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Abstract

We leverage the Minimum Description Length (MDL) principle as a model selection tech-
nique for multinomial distributions and suggest a two-part MDL code based on a hierarchical
encoding of the multinomial parameters. We compare this code with the alternative Nor-
malized Maximum Likelihood (NML) code and exhibit large regions of the parameter space
where the hierarchical code dominates the NML one. We then present an application of
the multinomial distribution to joint density estimation and show that the hierarchical code
brings significant improvements.

1 Introduction

Industrial companies such as Orange, the main french telecommunication operator, store large
amounts of data. They have to deal with many requests for data mining studies, in a wide
diversity of application domains and tasks, structure and scale of data, constraints, resource or
business requirements. To address these problems in an industrial context, Orange Labs has
developed a data mining tool 1, with the following requirements: generic, reliable, accurate,
automatic, interpretable and scalable. This tool exploits models for conditional or joint
density estimation in the univariate or multivariate cases, with either numerical or categorical
variables (Boullé, 2011), for feature selection and construction in the multi-tables context and
for modeling (Boullé, 2014). All these models extensively use multinomial distributions as
building blocks, and the inference process heavily relies on MDL model selection to meet the
tool requirements. Enumerative codes have been used for years, being effective (they are both
two-parts, one-part and NML codes) and very simple and efficient to compute at any scale.
The objective of this paper is to study whether these codes can be improved in order to detect
patterns with fewer instances, with the least possible computational overhead. In particular,
we focus on the case of data sets with heavily unbalanced distributions, such as Zipf’law or
Pareto distribution, which widely appears in many application domains such as linguistics,
physics or economics (Powers, 1998; Newman, 2005).

Model selection is a key problem in statistics and data mining, and the MDL approaches
(Rissanen, 1978) to model selection have been extensively studied in the literature (Grünwald,
2007), with successful applications in many practical problems. Simple models such as multi-
nomial distributions are important because they are easy to analyze theoretically and useful
in many applications. For example, the multinomial distribution has been used as a build-
ing block in more complex models, such as naive Bayes classifiers (Mononen and Myllymäki,
2007), Bayesian networks (Silander et al., 2010; Guo et al., 2017), decision trees (Voisine et al.,
2009) or coclustering models (Boullé, 2011; Guigourès et al., 2015). These models involve up
to thousands of multinomial blocks, some of them with potentially very large numbers of
occurrences and outcomes. For example, the text × word coclustering of the 20-newsgroup
data set described in (Boullé, 2011) exploits a main multinomial block with around two mil-
lions words (occurrences) distributed on 200,000 coclusters (outcomes). In (Guigourès et al.,
2015), half a billion call detail records (occurrences) are distributed on one million coclusters

1This tool, named Khiops, is available as a shareware at www.khiops.com
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(outcomes). These various and numerous applications critically rely on the use of effective
and efficient MDL codes to get a robust and accurate summary of the data.

The MDL approaches come with several flavors, ranging from theoretical but not com-
putable to practical but sub-optimal. Ideal MDL (Vitányi and Li, 2000) relies on the Kol-
mogorov complexity, that is the ability of compressing data using a computer program. How-
ever, it suffers from large constants depending on the description method used and cannot be
computed, not even approximated in the case of two-part codes (Adriaans and Vitányi, 2007).
Practical MDL leverages description methods that are less expressive than general-purpose
computer languages. It has been employed to retrieve the best model given the data in case
of families of parametrized statistical distributions. Crude MDL is a basic MDL approach
with appealing simplicity. In two-part crude MDL, you just have to encode the model pa-
rameters and the data given the parameter, with a focus on the code length only. However,
crude MDL suffers from arbitrary coding choices. Modern MDL relies on universal coding
resulting in Refined MDL (Grünwald, 2007), with much stronger foundations and interesting
theoretical properties. In particularly, the normalized maximum likelihood (NML) (Rissanen,
1996) provides a theoretically solid criterion based on a minimax regret strategy. The NML
approach exploits a constant regret: all the distributions are treated on the same footing and
the one that best fits the data is chosen. Interestingly, the enumerative two-part MDL code
for multinomial models has a strong connection with the NML approach (Boullé et al., 2016).
Despite its simplicity, this code is both a two-part and a one-part code, is optimal w.r.t. the
NML approach and is parametrization invariant.

In this paper, we investigate on two-part codes for multinomial models based on a hier-
archical encoding of the model parameters. Although they loose the appealing theoretical
properties of the alternative NML code, they reach a better compression on large regions of
the parameter space, namely in case of unbalanced multinomial distributions, with a negligi-
ble loss on the rest of the parameter space. We present an application of multinomial models
to joint density estimation. We show that using the proposed hierarchical multinomial code
significantly improves the quality of the retrieved models in the case of peaked densities, which
closely relates to unbalanced distributions.

The rest of the paper is organized as follows. For self-containment reasons, Section 2
presents NML codes for the multinomial distribution. Section 3 introduces a hierarchical
code for the multinomial distribution and compares it to alternative enumerative NML code.
Section 4 presents an application of these codes to joint density estimation and analyzes the
impact of the chosen code, from balanced to unbalanced data. Finally, Section 5 summarizes
this paper.

2 NML codes for multinomial distribution

Let us consider the multinomial model with parameter θ = (θ1, . . . , θm),
∑m
j=1 θj = 1, ∀j, θj >

0, such that Pθ(X = j) = θj , in the case of m-ary sequences xn ∈ Xn of size n. For a given
sequence xn, Pθ(xn) =

∏m
j=1 θ

nj
j , where nj is the number of occurrences of outcome j in

sequence xn.

2.1 Standard NML approach

Using universal coding, a grounded approach is proposed to evaluate the model complex-
ity, based on the Shtarkov NML code (Shtarkov, 1987), which provides strong theoretical
guarantees (Rissanen, 2000).

It exploits the following NML distribution P
(n)
nml on Xn:

P
(n)
nml(x

n) =
Pθ̂(xn)(x

n)∑
yn∈Xn Pθ̂(yn)(y

n)
(1)

where θ̂(xn) is the model parameter that maximizes the likelihood of xn.
The log of the denominator stands for the parametric complexity COMP (n)(θ) of the

model whereas the negative log of the numerator is the stochastic complexity of the data
given the model. The sum of both terms provides the NML code. It is noteworthy that the
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NML code is a one-part rather than two-part code: data is encoded with the help of all the
model hypotheses rather than the best hypothesis.

The parametric complexity of the NML universal model with respect to a k-parameter
exponential family model is usually approximated by k

2
log n

2π
(Grünwald, 2007). In the case

of the multinomial distribution with (m− 1) free parameters, this gives m−1
2

log n
2π

. A better
approximation based on Rissanen’s asymptotic expansion (Rissanen, 1996) is presented in
(Kontkanen, 2009):

COMP
(n)
nml(θ) =

m− 1

2
log

n

2π
+ log

πm/2

Γ(m/2)
+ o(1). (2)

where Γ(.) is the Euler gamma function. Still in (Kontkanen, 2009), a sharper approximation
based on Szpankowski’s approximation (Szpankowski, 1998) is presented. This last approxi-
mation, far more complex is very accurate w.r.t. n, with o( 1

n3/2 ) precision. We present below

its first terms until O( 1√
n

).

COMP
(n)
nml(θ) =

m− 1

2
log

n

2
+ log

√
π

Γ(m/2)
+O(

1√
n

). (3)

Finally, (Kontkanen and Myllymäki, 2007; Mononen and Myllymäki, 2008) propose an
exact computation of the multinomial parametric complexity, at the expense of sophisticated
algorithms with quasilinear computation time, or even sub-linear computation time in case
of fixed precision.

2.2 Enumerative two-part MDL

We present the enumerative two-part code for multinomial distributions (see for example
(Grünwald, 2007) Example 10.1 Coding by Giving an Index, also called conditional two-part
code) using its NML interpretation (Boullé et al., 2016).

2.2.1 Enumerative interpretation

Given a sample size n, the number of tuples (n1, n2, . . . , nm) such that
∑m
j=1 nj = n is(

n+m−1
m−1

)
. The multinomial model parameters are encoded using a uniform prior

P
(
θ =

(n1

n
,
n2

n
, . . . ,

nm
n

))
= 1/

(
n+m− 1

m− 1

)
,

leading to L(θ) = log
(
n+m−1
m−1

)
.

Second, the data xn is encoded given the θ parameter. The following likelihood is exploited,
using a discrete probability distribution for encoding the finite size data sample xn.

For θ 6=
(
n1(x

n)
n

, n2(x
n)

n
, . . . , nm(xn)

n

)
, we cannot encode the data and P (xn|θ) = 0.

For θ = θ̂(xn) =
(
n1(x

n)
n

, n2(x
n)

n
, . . . , nm(xn)

n

)
, the observed data is consistent with the

model parameter and all the possible observable data are assumed to be uniformly distributed.
The number of m-ary strings where the number of occurrences of outcome j is nj is given
by the multinomial coefficient n!

n1!n2!...nm!
. Thus the probability of observing one particular

m-ary string is P (xn|θ̂(xn)) = 1/ n!
n1!n2!...nm!

. This gives a total code length of

L(θ̂(xn), xn) = log

(
n+m− 1

m− 1

)
+ log

n!

n1!n2! . . . nm!
, (4)

defined only when θ = θ̂(xn).
Interestingly, this enumerative MDL approach results in the same code length as that

obtained in (Hansen and Yu, 2001) using Predictive Coding or Mixture Coding with a uniform
prior.
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2.2.2 NML interpretation

Let us compute the NML parametric complexity of this enumerative code on the basis of the
discrete likelihood. We call it the enumerative parameter complexity and denote eCOMP , to
distinguish it from the standard NML parametric complexity.

Similarly to the NML approach, we compute the eCOMP using the Shtarkov normalized
maximum likelihood, based on the previously defined discrete likelihood.

eCOMP (n)(θ) = log
∑

yn∈Xn
Pθ̂(yn)(y

n), (5)

= log
∑

{n1+...+nm=n}

n!

n1!n2! . . . nm!

(
1/

n!

n1!n2! . . . nm!

)
, (6)

= log

(
n+m− 1

m− 1

)
. (7)

Interestingly, we find exactly the same complexity term as the coding length of the best
hypothesis in the enumerative approach, that simply relies on counting the possibilities for
the model parameters. This shows that the enumerative code is both a two-part and a one-
part code, min-max regret optimal w.r.t. the NML approach and parametrization invariant
(since the integration is independent of the parametrization). We have an exact formula
for the complexity term, very simple to compute. Using Stirling’s approximation log n! =
n logn− n+ 1

2
log 2πn+O(1/n), we get the following asymptotic approximation:

eCOMP (n)(θ) = (m− 1)(logn− log(m− 1) + 1)− 1

2
log 2π(m− 1) +O(

1

n
). (8)

3 Hierarchical multinomial distributions

Let us introduce a hierarchical way of coding multinomial distributions. Let use assume that
the m outcomes are divided into two groups A and B of size mA and mB , with m = mA+mB .
Let nA and nB be the total number of occurrences for the outcomes in each group.

nA =
∑mA
j=1 nj , n

B =
∑m
j=mA+1 nj , n = nA + nB .

Instead of defining a prior for the flat vector of probabilities of outcomes like in Section 2,
we exploit the hierarchy of the parameters using a prior for the definition of the two groups
of outcomes, then a prior for the sub-vector of probabilities within each group.

3.1 Hierarchical enumerative two-part MDL

Let us consider a hierarchical multinomial model with parameter θH = (θR, θA, θB), were θR

represents the parameter of a binomial model at the root of the hierarchy, and θA, θB are the
parameters of the sub-multinomial models for the groups A and B of outcomes.

We first encode the partition of the m outcomes into two groups A and B. We assume that
any partition into at most two groups are equiprobable. The number of partition of m values
into k groups is given by the Stirling number of the second kind S(m, k). For bi-partitions, we
have the following closed formula: S(m, 2) = 2m−1 − 1. Overall, S(m, 1) + S(m, 2) = 2m−1.
Assuming uniform probabilities, the probability of one partition is thus 1

2m−1 . This gives a
code length of

(m− 1) log 2. (9)

We use enumerative codes presented in Section 2.2 to encode both the binomial and
multinomial distributions involved in the hierarchical multinomial model.

We then encode a binomial with n occurrences and two outcomes: belonging to group A
or B. The code length for this binomial distribution is

L(θR(xn), xn) = log(n+ 1) + log
n!

nA!nB !
. (10)
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Then, within each group, we encode the outcomes using two sub-multinomial distributions,
for nA occurrences with mA outcomes and nB occurrences with mB outcomes. We get

log

(
nA +mA − 1

mA − 1

)
+ log

nA!

n1!n2! . . . nmA !
(11)

and

log

(
nB +mB − 1

mB − 1

)
+ log

nB !

nmA+1!nmA+2! . . . nmA+mB !
. (12)

Adding all contributions and rearranging the terms of the binomial and multinomial co-
efficients, we get

L(θH(xn), xn) = (m− 1) log 2 (13)

+ log(n+ 1) + log

(
nA +mA − 1

mA − 1

)
+ log

(
nB +mB − 1

mB − 1

)
(14)

+ log
n!

n1!n2! . . . nm!
, (15)

As expected, we get the same likelihood term as the code length of the enumerative
multinomial distribution presented in Section 2.2. Both approaches differ only by the code
length of their parameters, that is their enumerative parameter complexity 2.

The enumerative parameter complexity eCOMP (n)(θH) consists of the first four terms of
formula 13. The first term encoded the partition of the outcomes into two groups, the second
one the number of outcomes per group, the third and fourth ones the multinomial parameters
within each group.

3.2 Hierarchical versus enumerative multinomial models

Let us introduce the difference of code length between the hierarchical and the enumerative
multinomial models, that reduces to the difference of their enumerative parameter complexity.

δeCOMP (n)(θH , θ) = (m− 1) log 2 (16)

+ log(n+ 1) + log

(
nA +mA − 1

mA − 1

)
+ log

(
nB +mB − 1

mB − 1

)
(17)

− log

(
n+m− 1

m− 1

)
. (18)

Let evaluate this difference in the case where m = 3, with one first group A = {m1}
containing a frequent outcome (n1 = 20) and a second group containing two rare outcomes
B = {m2,m3} (n2 = n3 = 1). We have mA = 1,mB = 2, nA = 20, nB = 2, n = 22.

δeCOMP (n)(θH , θ) = 2 log 2 + log 23 + log

(
20

0

)
+ log

(
3

1

)
− log

(
24

2

)
, (19)

= 2 log 2 + log 23 + log 3− log
24× 23

2
, (20)

= 0. (21)

In this special case, both approaches result in exactly the same code length. We can check
that for a slightly less frequent outcome m1 with n1 = 19, we have δeCOMP (n)(θH , θ) ≈
0.0426, and conversely with n1 = 21, we have δeCOMP (n)(θH , θ) ≈ −0.0408 Therefore, even
for multinomial models with only three outcomes, the hierarchical model obtains shorter code
lengths for some data sets.

2In the paper, the term parametric complexity (COMP) is employed for the standard NML multinomial code,
whereas the term enumerative parameter complexity (eCOMP ) is used for the enumerative and hierarchical multi-
nomial codes, both considered as two-part codes, for the part that encodes the model parameters.
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3.3 Alternative hierarchical multinomial prior

An alternative prior is possible for the partition of the m outcomes into two groups A and B.
The term (m − 1) log 2 is based on the enumeration of all the possible partitions of m into
two groups, and it exploits a Stirling number of the second kind. Instead, we can first choose
the numbers of outcomes (mA,mB),mA ≥ mB in each group.

The number of such distinct pairs (mA,mB) has been studied in combinatorics. An integer
partition is a way of writing an integer n as a sum of positive integers. For example, 4 can
be partitioned in five distinct ways: 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. With a restricted
number of parts k, pk(n) is the number of partitions of n into exactly k parts. For example,
4 can be partitioned in two parts in two distinct ways: 3 + 1, 2 + 2. In our problem, we are
interested in partitioning m as the sum of mA and mB . We have

p2(m) = bm/2c. (22)

Given (mA,mB), the number of partitions Π(mA,mB) of the m outcomes into two groups
A and B is given by the binomial coefficient

(
m
mA

)
. For any (mA,mB) such than mA 6= mB ,

this gives the exact number of partitions, but for mA = mB , A and B play the same role and
the partitions are counted twice. Overall, we get

Π(mA,mB) =

(
m

mA

)
1

1 + 1{mA=mB}
(23)

Overall, assuming that any pair of sizes of the two groups are equiprobable, then that
any partition of the m outcomes on the groups of given sizes are equiprobable, we get the
following code length

c(Π) = logbm/2c+ log

(
m

mA

)
− log

(
1 + 1{mA=mB}

)
. (24)

For simplicity reasons, in the rest of the paper, we will use a tight upper bound of this code
length:

c(Π) = logm/2 + log

(
m

mA

)
. (25)

Overall, we get the following enumerative parameter complexity.

eCOMP (n)(θH
′

) = logm/2 + log

(
m

mA

)
(26)

+ log(n+ 1) + log

(
nA +mA − 1

mA − 1

)
+ log

(
nB +mB − 1

mB − 1

)
. (27)

Compared to the previous enumerative parameter complexity (cf. Section 3.1), the differ-
ence is that the partition of the m outcomes into two groups is encoded using a code length
of (m− 1) log 2 in the first case and logm/2 + log

(
m
mA

)
in the second case.

3.4 Asymptotic difference of code length

Let us study the asymptotic difference of code length between:

• the hierarchical multinomial model (Section 3.1): θH ,

• its alternative version (Section 3.3): θH
′
,

• the enumerative multinomial model (Section 2.2): θ.

As seen before, all codes have the same stochastic complexity, so that we focus on their
enumerative parameter complexity. Let us introduce the proportion α of occurrences in group
A (α = nA/n) and β the proportion of outcomes in group A (β = mA/m).

For θ ∈ [0; 1], let us introduce the entropy H(θ) = −θ log θ − (1 − θ) log(1 − θ) and the
variance var(θ) = θ(1− θ).
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Theorem 1. The difference of enumerative parameter complexity between the hierarchical
multinomial model and its alternative version is

δeCOMP (n)(θH , θH
′

) = m(log 2−H(β))− 1

2
logm+

1

2
log 2πvar(β) +O(1/m) (28)

Proof. See Appendix A.

As 0 ≤ β ≤ 1, we have 0 ≤ H(β) ≤ log 2. Theorem 1 shows that the alternative
hierarchical multinomial model gets the smaller enumerative parameter complexity, except
when the groups A and B have about the same number of outcomes (mA ≈ m/2). For a
given proportion β of outcomes, the difference grow linearly with m. In the extreme case of
two groups with the same number of outcomes (β = 1/2), the alternative model is dominated
only by a small margin of 1

2
logm.

Theorem 2. The difference of enumerative parameter complexity between the hierarchical
multinomial model and the enumerative one is

δeCOMP (n)(θH , θ) = m

(
log 2 +H(β)−H(α) + (β − α) log

α

1− α

)
+

1

2
logm (29)

−1

2
(2 log var(α)− log var(β) + log 8π) (30)

+
m2

n+m

(β − α)2

2α(1− α)
+O(

m3

n2
) (31)

Proof. See Appendix A.

Theorem 2 shows that the difference of enumerative parameter complexity between the
hierarchical multinomial model and the enumerative one grows linearly with m, with a com-
plex factor that depends on the proportion β of outcomes and α of occurrences. However, the
difference heavily depends on the absolute numbers m of outcomes and n of occurrences, and
the asymptotic behavior is reached only for n� m. If we focus on this asymptotic behavior
when n goes to infinity, we get the simplified formula

δeCOMP (n)(θH , θ) = m

(
log 2 +H(β)−H(α) + (β − α) log

α

1− α

)
+O(logm).(32)

With the alternative prior, we have

δeCOMP (n)(θH
′

, θ) = m

(
2H(β)−H(α) + (β − α) log

α

1− α

)
+O(logm). (33)

Figure 1 compares the enumerative parameter complexity of the hierarchical multinomial
model and the enumerative one in the asymptotic case (n � m). When the number of
outcomes and occurrences are balanced, the enumerative multinomial gets the smallest enu-
merative parameter complexity (blue regions in the center of the figures), whereas in the
unbalanced case, the best model is the hierarchical one (red regions in the upper left and
bottom right corner of each figure). Among the two variants of hierarchical multinomial mod-
els, the alternative one (right figure) is clearly the best one, with a far larger region of the
parameter space where it dominates the enumerative multinomial model. For example, when
the two groups have the same number of occurrences (α = 0.5), the first hierarchical multi-
nomial model is never better than the enumerative multinomial model, while the alternative
hierarchical multinomial model is better when the proportion of outcomes in the smallest
groups if beyond around 11% (β ∈ [1; 0.11] ∪ [0.89; 1]). In the rest of the paper, we focus on
the alternative hierarchical multinomial model.

3.5 Non-asymptotic difference of code length

Figure 2 focuses on the non-asymptotic case in the comparison between the enumerative pa-
rameter complexity of the alternative hierarchical multinomial model and the enumerative
one. Like in Figure 1, the regions of the (α, β) parameter space are in blue when the enu-
merative multinomial code is better (balanced case) and in red when the hierarchical code is
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β β

α α

Figure 1: Comparison between the enumerative parameter complexity of the hierarchical multi-

nomial model (θH on the left and θH
′

on the right) and the enumerative one.

better (unbalanced case). The black contour line represents the boundary where each model
gets the same code length. The gray contour lines are draw every 10% in the ratio of the
minimum of the two code lengths over the other one. The blue and red colors are normalized
and represent the same ratio over all panels. Similarly to Figure 1, the regions of dominance
of each model are represented by a blue region in the center or a red region in the upper left
and bottom right corners. Altogether, the hierarchical multinomial model dominates the enu-
merative one in case of unbalanced distributions, when a majority of occurrences are related
to a minority of outcomes.

The asymptotic behavior is empirically reached for n/m > 10. Even when the num-
ber of occurrences if about the same as the number of outcomes (n ≈ m), the hierarchical
multinomial model keeps large regions of dominance.

When the number of occurrences is far smaller than the number of outcomes (n � m),
the enumerative multinomial model looks better almost everywhere in the α × β parameter
space. However, the figures are misleading: for n� m, the number of outcomes j such that
nj > 0 is bounded by m. In this case, one can consider a first group containing all the data
(nA = n and mA = m) while the second group is empty. The interesting part of the α × β
parameter space reduces to β ∈ [0; n

m
] ∪ [1 − n

m
; 1], which is precisely the part of the figures

where the hierarchical multinomial models exhibits an important region of dominance.

3.6 Discussion

In this section, we discuss several points related to the new hierarchical-based code for multi-
nomial models.

3.6.1 Combining the hierarchical and enumerative multinomial models

One can easily combine the hierarchical and enumerative multinomial models, by first selecting
one of then using a binary choice (log 2 to encode this choice), then encoding the multinomial
parameters using either the hierarchical or the enumerative multinomial distribution. Using
this combined model, we get a code length that is close (with a log 2 margin) to the minimum
of the two code lengths. Let us remember that the enumerative code is a NML code, with a
constant regret. The combined code is no longer NML, but its regret is never larger than the
NML one with margin of log 2, but there are regions of the parameter space where its regret
can be far smaller.

We have investigated a basic hierarchy with a parameter tree of depth one and two leave
nodes. This could be extended to parameter trees of any depth with any number of branches
per tree node. This is left for future work.
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n = 100,m = 100 n = 100,m = 1000 n = 100,m = 10000

n = 1000,m = 100 n = 1000,m = 1000 n = 1000,m = 10000

n = 10000,m = 100 n = 10000,m = 1000 n = 10000,m = 10000

Figure 2: Comparison between the enumerative parameter complexity of the alternative hierar-

chical multinomial model (θH
′

) and the enumerative one, in the non-asymptotic case. The (X,Y )
axis of each plot are (α, β), as in Figure 1.

3.6.2 Selecting the best hierarchical multinomial model

The proposed hierarchical multinomial model is actually a family of models. For a given data
set with m outcomes and n =

∑m
j nj occurrences, every partition of the m outcomes into two

groups can be considered and the one resulting in the smallest code length can be selected.
This raises a difficult optimization problem, as the number of bi-partitions of the outcomes
is 2m−1. However, as the parameter complexity of the hierarchical model depends only on
n, nA, nB ,m,mA,mB and as the figures in sections 3.4 and 3.5 show a behavior that depends
on the unbalance rate of groups, this suggests that the optimal solution should consist in one
group containing the least frequent outcomes and the other one containing the most frequent
outcomes. In other words, we assume that all the outcomes in the group containing the most
frequent outcomes should be more frequent that any outcome in the other group. Proving
this assumption is left for future work.

We can then sort the outcomes by decreasing frequency, then perform a linear search
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by considering all the bi-partitions where the first group contains the k, 0 ≤ k ≤ m least
frequent outcomes. This simple optimization algorithm requires O(n) time to compute the
frequencies of the outcomes, then O(m logm) time to sort the outcomes and finally O(m)
time to compute all the code lengths related to the bi-partitions of the outcomes and select
the best one. Overall, this optimization algorithm has a O(n + m logm) time complexity to
retrieve the best hierarchical multinomial model.

3.6.3 Relation with alternative codes

The multinomial distribution is one of most simple and well studied distributions, with either
its NML or enumerative code (see Section 2). Although there is no obvious structure in its
parameter space, the hierarchical code suggested in this paper manages to produce a new
code that is more efficient in large regions of the parameter space, in case of unbalanced
multinomial distributions.

Actually, this code can be related to luckiness NML (De Rooij and Grünwald, 2009;
Grünwald, 2007), with codes that are never much worse, but sometimes much better than
the NML code. The hierarchical code benefits from unbalanced distributions to better com-
press the data. A more Bayesian approach could be considered, by using a beta-binomial
distribution for the choice of the frequent or rare events in the hierarchical schema, or more
generally a Dirichlet-multinomial distribution over the outcomes of the multinomial distribu-
tion. One could achieves better codes using a particular form of luckiness NML, which relates
to extending the Shtarkov distribution (Shtarkov, 1987) with an informative prior. However,
this raises novel problems, such as the choice of hyper-parameters for the beta-binomial or
Dirichlet-multinomial distribution, as well a hard calculation problems, to compute or even
approximate the code length of these extended NML codes.

The code suggested in this paper exploits enumerative codes as building blocks for encoding
the multinomial distribution at each stage of the hierarchy. Alternatively, standard NML
codes could be used in each leaf of the hierarchy. This is not considered in the paper, since
enumerative codes are at least as efficient as NML codes (Boullé et al., 2016), while being far
simpler to compute (see Section 2.1). As choosing the best hierarchical code relies on a search
algorithm (cf. Section 3.6.2) with at least linear complexity, the enumerative codes have the
advantage to remain usable in practice for large scale data and models.

3.6.4 Interest for model selection in applications

The proposed code for hierarchical multinomial models looks interesting for unbalanced dis-
tributions, when one part of the outcomes are significantly more frequent than the other ones.
In many domains, such unbalanced distributions are rather usual (Newman, 2005), as for
example in text mining where the distribution of words tends to follow a Zipf’s law. In these
domains, modeling methods have been proposed, that exploit the multinomial distributions
as a building block for more complex models. This is the case for example with mixtures
of multinomial topic models in text mining (Mei et al., 2007), community detection in so-
cial networks (Sun et al., 2007), analysis of gene expression data via biclustering algorithms
(Madeira and Oliveira, 2004), analysis of call detail records in large telecommunication net-
works (Guigourès et al., 2015). In Section 4, we present a preliminary study of the potential
benefit of using the proposed code for model selection in case of joint density estimation.

4 Application to Joint Density Estimation

Joint density estimation (Scott, 2015) has been studied using a variety of approaches, including
histogram based methods (Lugosi and Nobel, 1996) or co-clustering based methods (Seldin
and Tishby, 2010) that are suitable for data visualization. In the case of peaked densities,
which naturally occur for example in regression problems, histogram based methods are likely
to output a set of bins with unbalanced frequencies. This application is then a good candidate
to evaluate the interest of using hierarchical codes.

In this section, we present a model family for joint density estimation between two nu-
merical variables, which leverages one of the simplest models that relies on the multinomial
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distribution. We suggest an application of these models for exploratory analysis, with de-
tection of correlation across variables and a visualization method. We then illustrate the
behavior of the method on some real and artificial data sets. Finally, we study the interest of
using the hierarchical multinomial code to select better models.

4.1 Joint Density Estimation

We present a specialization of the functional data clustering method (Boullé, 2012) to the case
of one single function, that reduces to density estimation between two numerical variables.

4.1.1 Data grid models

Let X and Y be two numerical variables and (x, y)n a data set of n points. We choose a
model family that describes the ranks of the values in the data set rather than the values
themselves. Therefore, the models are invariant w.r.t. any monotonous transformation of the
values of X and Y and robust w.r.t. atypical values (outliers). We thus use a rank based
transformation of the values of X and Y , leading to integer valued variables.

We consider joint density estimation models M where the numerical variables X and Y
are partitioned into I and J intervals. The Cartesian product of these two partitions forms a
partition of the whole data set into a data grid containing G = I×J cells. Then, the n points
are distributed on the G cells according to a multinomial distribution θIJ = {θij}1≤i≤I,1≤j≤J .
A data grid model M is entirely defined by the parameters I, J and θIJ . It can be interpreted
as a piecewise-constant (per cell) joint density estimation of the ranks of variables X and Y .
It is noteworthy that only truly bivariate (I > 1, J > 1) models make sense for joint density
estimation (see Section 4.1.3).

4.1.2 Selection of the best model

n12 = 0 n22 = 8 n.2 = 8
n11 = 12 n21 = 0 n.1 = 12
n1. = 12 n2. = 8 n = 20

Data set points Data grid Data frequencies

Figure 3: Toy data set.

Figure 3 shows a toy data set and gives an example of a data grid with 2 × 2 cells, with
the notations for all the data frequencies introduced in this section.

We do not want to make any strong assumption to encode I and J , and use the universal
prior for integer (Rissanen, 1983), which is essentially as close to uniform as possible. We use
the enumerative multinomial code (Section 2.2) to encode θIJ .

The obtained enumerative parameter complexity of M is then

eCOMP (n)(I, J, θIJ) = log? I + log? J + log

(
n+ IJ − 1

IJ − 1

)
. (34)

Let nij be the frequencies per cell in the data set,
∑
i

∑
j nij = n, Using the enumerative

multinomial code, the cell frequencies can be encoded by

log
n!∏I

i=1

∏J
j=1 nij !

. (35)
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The frequencies ni. per interval of X and n.j per interval of Y can be obtained by sum-
mation over the cells according to

ni. =

J∑
j=1

nij , n.j =

I∑
i=1

nij . (36)

Given the model parameters, the data is completely encoded when the ranks of the points
are encoded. As the intervals on X and Y are ordered, we need to encode the ranks of the
points within each interval to complete the encoding of the data. We assume that within each
interval of size ni., all the ni.! possible rankings are equiprobable. We then need

∑I
i=1 logni.!

to encode the ranks of the points for variable X, and
∑J
j=1 logn.j ! for variable Y .

Overall, the code length of the proposed code is

L(θ̂IJ((x, y)n), (x, y)n) = log? I + log? J + log

(
n+ IJ − 1

IJ − 1

)
(37)

+ logn!−
I∑
i=1

J∑
j=1

lognij ! +

I∑
i=1

logni.! +

J∑
j=1

logn.j ! .

The first line stands for the enumerative parameter complexity and is mainly a multinomial
model indexed by the size I × J of the data grid. The second line represents the stochastic
complexity: it consists in a multinomial term for the distribution of the points in the cells,
then factorial terms for the ranking of the points within each interval of X and Y . For the
toy data set of Figure 3, the 2× 2 data grid gets a shorter coding length than the 1× 1 data
grid:

L(θ̂11((x, y)n), (x, y)n) = 2 log? 1 + 2 log 20! ,

≈ 86.78,

L(θ̂22((x, y)n), (x, y)n) = 2 log? 2 + log

(
23

3

)
+ log 20!− (log 12! + log 0! + log 0! + log 8!)

+(log 12! + log 8!) + (log 12! + log 8!),

≈ 83.90.

The best joint density estimation is selected by optimizing criterion (37). The optimization
algorithm is described in (Boullé, 2012) 3, with a time complexity of O(n

√
n logn). Mainly,

the algorithm is a greedy bottom-up heuristic that starts with fine grained intervals and
iteratively merges the adjacent intervals that best improve the criterion.

4.1.3 Special cases

We study the behavior of the code length in the case of some particular models or data sets.
We show that the best selected model reduces to one single cell in case of two independent
variables, whereas the correlation between two identical variables is retrieved by approximat-
ing the joint density between the ranks of variables, with a precision that increases with the
size of the data set.

Null model. Let us consider the null model M∅ (I = 1, J = 1, θ11) that corresponds to
the case of one single interval for X and Y , resulting in one single cell. We get

L(M∅((x, y)n), (x, y)n) = 2 log? 1 + 2 logn!. (38)

The obtained code length mainly corresponds to encoding the ranks of X and Y , indepen-
dently for each variable. Compared to the null model, a truly bivariate model (I > 1, J > 1)
encodes the two variables jointly, by encoding the correlation pattern using a data grid, then

3Sofware available at www.khiops.com
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encoding each variable using the correlation pattern. In case of correlated variables, its coding
length is below that of the null model. However, it is lower bounded by half the coding length
of the null model, as shown below.

L(θ̂IJ((x, y)n), (x, y)n) = log? I + log? J + log

(
n+ IJ − 1

IJ − 1

)
(39)

+ logn!−
I∑
i=1

J∑
j=1

lognij ! +

I∑
i=1

logni.! +

J∑
j=1

logn.j ! ,

> log? I + logn! +

I∑
i=1

log
ni.!

ni1!ni2! . . . niJ !
, (40)

>
L(M∅((x, y)n), (x, y)n)

2
. (41)

Maximal model. Let us consider the maximal model Mmax (I = n, J = n, θnn) that
corresponds to the finest possible model, with one interval per value for X and Y , resulting
in n× n cells. In this case, the stochastic complexity part of the code length is null and the
code length reduces to its enumerative parameter complexity part. For n > 1, we get

L(Mmax((x, y)n), (x, y)n) = 2 log? n+ log

(
n+ n2 − 1

n2 − 1

)
, (42)

> 2 log? n+ (n2 − 1) logn− logn!, (43)

> L(M∅((x, y)n), (x, y)n). (44)

The obtained code length is always larger than that of the null model. Therefore, the finest
model, with a perfect fit of the training data, can never be selected.

Univariate model. Let us consider a univariate model (I = 1, J > 1, θ1J), where there
is one single interval for one of the variables and several for the other one. We obtain

L(θ̂1J((x, y)n), (x, y)n) = log? 1 + log? J + log

(
n+ J − 1

J − 1

)
, (45)

+ logn!−
J∑
j=1

logn.j ! + logn! +

J∑
j=1

logn.j !, (46)

= L(M∅((x, y)n), (x, y)n) (47)

+ log? J − log? 1 + log

(
n+ J − 1

J − 1

)
. (48)

The obtained code length is always larger than that of the null model. Therefore, the univari-
ate model, which cannot describe any correlation pattern between the variables, can never be
selected.

Independent variables. Let us assume that X and Y are independent and that the data
set is partitioned in I and J intervals of equal frequency. Asymptotically, we get ni. ≈ n/I,
n.j ≈ n/J , nij ≈ n/IJ . Using the Stirling approximation logn! = n(logn− 1) +O(logn), we
get
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L(θ̂IJ((x, y)n), (x, y)n) ≈ log? I + log? J + log

(
n+ IJ − 1

IJ − 1

)
(49)

+ logn!−
I∑
i=1

J∑
j=1

log
n

IJ
! +

I∑
i=1

log
n

I
! +

J∑
j=1

log
n

J
!, (50)

≈ log? I + log? J + log

(
n+ IJ − 1

IJ − 1

)
(51)

+n(logn− 1)− n(logn− log IJ − 1) (52)

+n(logn− log I − 1) + n(logn− log J − 1) +O(logn), (53)

≈ log? I + log? J + log

(
n+ IJ − 1

IJ − 1

)
+ 2 logn! +O(logn).(54)

Although this relies on an approximation, this shows that in case of two independent
variables, any detailed model (with I > 1, J > 1) should asymptotically have a code length
larger than that of the null model. Extensive experiments, not reported here, show that the
null model is actually almost always the selected one in case of two independent variables.

Identical variables. Let us assume that X = Y and that we partition the data set using
the same number I = J of intervals for both variables. In this case, all the diagonal cells have
the same frequency than that of their related X or Y interval and all the non-diagonal cells
are empty:

ni. = n.i = nii, ∀i, 1 ≤ i ≤ I, (55)

nij = 0, ∀i, 1 ≤ i ≤ I, ∀j, 1 ≤ j ≤ I, i 6= j. (56)

We obtain

L(θ̂II((x, x)n), (x, x)n) = 2 log? I + log

(
n+ I2 − 1

I2 − 1

)
+ logn! +

I∑
i=1

logni.! (57)

For a given I > 1, let us analyze the case of a model with equal frequency intervals (ni. ≈ n/i).
Using the Stirling approximation, we get

L(θ̂II((x, x)n), (x, x)n) = (I2 − 1) logn+ n(logn− 1) + I
n

I
(log

n

I
− 1) +O(logn),(58)

= (I2 − 1) logn+ 2n(logn− 1)− n log I +O(logn), (59)

= L(M∅((x, y)n), (x, y)n) + I2 logn− n log I +O(logn). (60)

For I > 1 and n large enough, we get I2 logn < n log I, so that the obtained code length
gets smaller than that of the null model. Therefore, in case of identical variables, the diagonal
models are preferred to the null model, meaning that the high correlation between X and Y
is asymptotically retrieved by the joint density estimation method, whatever be the precision
(given by the number I of intervals).

4.2 Correlation detection and visualization for exploratory ana-
lysis

Density estimation is a key feature, used as a building block in many statistical models, for
example to compute the conditional probability tables in a Bayesian networks (Silander et al.,
2010; Guo et al., 2017). In this section, we suggest an application of our joint density esti-
mation method for exploratory analysis, with a criterion to evaluate the correlation between
two variables and a visualization method.
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4.2.1 Correlation criterion

Given two numerical variables X and Y and a data set of size n, the null model M∅ (cf.
Formula 38) correspond to the encoding of the values of X and Y independently. As M∅
encodes the rank of the variables, not their values, its coding length of L(M∅) depends only
on n, not on X or Y .

Let M̂(X,Y ) be best joint density estimation model between X and Y inferred from the

data. We suggest the following 0−1 normalization of the coding length of M̂(X,Y ) to evaluate
the correlation between X and Y :

Level(X,Y ) = 1− L(M̂(X,Y ))

L(M∅)
. (61)

The Level is 0 in case of independent variables, where the best model is no better than the
null model, and it is always below 1. It can be interpreted as a compression gain compared
to the null model. In our case of joint density models between two variables, the analysis of
the null model in Section 4.1.3 provides the following tighter upper bound:

0 ≤ Level(X,Y ) <
1

2
. (62)

In a data set with a set of variables, we can then evaluate the Level of each pair of numerical
variables to identify the most correlated ones.

4.2.2 Visualization method

Beyond the criterion introduced previously, it is interesting to visualize the correlation pattern
between two variables in an exploratory analysis application. We suggest to exploit the mutual
information (Cover and Thomas, 1991) between the ranks of the variables to do so.

Given two numerical variables X and Y , the best joint density estimation model M̂(X,Y )
provides a piecewise-constant joint probability estimator of the ranks of the variables, with

prob(rank(X) ∈ Intervali, rank(Y ) ∈ Intervalj) =
nij
n
, (63)

prob(rank(X) ∈ Intervali) =
ni.
n
, (64)

prob(rank(Y ) ∈ Intervalj) =
n.j
n
. (65)

We can then estimate the mutual information MI(X,Y ) between the ranks of X and Y :

MI(X,Y ) =

I∑
i=1

J∑
j=1

nij
n

log

nij
n

ni.
n

n.j
n

, (66)

=

I∑
i=1

J∑
j=1

nij
n

log
nnij
ni.n.j

. (67)

Let MIij(X,Y ) =
nij
n

log
nnij
ni.n.j

be the contribution of cell (i, j) to the mutual information.

Whereas the mutual information is 0 in case of independent variables and greater than 0 in
case of correlated variables, the contribution MIij(X,Y ) of each cell can be either positive,
if the frequency in the cell is above that expected in case of independent variables, or nega-
tive otherwise. We propose to visualize the correlation between two variables by drawing a
bivariate plot of the data grid cells, using the red color in case of cell frequency higher than
expected, the blue color in case of in case of cell frequency lower than expected, and the white
color in case of cell frequency as expected or null. This is illustrated in next section.

4.3 Illustration on real and artificial data sets

We illustrate the behavior of the density estimation method on real and artificial data sets.
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4.3.1 Appliances energy prediction data set

The appliance energy prediction data set (Candanedo et al., 2017), available from UCI Irvine
(Blake and Merz, 1996), relates to a problem of prediction of the energy use of appliances in
a building. Data include measurements of temperature and humidity sensors from a wireless
network, weather from a nearby airport station and recorded energy use of lighting fixtures.
The data was logged every 10 min during 4.5 months. The data set includes 19,735 record
and 31 variables:

• appliance and light energy consumptions,

• temperature and humidity (T1, . . ., T9, RH 1, . . ., RH 9 ) per room of the building,

• six weather measurements (temperature, humidity, pressure, ...),

• three features extracted from the timestamps (number of second since midnight (NSM ),
day of week, weekend),

• two random variables, used to calibrate feature selection methods.

In (Candanedo et al., 2017), an exploratory analysis is performed using bivariate scatter
plots and computing the Pearson correlation coefficient, which is a measure of the linear
dependence between two variables. Similarly, we apply our joint density estimation method
to the 465 = 31 ∗ 30/2 pairs of numerical variables of the data set. We obtain 404 correlated
pairs of variables, whose Level is greater than 0. All the pairs involving one of the two random
variables get Level = 0, meaning that the method is robust to noise, without needing any
calibration. But surprisingly, the two random variables are highly correlated, with Level =
0.204 and a 90 × 90 grids of cells, with all the points lying in the diagonal cells. Actually,
after inspecting the data, the two variables have exactly the same values: they may have been
generated using the same random seed.

Focusing on the application variables, we use the Level criterion to sort the pairs by
decreasing correlation. The Level criterion provides a non parametric evaluation of the corre-
lation between any two variables, contrary to the Pearson correlation coefficient that is blind
to non-linear dependence. The first family of correlated pairs involves variables related to
temperature, followed by variables related to humidity. Then, there is long tail of pairs with
decreasing correlation, and a variety of correlation patterns.
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Figure 4: Scatter plots and density estimation models for the 1st, 10th, 21st, 182nd, 331st corre-
lated pairs of variables of the appliances energy prediction data set.

Figure 4 displays the scatter plot and the density estimation model for the pairs ranked
1st, 10th, 21st, 182nd, 331st. The visualization method allows to summarize the joint density
per pair of variables, with the red cells including more instances that expected in case of
independent variables, and conversely for the blue cells. When the number of points is large
and the pattern noisy, the visualization allows an easier understanding of the correlation
pattern, that may be unclear using the scatter plot only. Note that in the distribution tails,
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few points per cell need large boxes to be represented on the scatter-plots: the interpretation of
the importance of the correlation patterns should be based on the intensity of the colors rather
than the size of the boxes. The first pair on the left has a quasi-linear correlation pattern.
The two next pairs have close values of Level, but with different correlations patterns. The
two last pairs on the right have complex non linear correlation patterns.

Overall, the exploratory analysis performed using the joint density estimation method
allows to reliably and accurately estimate the correlation between all the pairs of variables
and to bring many insights using the Level criterion and the visualization method.

4.3.2 Challenging artificial data sets

D1 D2 D3

Figure 5: Three artificial data sets.

Figure 5 shows three artificial data set D1, D2, D3 containing n = 1000 points generated
on the [0; 1]× [0; 1] square, where it looks challenging to decide whether the X and Y variables
are independent or correlated, with no simple pattern emerging from a visual inspection. The
joint density estimation method is applied to these data sets, and the resulting models are
displayed in Figure 6, with the boundaries of the I × J cells of each retrieved model. The
pattern of each generative model is retrieved by the joint density estimation method.

In the D1 data set, the points are generated with independent X and Y coordinates,
and the method retrieves one single cell, meaning that the variables are independent. This
confirms empirically that the method is resilient to noise.

In the D2 data set, the points are generated according to a noisy 10 × 10 checkerboard,
where the probabilities of generating points in the checkerboard squares are alternatively
p = 0.75 and p = 0.25. With the help of the cell boundaries drawn in Figure 6, one can
actually observe that the density of points is alternatively high or low in the squares of the
checkerboard, whereas this pattern was hardly discernible from visual inspection of Figure 5.

In the D3 data set, the points are generated according to a noiseless 25×25 checkerboard,
where the probabilities of generating points in the checkerboard squares are alternatively
p = 1 and p = 0. In the generated data set with n = 1000 and 25 × 25 = 625 squares, there
so few points that the complex pattern is hard to uncover. However, the method selects this
complex joint density model, as it is more probable than the null model.

It is noteworthy that the true patterns are not perfectly retrieved with so few points. The
obtained Level is 0.001 for the D2 data set and 0.004 for the D3 data set. This means that
compared to the null model (with 1000 points), the gain in compression is only 1‰ for D2
and 4‰ for D3. For D2 in particularly, the boundaries of the checkerboard are not perfectly
retrieved and the inferred densities per cell are sometimes in reverse order of the true ones
(see missing red cells in the D2 retrieved checkerboard of Figure 6). With fewer points, the
hidden patterns are not discernible from noise and the null model is retrieved. With more
points, the true patterns are easier to retrieve, both by visual inspection and using the joint
density estimation method. This is illustrated in Appendix B, where the same experiment is
performed with 10, 000 points, resulting in very accurate retrieved checkerboard patterns.
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Altogether, the method is both robust, with a high resilience to noise, and very accurate,
with the ability to detect complex patterns with very few points.

D1 D2 D3

Figure 6: Three artificial data sets and the retrieved density estimation models.

4.4 Shorter code lengths using the hierarchical code

Instead of using the enumerative code for the multinomial distribution of the n points over
the G cells of the data grid, let us use the alternative hierarchical code introduced previously.

4.4.1 Code length using the hierarchical multinomial model

Let us split the G cells of the data grid into two groups A and B, containing the most frequent
and the least frequents cells. For example, A contains all the cells with at most one point and
B contains all the empty cells. Let mA = |A| and mB = |B| be the number of cells in each
groups, nA and nB be the number points in each group.

In formula (37), we replace the enumerative multinomial prior term by it hierarchical
alternative (cf. Section 3.3) and obtain

L(θ̂H
AB

IJ ((x, y)n), (x, y)n) = log? I + log? J (68)

+ logm/2 + log

(
m

mA

)
+ log(n+ 1) (69)

+ log

(
nA +mA − 1

mA − 1

)
+ log

(
nB +mB − 1

mB − 1

)
(70)

+ logn!−
I∑
i=1

J∑
j=1

lognij ! +

I∑
i=1

logni.! +

J∑
j=1

logn.j !. (71)

Compared to formula (37), the enumerative parameter complexity (three first lines) has
changed while the stochastic complexity (last line) if the same. The first line stands for the
choice of the numbers of intervals for X and Y . The second line represents the partition of
the cells into two groups and the number of points per groups. The third line represents the
multinomial distribution of the points on the cells, for each group.

As suggested in Section 3.6.1, we use the combined code choosing the best among the
enumerative code and the hierarchical code. In formula 72, the first log 2 term stands for the
choice between the two codes, with equal probability. Then, the shorter code length is used,
with the enumerative code in the left operand and the hieratchical code in the right operand
of the min(, ) term. The hierarchical code is optimized by applying the algorithm presented in
Section 3.6.2 on all {A,B} partitions of the outcomes of the multinomial distribution, where
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the outcomes in A are more frequent than those in B:

L(θ̂CIJ((x, y)n), (x, y)n) =

log 2 + min

(
L(θ̂IJ((x, y)n), (x, y)n), min

{A,B}

(
L(θ̂H

AB

IJ ((x, y)n), (x, y)n))

))
. (72)

4.4.2 Case of two identical variables with Gaussian noise

n = 100 n = 100, 000

Figure 7: Data sets for Y = X + ε.

We first study the potential benefit of using the hierarchical multinomial model for joint
density estimation. To understand the relation between the degree of unbalanced data, the
size of the data set and the accuracy of the density estimation, we exploit an artificial data set
consisting on two almost identical variables. Let X be a random variable uniformly distributed
on [0; 1] and Y be equal to X with an additional Gaussian noise.

X ∼ U([0; 1]), (73)

Y = X + ε, (74)

ε ∼ N (0, σ). (75)

The σ parameter allows to browse a wide range of cases, from independence between the
variables when σ → ∞ to functional dependance when σ → 0. Figure 7 displays two data
sets for σ = 0.1, with 100 points on the left and 100,000 points on the right. We perform
experiments for σ ∈ {1, 0.1, 10−2, . . . , 10−6}, with sample sizes n ranging from 2 to 100, 000
according to a geometric progression. We generate 10 random data sets for each (σ, n).

To compare the use of the enumerative code (formula 37) and that of the hierarchical one
(formula 72), we search the best solution among the data grid models MI consisting of I = J
equal frequency intervals per variable. For each data set, we thus discretize the variables
in equal frequency intervals, collect the frequencies of the resulting intervals and cells, and
compute the minimum code length obtained using each code. For each code, we keep the
model with the minimum code length over all the evaluated interval numbers.

The best model provides a piecewise-constant density estimator, where the density is
constant per cell and the cell probabilities are given by nij/n. We then assess the quality
of the estimation by computing the Kullback-Leibler divergence (KLD) (Cover and Thomas,
1991) between the estimated density and the true density. The details of this computation are
given in Appendix C. For each parameter σ and each sample size n, we compute the mean of
KLD over the ten generated data sets as well as the mean of the optimal number of intervals.

For σ = 1, the true density is not much different from noise for small sample sizes. Both
codes get the same performance and require at least 1, 000 points to start retrieving the true
pattern. For all σ ≤ 0.1, the hierarchical code gets better performance than the enumerative
code. Figure 8 shows the KLD results for σ = 0.1, 0.01 and 10−6 and Figure 9 reports the
optimal number of intervals for the related density estimation models. The case of σ = 0.1
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Figure 8: Divergence of Kullback-Leibler between the estimated density and the true density.
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Figure 9: Optimal number of intervals. �: Enumerative code •: Hierarchical code

represents the transition where the hierarchical code starts to dominate the enumerative code,
with a slight difference. For smaller σ, the hierarchical code gets superior performance, with
a far smaller KLD obtained using a much larger number of intervals. In the extreme case of
σ = 10−6 where the joint density estimation reduces to an almost noiseless regression task,
the estimation of the true density is far more accurate. For n = 100, 000, it is obtained
using around 8, 000 instead of 200 intervals, which involves a multinomial distribution with
around 64 millions of outcomes. The hierarchical code produces far more intervals than the
enumerative one, thanks to its more parsimonious prior for heavily unbalanced multinomial
distributions. It is then able to approximate the true joint distribution very accurately with
far smaller sample sizes. For example, for σ = 10−6, the hierarchical code requires 100 times
less instances to reach the best performance obtained by the enumerative code with 100, 000
instances.

This experiment demonstrates the interest of using the hierarchical multinomial code,
with an important impact on the accuracy of the selected models in case of unbalanced
multinomial distributions. Actually, combining the enumerative and hierarchical multinomial
codes, as suggested in Section 3.6, allows to improve the selected models for any multinomial
distributions. Perfectly balanced ones will be treated using the enumerative multinomial code,
whereas the unbalanced distributions will benefit from the hierarchical multinomial code, with
a smooth transition between the two kinds of models.

4.4.3 Application to the appliances energy prediction data set

We now apply the hierarchical code on the real data set introduced in Section 4.3.1. We
extend the algorithm (Boullé, 2012) referenced in Section 4.1.2 by computing the code length
of the best hierarchical model using the heuristic suggested in Section 3.6.2.

Figure 10 shows the impact of using the hierarchical code for density estimation, on the
465 pairs of variables of the appliances energy prediction data set. The pair with the best
Level is still the pair between the two random variables (cf. Section 3.6.2), but its Level
grows from Level = 0.204 and a 90× 90 grids of cells to Level = 0.315 and a 356× 356 grids
of cells: the Level is improved by more than 50%, with a far better estimation of the density.
Focusing on the application variables, about half of the pairs are better compressed using the
hierarchical code rather than the enumerative code, with a mean improvement of 2%.

In this application to joint density estimation on a real data set, using the hierarchical
multinomial code allows to improve the accuracy of the models in many cases, thus to provide
more detailed insights in the exploratory analysis task.
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Figure 10: Improvement of the Level criterion when using the hierarchical code rather than the
enumerative code.

5 Conclusion

In this paper, we have suggested a new code for multinomial distributions, based on a hierar-
chical encoding the model parameters. The outcomes are partitioned into two groups and the
occurrences are distributed on these two group using a binomial distribution. Then, within
each group of outcomes, the related occurrences are distributed according to a multinomial
distribution and encoded using the enumerative code presented in Section 2.2.

Both codes differ only in the way they encode the multinomial parameters: they results
in the same stochastic complexity, i.e. the code length for encoding the data given the model.
The hierarchical and enumerative multinomial codes are compared both asymptotically and
empirically in the non-asymptotic case. The comparison shows that there are vast regions
in the parameter space where each code dominates the other one. The enumerative code
compresses the model parameters better for balanced multinomial distributions, whereas the
hierarchical code is better suitable for unbalanced multinomial distributions.

The hierarchical multinomial code is no longer NML, and thus it looses all the appealing
theoretical properties of NML codes. However, one can build a new code that combines the
enumerative and hierarchical codes, with a resulting regret that is always within a margin
of log 2 above the enumerative code. This combined code comes with a far better regret
anywhere the hierarchical code dominates the enumerative one. This code can be seen as an
illustration of the principles of luckiness NML (De Rooij and Grünwald, 2009).

The hierarchical code requires an optimization algorithm which time complexity is linear
w.r.t. to the number of outcomes of the multinomial model, whereas the enumerative code
exploits a simple closed formula. Therefore, potentially better coding lengths come at the
expense of longer computation times, and this trade-off has to be studied per application.

The new code can potentially benefit to applications of model selection that uses multi-
nomial distributions as building blocks, in case of unbalanced distributions. Preliminary
experiments are performed with a joint density estimation method. They confirm the impor-
tant impact of using the new code, resulting in far more accurate selected models. Altogether,
the theoretical and experimental results suggest that one might use the hierarchical multino-
mial code in practice. Still, further work is necessary to incorporate this new code in existing
methods that exploit multinomial distributions, especially for adapting the optimization al-
gorithms to efficiently explore and retrieve the best parameter hierarchy for each multinomial
block.

A Proof of theorems

Theorem (1). The difference of enumerative parameter complexity between the hierarchical
multinomial model and its alternative version is

δeCOMP (n)(θH , θH
′

) = m(log 2−H(β))− 1

2
logm+

1

2
log 2πvar(β) +O(1/m) (76)

21



Proof. From Section 3.1, the difference of enumerative parameter complexity between the
hierarchical multinomial model and its alternative version reduce to the difference of coding
of the partition of the m outcomes into two groups of size mA and mB .

δeCOMP (n)(θH , θH
′

) = (m− 1) log 2−

(
logm/2 + log

(
m

mA

))
. (77)

We exploit the following approximation given in (Grünwald, 2007) (formula 4.36) with the
Bernoulli parameter θ

log

(
n

θn

)
= nH(θ)− log

√
2πnvar(θ) +O(1/n), (78)

where H(θ) = −θ log θ − (1− θ) log(1− θ) and var(θ) = θ(1− θ).
Let β be the proportion of outcomes in group A: mA = βm. We get

δeCOMP (n)(θH , θH
′

) = (m− 1) log 2 (79)

− logm/2−mH(β) + log
√

2πmvar(β) +O(1/m), (80)

= m(log 2−H(β))− 1

2
logm+

1

2
log 2πvar(β) +O(1/m) (81)

Theorem (2). The difference of enumerative parameter complexity between the hierarchical
multinomial code and the enumerative one is

δeCOMP (n)(θH , θ) = m

(
log 2 +H(β)−H(α) + (β − α) log

α

1− α

)
+

1

2
logm (82)

−1

2
(2 log var(α)− log var(β) + log 8π) (83)

+
m2

n+m

(β − α)2

2α(1− α)
+O(

m3

n2
) (84)

Proof. Starting from formula 16 given in section 3.2 and using

log

(
n+m− 1

m− 1

)
= log

(
n+m

m

)
− log(n+m) + logm, (85)

we get

δeCOMP (n)(θH , θ) = (m− 1) log 2 + log(n+ 1) (86)

+ log

(
nA +mA

mA

)
+ log

(
nB +mB

mB

)
(87)

− log

(
n+m

m

)
(88)

− log(nA +mA) + logmA − log(nB +mB) + logmB (89)

+ log(n+m)− logm (90)

We can rearrange the binomial terms, leading to:

δeCOMP (n)(θH , θ) = (m− 1) log 2 + log(n+ 1) (91)

+ log

(
n

nA

)
+ log

(
m

mA

)
− log

(
n+m

nA +mA

)
(92)

− log(nA +mA) + logmA − log(nB +mB) + logmB (93)

+ log(n+m)− logm (94)
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Let us introduce the proportion α of occurrences in group A (nA = αn) and β the pro-
portion of outcomes in group A (mA = βm). Let γ be such that (nA +mA) = γ(n+m).

δeCOMP (n)(θH , θ) = (m− 1) log 2 + log(n+ 1) (95)

+ log

(
n

αn

)
+ log

(
m

βm

)
− log

(
n+m

γ(n+m)

)
(96)

+ log(n+m)− log(γ(n+m))− log((1− γ)(n+m)) (97)

+ log(βm) + log((1− β)m)− logm (98)

We exploit the following approximation given in (Grünwald, 2007) (formula 4.36) with the
Bernoulli parameter θ

log

(
n

θn

)
= nH(θ)− log

√
2πnvar(θ) +O(1/n), (99)

where H(θ) = −θ log θ − (1− θ) log(1− θ) and var(θ) = θ(1− θ).
We obtain

δeCOMP (n)(θH , θ) = (m− 1) log 2 + logn(1 + 1/n) (100)

+nH(α)− log
√

2πnvar(α) +O(1/n) (101)

+mH(β)− log
√

2πmvar(β) +O(1/m) (102)

−(n+m)H(γ) + log
√

2π(n+m)var(γ) +O(1/(n+m))(103)

+ logm− log(n+m)− log var(γ) + log var(β) (104)

δeCOMP (n)(θH , θ) = n(H(α)−H(γ)) +m(log 2 +H(β)−H(γ)) (105)

− log
√

2πnvar(α) (106)

− log
√

2πmvar(β) (107)

+ log
√

2π(n+m)var(γ) (108)

− log((n+m)/nm)− log var(γ) + log var(β)− log 2 (109)

+O(1/(n+m)) +O(1/n) +O(1/m) (110)

δeCOMP (n)(θH , θ) = n(H(α)−H(γ)) +m(log 2 +H(β)−H(γ)) (111)

−1

2
log((n+m)/nm) (112)

−1

2
(log var(γ) + log var(α)− log var(β) + log 8π) (113)

+O(1/n) +O(1/m) (114)

For a given m, let us study the limit of δeCOMP (n)(θH , θ) when n goes to infinity. Let
us focus on the three first lines of the preceding formula, with a focus on n� m.

∆
(n)
1 = n(H(α)−H(γ)) +m(log 2 +H(β)−H(γ)), (115)

∆
(n)
2 = −1

2
log((n+m)/nm), (116)

∆
(n)
3 = −1

2
(log var(γ) + log var(α)− log var(β) + log 8π). (117)

The second term is:

∆
(n)
2 =

1

2
logm− 1

2
log(1 +m/n). (118)
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As for γ, we have

γ =
nA +mA

n+m
, (119)

=
αn+ βm

n+m
, (120)

=
n

n+m
α+

m

n+m
β. (121)

Let ε = m
n+m

. We get γ = (1− ε)α+ εβ.
We obtain

∆
(n)
1 = (n+m) ((1− ε)H(α) + εH(β)−H((1− ε)α+ εβ)) (122)

+m log 2. (123)

As the entropy function H(x) is concave, the first line of the preceding formula is negative.
To approximate ∆(n), we use the Taylor series of H(x).

We have H(x + ε) = H(x) + εH
′
(x) + ε2

2
H
′′

(x) + O(ε3), with H
′
(x) = − log x

1−x and

H
′′

(x) = −1
x(1−x) .

We get

H((1− ε)α+ εβ) = H(α+ ε(β − α)), (124)

= H(α)− ε(β − α) log
α

1− α −
ε2(β − α)2

2α(1− α)
+O(ε3). (125)

Back to ∆
(n)
1 , we obtain

∆
(n)
1 = (n+m)ε

(
H(β)−H(α) + (β − α) log

α

1− α +
ε(β − α)2

2α(1− α)
+O(ε2)

)
(126)

+m log 2, (127)

= m

(
log 2 +H(β)−H(α) + (β − α) log

α

1− α

)
(128)

+
m2

n+m

(β − α)2

2α(1− α)
+O

(
m3

(n+m)2

)
. (129)

For the last term ∆
(n)
3 , we introduce g(x) = log var(x) = log x+ log(1− x).

We have g(x+ ε) = g(x) + εg
′
(x) +O(ε2), with g

′
(x) = (1− 2x)/(x(1− x)).

Then,

log var(γ) = g(α+ ε(β − α)), (130)

= g(α)− ε(β − α)
1− 2α

α(1− α)
+O((ε(β − α))2). (131)

And

∆
(n)
3 = −1

2
(log var(γ) + log var(α)− log var(β) + log 8π), (132)

= −1

2
(2 log var(α)− log var(β) + log 8π) +O(

m

n+m
). (133)

We finally use these intermediate approximations to get the full approximation of δeCOMP (n)(θH , θ):

24



δeCOMP (n)(θH , θ) = m

(
log 2 +H(β)−H(α) + (β − α) log

α

1− α

)
(134)

+
m2

n+m

(β − α)2

2α(1− α)
+O

(
m3

(n+m)2

)
(135)

+
1

2
logm− 1

2
log(1 +m/n) (136)

−1

2
(2 log var(α)− log var(β) + log 8π) +O(

m

n+m
) (137)

+O(1/n) +O(1/m) (138)

= m

(
log 2 +H(β)−H(α) + (β − α) log

α

1− α

)
+

1

2
logm(139)

−1

2
(2 log var(α)− log var(β) + log 8π) (140)

+
m2

n+m

(β − α)2

2α(1− α)
(141)

+O(
m3

n2
) (142)

B Density estimation for the challenging data sets

D1 D2 D3

Figure 11: Three artificial data sets and the retrieved density estimation models, with 10,000
points.

The experiment with the D1, D2, D3 challenging data sets introduced in Section 4.3.2 is
performed with 10, 000 points instead of 1000 points. Figure 11 shows that the checkerboard
patterns are very accurately retrieved with sufficient points.

C Computation of the Kullback-Leibler divergence

Let X be a random variable uniformly distributed on [0; 1] and Y be equal to X with a
Gaussian noise.

X ∼ U([0; 1]), (143)

Y = X + ε, (144)

ε ∼ N (0, σ). (145)
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The true density td(x, y) of (X,Y ) is

td(x, y) =
1

σ
√

2π
e−

1
2 ( y−xσ )

2

. (146)

The estimated density is inferred using the method described in Section 4. It is based on a
discretization of X into I intervals with lower and upper bounds lbi and ubi, a discretization
of Y into J intervals with lower and upper bounds lbj and ubj . Each cell (i, j) has a frequency
nij , with a probability pij =

nij
n

and a density dij =
pij

(ubi−lbi)(ubj−lbj)
.

Let KLD(ed, td) be the divergence of Kullback-Leibler between the estimated density and
the true density.

We have

KLD(ed, td) =
I∑
i=1

J∑
j=1

∫ ubi

lbi

∫ ubj

lbj

dij log
dij

td(x, y)
dydx, (147)

=

I∑
i=1

J∑
j=1

∫ ubi

lbi

∫ ubj

lbj

dij

(
log dij − log

1

σ
√
2π

+
1

2

(
y − x
σ

)2)
dydx, (148)

=
I∑
i=1

J∑
j=1

∫ ubi

lbi

∫ ubj

lbj

dij

(
log dij − log

1

σ
√
2π

)
dydx+ (149)

1

2σ2

I∑
i=1

J∑
j=1

∫ ubi

lbi

∫ ubj

lbj

dij(y − x)2dydx, (150)

=

I∑
i=1

J∑
j=1

pij log (dijσ
√
2π) (151)

+
1

6σ2

I∑
i=1

J∑
j=1

∫ ubi

lbi

dij
(
(ubj − x)3 − (lbj − x)3

)
dx, (152)

=

I∑
i=1

J∑
j=1

pij log (dijσ
√
2π) (153)

+
1

24σ2

I∑
i=1

J∑
j=1

dij
(
(lbj − ubi)4 + (ubj − lbi)4 − (ubj − ubi)4 − (lbj − lbi)4

)
.(154)
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Mononen, T. and Myllymäki, P. (2008). Computing the multinomial stochastic complexity in
sub-linear time. In Proceedings of the 4th European Workshop on Probabilistic Graphical
Models, PGM 2008, pages 209–216.

Newman, M. (2005). Power laws, pareto distributions and zipf’s law. Contemporary Physics,
46(5):323–351.

Powers, D. (1998). Applications and explanations of zipf’s law. In Proceedings of the Joint
Conferences on New Methods in Language Processing and Computational Natural Language
Learning, NeMLaP3/CoNLL ’98, pages 151–160. Association for Computational Linguis-
tics.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14:465–471.

Rissanen, J. (1983). A universal prior for integers and estimation by minimum description
length. Annals of Statistics, 11(2):416–431.

Rissanen, J. (1996). Fisher information and stochastic complexity. IEEE Transactions on
Information Theory, 42(1):40–47.

Rissanen, J. (2000). Strong optimality of the normalized ml models as universal codes. IEEE
Transactions on Information Theory, 47:1712–1717.

Scott, D. (2015). Multivariate density estimation: theory, practice, and visualization. John
Wiley & Sons, Inc, second edition edition.

27



Seldin, Y. and Tishby, N. (2010). Pac-bayesian analysis of co-clustering and beyond. Journal
of Machine Learning Research, 11:3595–3646.

Shtarkov, Y. M. (1987). Universal sequential coding of single messages. Problems of Infor-
mation Transmission, 23(3):3–17.
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