  

 ( ) ( ) ( ),m m
m

E f f M D P M D=∑ . (10) 

We propose to extend the BMA approach in the case 
where f is not restricted to be a probability function. 

B.  Expectation of the class conditional information 
The Naïve Bayes classifier provides an estimation of the 

class conditional probabilities. These estimated probabilities 
are the natural candidates for averaging. For a given model 
Mm defined by the variable selection {amk}, we have 
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Let I(Mm,D)=-log(f(Mm,D)) be the class conditional 
information. Whereas the expectation of f relates to a 
(weighted) arithmetic mean of the class conditional 



 
 

probabilities, the expectation of I relates to a (weighted) 
geometric mean of these probabilities. This puts more 
emphasis on the magnitude of the estimated probabilities. 

Taking the negative log of (11), we obtain 
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We are looking for the expectation of this conditional 
information 
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The bk coefficients are computed using (7), on the basis of 
the prior probabilities and of the likelihood of the models. 
Using these coefficients, the expectation of the conditional 
information is 
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The averaged model thus provides the following 
estimation for the class conditional probabilities: 
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It is noteworthy that the expectation of the conditional 
information in (16) is similar to the conditional information 
estimated by each individual model in (12). The weighting 
scheme on the models reduces to a weighting scheme on the 
variables. When the MAP model is selected, the variables 
have a weight of 1 when selected and 0 otherwise: this is a 
"hard selection" of the variables. When the above averaging 
is applied, each variable has a [0, 1] weight, which can be 
interpreted as a "soft selection". 

C. Expectation with Compression Coefficients 
Using the posterior probabilities to weight the models in 

the averaging approach presents some practical 
disadvantages. When the posterior distribution is sharply 
peaked around the MAP, averaging is almost the same as 
selecting the MAP model. These peaked posterior 
distributions are more and more likely to happen when the 
number of instances rises, since a few tenths of instances 
better classified by a model are sufficient to increase its 
likelihood by several orders of magnitude. Therefore, the 

algorithmic overhead is not valuable if averaging turns out to 
be the same as selecting the MAP. 

We propose an alternative weighting scheme, whose 
objective is to better account for the set of all models. Let us 
first introduce the compression coefficient c(Mm,D) of a 
model. The Bayesian model selection approach we use to 
derive the criterion (7) is equivalent to a MDL model 
selection approach where 
  ( ) ( ) ( )( ) ( )( )log logm m m ml M l D M P M P D M+ = − − .(18) 

Let M∅ be the "null" model, with no variable selected. 
The null model estimates the class conditional probabilities 
by their prior probabilities, ignoring all the explanatory 
variables. The code length of the null model can be 
interpreted as the quantity of information necessary to 
describe the classes, when no explanatory data is used to 
induce the model. Applying (4), we have 
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Each model Mm can potentially exploit the explanatory 
data to better "compress" the class conditional information. 
The ratio of the code length of a model to that of the null 
model stands for a relative gain in compression efficiency. 
We define the compression coefficient c(Mm,D) of a model 
as follows: 
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The compression coefficient is 0 for the null model, is 
maximal when the true class conditional probabilities are 
correctly estimated and tends to 1 in case of separable 
classes. This coefficient can be negative for models which 
provide an estimation worse than that of the null model. 

In our heuristic attempt to better account for all the 
models, we replace the posterior probabilities by their 
related compression coefficient in the weighting scheme. 

Let us focus again on the variable weights bk introduced in 
our first model averaging method. Dividing the posterior 
probabilities by those of the null model, we get 
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We introduce new ck coefficients by taking the log of the 
probability ratios and normalizing by the code length of the 
null model. We obtain 
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In the implementation, we ignore the "bad" models and 
consider the positive compression coefficients only. 

 
Mainly, the principle of this new heuristic weighting 



 
 

scheme consists in smoothing the peaked posterior 
probability distribution with the log function. 

D. An Efficient Algorithm for Model Averaging 
We have previously introduced two model averaging 

methods which rely on the expectation of the class 
conditional information (with standard probabilistic weights 
or with compression-based weights). The calculation of this 
expectation requires the evaluation of all the variable 
selection models, which is not computationally feasible as 
soon as the number of variables goes beyond about 20. This 
expectation can heuristically be evaluated by sampling the 
posterior distribution of the models and accounting only for 
the sampled models in the weighting scheme. 

We propose to reuse the MS(FFWBW) search heuristic to 
perform this sampling. This heuristic is effective for finding 
high probability models and searching in their 
neighborhood. The repetition of the search from several 
random starting points (in the multi-start meta-heuristics) 
brings diversity and allows to escape local optima. We use 
the whole set of models evaluated during the search to 
estimate the expectation. This sampling strategy is biased in 
favor of the most probable models. This has little impact, 
since the most probable models contribute the most to the 
weights. 

The overhead in the time complexity of the learning 
algorithm is negligible, since the only need is to collect the 
posterior probability of the models and to compute the 
weights in the averaging formula. Concerning the 
deployment of the averaged model, the overhead is also 
negligible, since the initial Naïve Bayes estimation of the 
class conditional probabilities is just extended with variables 
weights. 

IV. RELATED WORK 
The section briefly reviews three popular alternative 

ensemble methods: Boosting, Bagging and Bayesian Model 
Averaging. 

A. Introduction 
The predictive performances of the classifiers can be 

understood using the bias-variance decomposition [16]. The 
bias evaluates the fit capacity: classifiers with low bias such 
as neural networks can approximate any data distribution, 
whereas classifiers with strong bias such as the Naïve Bayes 
classifier cannot fit complex data. The variance results from 
the statistical uncertainty around the training set. 

The model averaging methods aim at reducing the bias or 
the variance part of predictive error by combining the 
predictions of an ensemble of classifiers. They mainly differ 
by the way they sample the distribution of the models and by 
their weighting scheme. 

B. Boosting 
The Boosting averaging method [12] exploits a weight 

distribution of the instances. Initially, all the instances have 
the same weight, and a classifier is trained on the initial 

training set. The instances that are incorrectly classified are 
given a higher weight, and a new training set is sampled 
from the weight-updated dataset. This process is repeated a 
given number of iterations, and the averaged classifier is 
built using weights based on the predictive performances of 
the individual classifiers. The Boosting method is 
theoretically founded to reduce the training bias, but without 
guarantee against overfitting. 

C. Bagging 
The Bagging (Boostrap Aggregating) averaging method 

[7] exploits a set of data samples obtained owing to a 
bootstrap process (N instances are randomly selected from 
the training set, with replacement). The classifier is trained 
on each bootstrap dataset, and the averaged classifier gives 
the same weight to all the trained models. The bootstrap 
process is a way of sampling the model space around 
reasonably good and equiprobable models. It is theoretically 
founded to reduce the variance part of the predictive error. 

The random selection of data samples has been extended 
to variables in the Random Forests classifier [8]: each node 
of classification tree is trained on a new randomly sampled 
subset of variables. A similar approach is used in [23], 
where a sequence of Naïve Bayes classifiers is iteratively 
trained on randomly selected variables. The probability of 
selecting each variable is increased or decreased according 
to the performance of the previously trained classifier. By 
default, the number of training iterations is equal to the 
number of variables, and each classifier has the same weight. 

D. Bayesian Model Averaging 
The Bayesian Model Averaging (BMA) method [15] aims 

at accounting for the model uncertainty. Whereas the MAP 
approach retrieves the most probable model given the data, 
the BMA approach exploits every model in the model space, 
weighted by their posterior probability. This approach relies 
on the definition of a prior distribution on the models, on an 
efficient computation technique to estimate the model 
posterior probabilities and on an effective method to sample 
to posterior distribution. Apart from these technical 
difficulties, the BMA approach is an appealing technique, 
with strong theoretical results concerning the optimality of 
its long-run performances [19]. 

The BMA approach has been applied to the Naïve Bayes 
classifier in [9]. Apart from the differences in the weighting 
scheme, their method (DC) differs from ours mainly on the 
initial assumptions. The DC method does not manage the 
numeric variables and assumes multinomial distributions 
with Dirichlet priors for the categorical variable. Structure 
modularity of the Bayesian network is also assumed: each 
selection of a variable is independent from the others. The 
DC approach estimates the full data distribution (explanatory 
and class variables), whereas we focus on the class 
conditional probabilities. Once the prior hyper-parameters 
are fixed, the DC method allows to compute an exact model 
averaging, whereas we rely on an heuristic to estimate the 
averaged model. Compared to the DC method, our method is 



 
 

not restricted to categorical attributes and does not need any 
hyper-parameter. 

V. EXPERIMENTS 
This section presents an experimental evaluation of the 

performances of the Selective Naïve Bayes inducing 
methods described in the previous sections. We first 
comment on the rationale behind the compression-based 
model averaging approach before proceeding with extensive 
experiments. 

A. The Waveform example 
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Fig. 1.  Repartition function of the compression coefficients (normalized 
posterior probabilities) of half a million variable selection models evaluated 
for the Waveform dataset, sorted by increasing compression coefficient. For 
example, the 10% models on the left represent the models having the lowest 
compression coefficient. 

 
The Waveform dataset [6] contains 5000 instances and 21 

numeric variables, with 3 classes of waves. We use 70% of 
this dataset to train a Selective Naïve Bayes classifier, using 
the Bayes regularization introduced in section II. The 
MODL preprocessing determines that 2 variables (1st and 
21th) are irrelevant. The variable selection problem consists 
in finding the most probable subset of variables among about 
half a million (219) potential subsets. In order to study the 
posterior distribution of the models, all these subsets are 
evaluated. The MAP model selects 8 variables (5, 6, 9, 10, 
11, 12, 13, 17). The posterior distribution is very sharp 
everywhere, not only around the MAP. Variable 18 is first 
selected in the 3rd model, which is about 40 times less 
probable than the MAP model. Variable 4 is first selected in 
the 10th model, about 4000 times less probable than the MAP 
model. Figure 1 displays the repartition function of the 
posterior probabilities, using a normalized log scale 
(compression coefficients). Using this logarithmic 
transformation, the posterior distribution is flattened and can 
be visualized. The MAP model is 101033 times more probable 
than the minimum a posteriori model, which is the null one. 
This huge range of probabilities is projected on a [0%, 62%] 
range of compression coefficients. 

A closer look at the posterior distribution shows that most 
of the good models (in the top 50%) contain around 10 
variables. Figure 2 displays the selected variables in the top 

200 models (0.05%). Five variables (5, 9, 10, 11, 12) among 
the 8 MAP variables are always selected, and the other 
models exploits a diversity of subsets of variables. The 
potential benefit of model averaging is to account for all 
these models, with higher weights for the most probable 
models. 

In the Waveform example, averaging using the posterior 
probabilities to weight the models is almost the same as 
selecting the MAP model (which itself is hard to find with a 
heuristic search). The compression-based model averaging 
exploits a flattened distribution of the weights (see figure 1) 
and thus enables to account for a large number of models. 
This averaging approach is evaluated in the next section.  

 

 
Fig. 2.  Index of the selected variables in the 200 most probable Selective 
Naïve Bayes models for the Waveform dataset. Each line represents a 
model, where the variables are in black color when selected.  

B. Experimental Setup 
The experiments aim at comparing the performances of 

model averaging methods versus the MAP method, the 
standard Selective Naïve Bayes (SNB) and Naïve Bayes 
(NB) methods. All the classifiers except the last one exploit 
the same MODL preprocessing. The evaluated methods are: 

• SNB(CMA): model averaging using compression-
based weights in the expectation formula, 

• SNB(MA): model averaging using expectation, 
• SNB(MAP): MAP SNB model, 
• SNB(AUC): optimization of the area under the 

ROC curve, 
• SNB(ACC): optimization of the accuracy, 
• NB: NB with MODL preprocessing, 
• NB(EF): NB with 10 bins Equal Frequency 

discretization and no value grouping. 
All the SNB classifiers are optimized with the same 

MS(FFWBW) search heuristic, except the SNB(ACC), 
based on the Forward Selection greedy heuristic. The DC 
method [9], similar to the SNB(MA) approach, was not 
evaluated since it is restricted to categorical attributes. 

We evaluate three criteria of increasing complexity: 
accuracy (ACC), area under the ROC curve (AUC) and 
informational loss function (ILF). The ACC criterion 
focuses on the most probable class (which is fair to evaluate 



 
 

class probabilities, but not very discriminating in case of 
highly unbalanced datasets), the AUC criterion focusses on 
the ranking of the class probabilities and the ILF criterion on 
the class probabilities. We normalize the ILF using the 
compression rate CR=1-ILF/Entropy (similar to (20), 
without the prior regularization penalty). The entropy has the 
same value as the ILF when the prior class probabilities are 
predicted on every instance. The normalized CR criterion is 
mainly ranged between 0 (prediction not better than the 
basic prediction of the class priors) and 1 (prediction of the 
true class probabilities in case of perfectly separable 
classes). It can be negative when the predicted probabilities 
are worse than the basic prior predictions. 

 
TABLE I 

UCI DATASETS 

Name Instances Numeric 
variables 

Categorical 
variables Classes Majority 

Accuracy 
Abalone 4177 7 1 28 16.5 
Adult 48842 7 8 2 76.1 
Australian 690 6 8 2 55.5 
Breast 699 10 0 2 65.5 
Crx 690 6 9 2 55.5 
German 1000 24 0 2 70.0 
Glass 214 9 0 6 35.5 
Heart 270 10 3 2 55.6 
Hepatitis 155 6 13 2 79.4 
HorseColic 368 7 20 2 63.0 
Hypothyroid 3163 7 18 2 95.2 
Ionosphere 351 34 0 2 64.1 
Iris 150 4 0 3 33.3 
LED 1000 7 0 10 11.4 
LED17 10000 24 0 10 10.7 
Letter 20000 16 0 26 04.1 
Mushroom 8416 0 22 2 53.3 
PenDigits 7494 16 0 10 10.4 
Pima 768 8 0 2 65.1 
Satimage 6435 36 0 6 23.8 
Segmentation 2310 19 0 7 14.3 
SickEuthyroid 3163 7 18 2 90.7 
Sonar 208 60 0 2 53.4 
Spam 4307 57 0 2 64.7 
Thyroid 7200 21 0 3 92.6 
TicTacToe 958 0 9 2 65.3 
Vehicle 846 18 0 4 25.8 
Waveform 5000 21 0 3 33.9 
Wine 178 13 0 3 39.9 
Yeast 1484 8 1 10 31.2 

 
We conduct the experiments on two collections of 

datasets: 30 datasets from the repository at University of 
California at Irvine [1] and 10 datasets from the NIPS 2003 
Feature Selection Challenge [13] and the WCCI 2006 
Performance Prediction Challenge [14]. A summary of some 
properties of these datasets is given in table I for the UCI 
datasets and in table II for the Challenge datasets. We use 
stratified 10-fold cross validation to evaluate the criteria. A 
two-tailed Student test at the 5% confidence level is 
performed in order to evaluate the significant wins or losses 
of the SNB(CMA) method versus each other method. 

 

TABLE II 
CHALLENGE DATASETS 

Name Instances Numeric 
variables 

Categorical 
variables Classes Majority 

Accuracy 
Arcene 200 10000 0 2 56.0% 
Dexter 600 20000 0 2 50.0% 
Dorothea 1150 100000 0 2 90.3% 
Gisette 7000 5000 0 2 50.0% 
Madelon 2600 500 0 2 50.0% 
Ada 4147 48 0 2 75.2% 
Gina 3153 970 0 2 50.8% 
Hiva 3845 1617 0 2 96.5% 
Nova 1754 16969 0 2 71.6% 
Sylva 13086 216 0 2 93.8% 

C. Results 
We collect and average the three criteria owing to the 

stratified 10-fold cross validation, for the seven evaluated 
methods on the forty datasets. We summarize these results 
using the mean of each criterion, the number of significant 
wins or losses of the SNB(CMA) method and the average 
rank of each method. The results are presented in table III 
for the UCI datasets and in table IV for the Challenge 
datasets. 

 
TABLE III 

EVALUATION OF THE  METHODS ON THE UCI DATASETS 

Method  ACC  AUC CR 

 M W/L R   M W/L R  M W/L R 
SNB(CMA) .824  2.2  .920  1.9 .577  2.2
SNB(MA) .817 9/2 3.7  .916 11/0 3.3 .559 12/6 2.6
SNB(MAP) .813 11/1 4.5  .913 17/1 4.4 .549 15/6 3.6
SNB(AUC) .820 8/0 3.3  .918 10/2 3.1 .532 17/4 4.4
SNB(ACC) .817 5/1 3.5  .910 14/0 4.5 .536 13/2 4.5
NB .814 11/0 4.0  .913 16/1 4.6 .476 19/2 5.3
NB(EF) .796 15/1 4.6  .911 13/3 4.8 .401 15/2 5.3

The evaluated criteria are the accuracy (ACC), the area under the ROC 
curve (AUC) and the compression rate (CR). The results are summarized 
across the datasets using the mean (M), the number of wins and losses for 
the SNB(CMA) method (W/L) and the average rank (R). 

 
TABLE IV 

EVALUATION OF THE  METHODS ON THE CHALLENGE DATASETS 

Method  ACC  AUC CR 

 M W/L R   M W/L R  M W/L R 
SNB(CMA) .883  1.9  .904  1.0 .510  1.0
SNB(MA) .872 3/0 3.5  .882 6/0 2.9 .446 9/0 2.3
SNB(MAP) .865 4/0 4.5  .863 6/0 5.1 .425 9/0 3.7
SNB(AUC) .872 6/0 3.6  .888 7/0 2.7 .331 10/0 4.1
SNB(ACC) .875 3/2 2.9  .869 8/0 4.8 .365 9/0 4.3
NB .841 7/0 4.9  .846 9/0 5.3 -.321 9/0 5.9
NB(EF) .823 9/0 6.6  .833 9/0 6.2 -.423 10/0 6.7

The evaluated criteria are the accuracy (ACC), the area under the ROC 
curve (AUC) and the compression rate (CR). The results are summarized 
across the datasets using the mean (M), the number of wins and losses for 
the SNB(CMA) method (W/L) and the average rank (R). 

 
The results of the two NB methods are reported mainly as 

a sanity check. The MODL preprocessing in the NB 
classifier exhibits better performances than the Equal 
Frequency discretization method in the NB(EF) classifier. 
All the SNB methods exploit the same MODL 



 
 

preprocessing, allowing a fair comparison. 
The experiments confirm the benefit of selecting the 

variables, using the standard selection methods SNB(ACC) 
and SNB(AUC). These two methods achieve comparable 
results, with an emphasis on their respective optimized 
criterion. They significantly improve the result of the NB 
methods, especially for the estimation of class conditional 
probabilities. 

The three regularized methods SNB(MAP), SNB(MA) 
and SNB(CMA) focus on the estimation of the class 
conditional probabilities, which are evaluated using the 
compression rate criterion. They clearly outperform the 
other methods on this criterion. However, the SNB(MAP) 
method is not better than the two standard SNB methods for 
the accuracy and AUC criteria. The MAP method increases 
the bias of the models by penalizing the complex models, 
leading to a decayed fit of the data. 

The model averaging approach exploited in SNB(MA) 
method offers only slight enhancements compared to the 
SNB(MAP) method. This confirms the analysis drawn from 
the Waveform case study. 

The compression-based averaging method SNB(CMA) 
strongly dominates all the other methods on all the criteria. 
On average, the number of significant wins is about 10 times 
the number of significant losses, and amounts to more than 
half of the 40 datasets. On the 10 challenge datasets, having 
very large numbers of variables, the SNB(CMA) methods 
always gets the best results on the AUC and CR criteria, and 
almost always on the accuracy criterion. 

The domination of the SNB(CMA) increases with the 
complexity of the criteria: it is noteworthy for accuracy 
(ACC), important for the ordering of the class conditional 
probabilities (AUC) and very large for the prediction of the 
class conditional probabilities (CR). This shows that the 
regularized and averaged Naïve Bayes becomes effective for 
conditional probability estimation, whereas the standard 
Naïve Bayes is usually considered to be poor at estimating 
these probabilities. 

VI. CONCLUSION 
The Naïve Bayes classifier is a popular method that is 

often highly effective on real datasets and is competitive 
with or even sometimes outperforms much more 
sophisticated classifiers. This paper confirms the potential 
benefit of variable selection to obtain still better 
performances. We have proposed a new regularization 
method, founded on a Bayesian approach, to select the best 
subset of variables. We have introduced a new model 
averaging method as well, using compression-based weights. 
Extensive experiments on many datasets demonstrate the 
effectiveness of the new method, which considerably 
enhances the predictive performances of the raw Naïve 
Bayes classifier, especially for the estimation of the class 
conditional probabilities. 

APPENDIX 
This appendix summarizes the method and its results on 

the Performance Prediction Challenge [14]. 
 

Title: Regularized and Averaged Selective Naïve Bayes 
Classifier 
Name, address, email: Marc Boullé,  

France Telecom R&D, 2, avenue Pierre Marzin, 22307 
Lannion cedex – France 

marc.boulle@francetelecom.com 
Acronym of my best entry: SNB(CMA) + 10k F(3D) tv 

 
References: 
M. Boullé, "Regularization and Averaging of the Selective Naïve Bayes 
classifier", International Joint Conference on Neural Networks, 2006.  
M. Boullé, "MODL: a Bayes Optimal Discretization Method for Continuous 
Attributes", Machine Learning, to be published. 

 
Method: 

Our method is based on the Naive Bayes assumption. 
All the input features are preprocessed using the Bayes 

optimal MODL discretization method. 
We use a Bayesian approach to compromise between the 

number of selected features and the performance of the 
Selective Naïve Bayes classifier: this provides a regularized 
feature selection criterion. The feature selection search is 
performed using alternate forward selection and backward 
elimination searches on randomly ordered feature sets: this 
provides a fast search heuristic, with super-linear time 
complexity with respect to the number of instances and 
features.  

Finally, our method introduces a variant of feature 
selection: feature "soft" selection. Whereas feature "hard" 
selection gives a "Boolean" weight to the features according 
to whether they selected or not, our method gives a 
continuous weight between 0 and 1 to each feature. This 
weighing schema of the features comes from a new classifier 
averaging method, derived from Bayesian Model Averaging. 

The method computes the posterior probabilities of the 
classes, which is convenient when the classical accuracy 
criterion or the area under the ROC curve is evaluated. For 
the challenge, the Balanced Error Rate (BER) criterion is the 
main criterion. In order to improve the BER criterion, we 
adjusted the decision threshold in a post-optimization step. 
We still predict the class having the highest posterior 
probability, but we artificially adjust the class prior 
probabilities in order to optimize the BER criterion on the 
train dataset. 

For the challenge, several trials of feature construction 
have been performed in order to evaluate the computational 
and statistical scalability of the method, and to naively 
attempt to escape the naïve Bayes assumption: 

• 10k F(2D): 10 000 features constructed for each 
dataset, each one is the sum of two randomly selected 
initial features,  

• 100k F(2D): 100 000 features constructed (sums of 
two features),  



 
 

• 10k F(3D): 10 000 features constructed  (sums of 
three features).  

The performance prediction guess is computed using a 
stratified tenfold cross-validation. 

 
Results:  

In the challenge, we rank 7th as a group and our best entry 
is 26th, according to the average rank computed by the 
organizers. On 2 of the 5 five datasets (ADA and SYLVA), 
our best entry ranks 1st, as shown in table V. 

Our method is highly scalable and resistant to noisy or 
redundant features: it is able to quickly process about 100 
000 constructed features without decreasing the predictive 
performance. 

Its main limitation comes from the Naïve Bayes 
assumption. However, when the constructed features allow 
to "partially" break the naïve Bayes assumption, the method 
succeeds in significantly improve its performances. This is 
the case for example for the GINA dataset, which does not 
fit well the naïve Bayes assumption: adding randomly 
constructed features allows to improve the BER from 
12.83% down to 7.30%. 

The AUC criterion, which evaluates the ranking of the 
class posterior probabilities, indicates high performances for 
our method. 

 
Code: Our implementation was done in C++. 

 
Keywords: Discretization, Bayesianism, Naïve Bayes, 
Wrapper, Regularization, Model Averaging 
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TABLE V 

RESULTS OF OUR BEST ENTRY ON THE PERFORMANCE PREDICTION CHALLENGE DATASETS 
Dataset Our best entry The challenge best entry 

 Test 
AUC 

Test 
BER 

Ber 
Guess 

Guess 
Error 

Test 
Score 

Test 
AUC 

Test 
BER 

Ber 
Guess 

Guess 
Error 

Test 
score 

ADA 0.9149 0.1723 0.1650 0.0073 0.1793 (1) 0.9149 0.1723 0.1650 0.0073 0.1793 
GINA 0.9772 0.0733 0.0770 0.0037 0.0767 0.9712 0.0288 0.0305 0.0017 0.0302 
HIVA 0.7542 0.3080 0.3170 0.0090 0.3146 0.7671 0.2757 0.2692 0.0065 0.2797 
NOVA 0.9736 0.0776 0.0860 0.0084 0.0858 0.9914 0.0445 0.0436 0.0009 0.0448 
SYLVA 0.9991 0.0061 0.0060 0.0001 0.0062 (1) 0.9991 0.0061 0.0060 0.0001 0.0062 
Overall 0.9242 0.1307 0.1306 0.0096 0.1399 (26.4) 0.8910 0.1090 0.1040 0.0079 0.1165 (6.2) 

 


