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Abstract. While real data often comes in mixed format, discrete and continuous, many 
supervised induction algorithms require discrete data. Although efficient supervised 
discretization methods are available, the unsupervised Equal Frequency discretization method 
is still widely used by the statistician both for data exploration and data preparation. In this 
paper, we propose an automatic method, based on a Bayesian approach, to optimize the 
number of bins for Equal Frequency discretizations in the context of supervised learning. We 
introduce a space of Equal Frequency discretization models and a prior distribution defined 
on this model space. This results in the definition of a Bayes optimal evaluation criterion for 
Equal Frequency discretizations. We then propose an optimal search algorithm whose run-
time is super-linear in the sample size. Extensive comparative experiments demonstrate that 
the method works quite well in many cases. 
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1 Introduction 

Discretization of continuous attributes is a problem that has been studied 
extensively in the past [6, 8, 10, 14, 21]. Many classification algorithms rely on 
discrete data and need to discretize continuous attributes, i.e. to slice their domain 
into a finite number of intervals. The decision tree algorithms first discretize the 
continuous attributes before proceeding with the attribute selection process. The 
rule-set learning algorithms exploit discretization methods to produce short and 
understandable rules. The Bayesian network methods need discrete values to 
compute conditional probability tables. 

Many supervised discretization methods have been proposed in the past. They 
use a wide variety of criteria based on chi-square [11, 12], entropy [6, 15], impurity 
measures [5], Minimum Description Length [9]. However, the unsupervised Equal 
Frequency and Equal Width discretization methods remain attractive methods 
because of their simplicity. The Equal Width method is used in every statistic 
program to produce regular histograms. In supervised learning, stacked histograms 
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are used to visualize the proportion of the class values and their trend related to the 
descriptive attribute. The Equal Frequency discretization method allows a fair 
evaluation of the class distribution in each interval. Both Equal Frequency and 
Equal Width methods have been used to preprocess continuous attributes in 
benchmarks conducted to evaluate decision tree classifiers or Naïve Bayes 
classifiers [8, 14, 20]. Dougherty proposes to set the number of bin of Equal Width 
discretizations to ( )( )lk log2,1max= , where l is the number of distinct values of the 
attribute. This is a heuristic choice based on examining S-plus histograms. However, 
in most cases, the number of bins is always set to 10 for the Equal Frequency and 
Equal Width methods. In the literature, the problem of choosing the optimal number 
of bins has not been considered in supervised learning. On the opposite, histograms 
(Equal Width discretizations) have been studied for a long time in the context of 
unsupervised learning [2, 7, 18, 19]. Histograms are used as non parametric density 
estimators, and a large number of methods have been suggested to set the optimum 
number of bins. 

 
Figure 1: Density function of a continuous attribute with two target classes 

 
To illustrate the main difference between the Equal Width discretization used as 

a density estimator and a supervised discretization method, we display in figure 1 
the density function of a continuous attribute with two target classes. A histogram 
with a correct bin number properly identifies the three density peaks, but it may 
mixture the two target classes in the middle peak. On the opposite, a supervised 
discretization method perfectly separates the target classes by building two intervals, 
but it is not sensitive to the underlying density. The objective of a good stacked 
histogram is to consider the target classes in the visualization of the density. 

In this paper, we propose a new method to set the optimal number of bins for the 
Equal Frequency discretization method, when the class information is considered. 
This method is based on a Bayesian approach. We define a space of discretization 
models and a prior distribution on this model space. This results in an evaluation 
criterion of discretizations, which is minimal for the Bayes optimal discretization. 
We present a search algorithm with super-linear time complexity that allows 
obtaining optimal discretizations. These results can also be applied to set the optimal 
number of bins for the Equal Width discretization in supervised learning. We 
demonstrate through numerous experiments that the optimal Equal Frequency 
discretization method leads to high quality discretizations. 

The remainder of the paper is organized as follows. Section 2 presents the 
method for finding the optimal bin number in Equal Frequency discretization. 
Section 3 proceeds with an extensive experimental evaluation. 
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2 The optimal Equal Frequency discretization method 

In this section, we present the approach, the evaluation criterion and the search 
algorithm used in the optimal method. 

 
2.1 The approach 

The objective of the discretization process is to induce a list of intervals that split 
the numerical domain of a continuous explanatory attribute. The data sample 
consists of a set of instances described by pairs of values: the continuous 
explanatory value and the class value. Let n be the number of instances in the data 
sample and J be the number of classes. If we sort the instances of the data sample 
according to the continuous values, we obtain a string S of class values.The 
discretization methods have to solve a problem of model selection, where the data to 
fit is a string of class values and the model is a discretization model. Let us now 
recall the principles of the Bayesian approach used as a model selection technique 
and present its application to select the number of bins in Equal Frequency 
discretizations. 

In the Bayesian approach, the best model is found by maximizing the probability 
( )DataModelP of the model given the data. Using the Bayes rule and since the 

probability ( )DataP  is constant under varying the model, this is equivalent to 
maximize: 

( ) ( )ModelDataPModelP . (1) 

Once the prior distribution of the models is fixed, the Bayesian approach allows 
finding the optimal model of the data, provided that the calculation of the 
probabilities ( )ModelP  and ( )ModelDataP  is feasible. In definition 1, we 
introduce a space of discretization models. 

 
Definition 1: A standard discretization model is defined by the following 
properties: 

1. the discretization model relies only on the order of the class values in the 
string S, 

2. the discretization model allows to split the string S into a list of substrings 
(the intervals), 

3. in each interval, the distribution of the class values is defined by the 
frequencies of the class values in this interval. 

Such a discretization model is called a SDM model. 
 

Notation: 
 I: number of intervals 
 ni: number of instances in the interval i 
 nij: number of instances of class j in the interval i 
A SDM model is defined by the set of parameters { { } { }

JjIiijIii nnI
≤≤≤≤≤≤ 1,11 ,, }. 

This definition is very general and most supervised discretization methods rely 
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on SDM models. They first sort the samples according to the attribute to discretize 
(property 1) and try to define a list of intervals by partitioning the string of class 
values (property 2). The evaluation criterion is always based on the frequencies of 
the class values (property 3). This definition is general enough to include the Equal 
Frequency discretization models, which are constrained on the way they can split 
the string into intervals. 

 
2.2 The evaluation criterion 

Once a model space is defined, we need to fix a prior distribution on this model 
space in order to apply the Bayesian approach. We use the universal prior for 
integers presented in [17] for the choice of the number of intervals in the 
discretizations. We describe this prior and provide all necessary formulae in 
appendix. Compared with the uniform prior, the universal prior for integers gives a 
higher probability to small integers. This characteristic is interesting in the case of 
discretizations, because discretizations with fewer intervals should be preferred for 
comprehensibility reasons when several candidate discretizations are equally likely 
to explain the data. Once the number of interval I is fixed in an Equal Frequency 
discretization, the bounds of the intervals (parameters ni) can be derived 
unconditionally. The remaining nij parameters to be set are related to the distribution 
of the class values in the intervals. In the following definition, we propose a prior 
distribution for the Equal Frequency discretization models. 

 
Definition 2: The following distribution prior on SDM models is called the Equal 
Frequency prior: 

1. the number of intervals I is distributed according to the universal prior for 
integers, 

2. for a given number of intervals I, every interval has the same frequency, 
3. for a given interval, every distribution of class values in the interval is 

equiprobable, 
4. the distributions of the class values in each interval are independent from each 

other. 
 
In the last hypothesis of the prior, we have introduced a strong hypothesis of 

independence of the distribution of the class values. This hypothesis is often 
assumed (at least implicitly) by many discretization methods, which try to merge 
similar intervals and separate intervals with significantly different distributions of 
class values. This is the case for example with the ChiMerge method [12], which 
merges two adjacent intervals if their distributions of class values are statistically 
similar (using the chi-square test of independence). For Equal Frequency SDM 
models, this hypothesis implies that the set of intervals will be searched so that the 
distributions of class values in each interval are as independent as possible. 

Owing to the definition of the model space and its prior distribution, the Bayes 
formula is applicable to exactly calculate the prior probabilities of the model and the 
probability of the data given the model. Theorem 1, proven in appendix, introduces 
a Bayes optimal evaluation criterion. 
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Theorem 1: A SDM model M distributed according to the Equal Frequency prior is 
Bayes optimal for a given set of instances if the value of the following criterion is 
minimal: 
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The first term of the criterion corresponds to the choice of the number of 
intervals, using the universal prior for integers. The second term represents the 
choice of the class distribution in each interval and the last term encodes the 
probability of the data given the model. There is no encoding term for the bounds of 
the intervals since they are unconditionally fixed once the number of intervals is set. 

If we change the Equal Frequency prior into an Equal Width prior where every 
interval has the same width, we obtain exactly the same evaluation criterion. 

 
2.3 The search algorithm 

Once the optimality of the evaluation criterion is established, the problem is to 
design a search algorithm in order to find a discretization model that minimizes the 
criterion. A straightforward exhaustive search algorithm allows finding the optimal 
discretization in O(n2) time. However, the method can be optimized in O(n.log(n)) 
time. 

Let us clearly specify the straightforward Equal Frequency discretization method 
for a given number of intervals I. After the instances are sorted according to their 
descriptive values, the interval boundaries must be chosen so that each interval 
contains approximately the same number of instances. Let  InnI =  be the mean 
of the interval frequencies. The leading nI instances are collected to determine the 
first interval boundary. If several instances share the same descriptive value, the first 
interval can contain more than nI instances. The following intervals are determined 
with the same method, so that the last interval may contain less than nI instances. 
We decide that the last interval will be merged with the preceding interval if its 
frequency is less than half the mean frequency. All in all, the effective number of 
intervals can be less than I. The time complexity of this algorithm is O(n.log(n)) for 
the sort of the instances. 

The calculation of the interval boundaries and the evaluation of the 
discretization by the Bayes optimal criterion can be done in O(I) time. In an 
initialization step taking O(n) time, the cumulated frequencies of the class values 
can be memorized into an array indexed by the instances. The index of the boundary 
instances of an interval allow to calculate the class frequencies in the interval owing 
to the difference of the cumulated frequencies. The evaluation of the discretization 
criterion thus requires O(I) time. 

The optimization of the bin number requires the evaluation of all the 
discretizations for I between 1 and n. This is the same as the evaluation of all the 
discretizations for the distinct mean frequencies nI between 1 and n. As  InnI = , 
we get the following inequality: ( )1−≤ InnI  for 1>In . 
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The total number of evaluated intervals is then bounded by 

( ) ( )( )nnnnn
n

n
I

I

log1~1
2

+−+ ∑
=

. 

The overall complexity of the optimal algorithm is O(n.log(n)) time. This 
algorithm can also be used to search the optimal Equal Width discretization, 
provided that the search is restricted to the discretizations having the same numbers 
of bins that for the Equal Frequency algorithm. 

 
Optimal Equal Frequency algorithm: 
- Initialization 

- Sort the explanatory attribute values: O(n.log(n)) 
- Compute the cumulated class frequencies for each instance index: O(n) 

- Optimization of the discretization 
For I = 1 to n 
- Compute  InnI = ; continue if nI equals nI-1 
- Evaluate the discretization: O(I) 

- For each interval, evaluate the class frequencies as a difference 
between the cumulated class frequencies 

- Memorize I if better discretization evaluation 

3 Experiments 

In this section, we present an extensive experimental study both on synthetic and 
real datasets. 

 
3.1 Noise data experiment 

The purpose of this experiment is to evaluate the noise resistance of the 
discretization method, under varying the sample size. In the case of pure noise data, 
a robust discretization method should build a single interval, meaning that there is 
no class information in the explanatory attribute. 

The noise pattern dataset consists of an explanatory continuous attribute 
independent from the class attribute. The explanatory attribute is uniformly 
distributed on the [0, 1] numerical domain and the class attribute consists of two 
equidistributed class values. The evaluated criterion is the number of unnecessary 
intervals, since the test accuracy is always 0.5 whatever be the number of intervals 
in the discretizations. The experiment is done on a large number of sample sizes 
ranging from 100 instances to 100000 instances. In order to obtain reliable results, it 
is performed 100000 times for each sample size. Figure 2 presents the average 
unnecessary interval number obtained by the optimal Equal Frequency 
discretization method, under varying the sample size. The optimal method is very 
resistant to noise and almost always produce a single interval. The percentage of 
multi-interval discretizations is about 10% of the cases for sample size 100. It 
decreases with the sample size down to about 0.1% for sample size 100000. This 
behavior seems consistent since the probability of finding an information pattern in 
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a randomly generated attribute decreases with the sample size. 
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Figure 2: Mean of the unnecessary interval number of the discretizations of an 
explanatory attribute independent from the class attribute, for the optimal Equal 
Frequency discretization method 

 
3.2 Real data experiments 

3.2.1 Protocol 

The purpose of this experiment is to evaluate the predictive quality of the 
optimal Equal Frequency discretization method on real datasets. In our experimental 
study, we compare the optimal Equal Frequency and optimal Equal Width methods 
with the MDLPC method [9] and with the standard Equal Frequency and Equal 
Width discretization methods using different strategies to set the number of bins. 

The MDLPC method is a state of the art supervized discretization method. It 
exploits a greedy top-down split method, whose evaluation criterion is based on the 
Minimum Description Length Principle [16]. At each step of the algorithm, the 
MDLPC method evaluates two hypotheses (to cut or not to cut the interval) and 
chooses the hypothesis whose total encoding cost (model plus exceptions) is the 
lowest. The encoding cost is mainly based on the class information entropy of the 
partition and on the encoding of the position of the cut point. Therefore, the 
potential diminution of the entropy after a cut is balanced by the encoding cost of 
the cut point. 

The two unsupervised Equal Frequency and Equal Width methods are used with 
a fixed number of bins set to 10. We also use several strategies proposed to fix the 
number of bins in histograms (Equal Width discretizations as density estimators), 
and apply the resulting number of bins both for the Equal Frequency and Equal 
Width methods. Sturges' rule is a rule of thumbs [19] that consists of taking 
approximately ( )n2log1+  bins. We can notice that this method is close to the 
heuristic rule proposed in [8]. Several rules have been proposed to minimize the 
mean square error between the histogram density estimator and the true density. 
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These rules generally give a bin width proportional to 31−n . Scott's rule [18] is 
calibrated with the normal distribution and results in a bin width equal to 

3149.3 −nσ , where σ  is the standard deviation of the descriptive attribute. We also 
use a recent result presented in [2], based on a nonasymptotic evaluation of the 
performances of penalized maximum likelihood estimators. This method consists of 
maximizing ( ) ( )IpenILn −

 
 for ( )nnI log1 ≤≤ , where 

( ) ( )∑
=

=
I

i
iin nInnIL

1
log  is the log-likelihood of the histogram with I bins and 

( ) ( ) 5.2log1 IIIpen +−=  is the penalty. This last term is close from Akaike's [1] 
with a modification derived from [7]. 

This last method cannot be used to set the number of bins for Equal Frequency 
discretizations since the criterion is maximum for I=1 when Inni = . 

To summarize, the evaluated methods are: 
- EF(Opt): Equal Frequency with optimal bin number 
- EF(Sturges): Equal Frequency with Sturges' bin number 
- EF(Scott): Equal Frequency with Scott's bin number 
- EF(10): Equal Frequency with 10 bins 
- MDLPC: supervized discretization method 
- EW(Opt): Equal Width with optimal bin number 
- EW(Sturges): Equal Width with Sturges' bin number 
- EW(Scott): Equal Width with Scott's bin number 
- EW(Birgé): Equal Width with Birgé's bin number 
- EW(10): Equal Width with 10 bins 

We gathered 15 datasets from U.C. Irvine repository [3], each dataset has at least 
one continuous attribute and at least a few tens of instances for each class value in 
order to perform reliable tenfold cross-validations. Table 1 describes the datasets; 
the last column corresponds to the relative frequency of the majority class. The 
datasets come from a large variety of knowledge domains, with varying attribute 
numbers, sample sizes and class numbers. The task in the Adult dataset is to predict 
if an individual's annual income exceeds $50,000 based on census data. The 
Australian, Crx and German datasets are dealing with credit approval. The Heart, 
Hepatitis, Hypothyroid, Diabete and SickEuthyroid originate from the medical 
domain. The Ionosphere dataset is a problem a radar returns classification. The Iris 
datasets classifies three classes of iris plants. The Vehicle dataset have to categorize 
four types of vehicle. The Waveform dataset is a synthetic dataset with noise added 
to each instance. The Wine dataset purpose is to distinguish three kinds of wine on 
the basis of their chemical constituents. 
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Table 1: Datasets 

Dataset Continuous Nominal Size Class Majority 
 Attributes Attributes  Values Class 
Adult 7 8 48842 2 76.07 
Australian 6 8 690 2 55.51 
Breast 10 0 699 2 65.52 
Crx 6 9 690 2 55.51 
German 24 0 1000 2 70.00 
Heart 10 3 270 2 55.56 
Hepatitis 6 13 155 2 79.35 
Hypothyroid 7 18 3163 2 95.23 
Ionosphere 34 0 351 2 64.10 
Iris 4 0 150 3 33.33 
Diabete 8 0 768 2 65.10 
SickEuthyroid 7 18 3163 2 90.74 
Vehicle 18 0 846 4 25.77 
Waveform 21 0 5000 3 33.92 
Wine 13 0 178 3 39.89 

 
3.2.2 Univariate evaluation 

In order to evaluate the intrinsic performance of the discretization methods and 
eliminate the bias of the choice of a specific induction algorithm, we use the 
protocol presented in [4]. Each discretization method is considered as an elementary 
inductive method that predicts the local majority class in each learned interval. The 
discretizations are evaluated for two criteria: accuracy and interval number. The 
discretizations are performed on the 181 continuous attributes of the datasets, using 
a stratified tenfold cross-validation. In order to determine whether the performances 
are significantly different between the optimal Equal Frequency method and the 
alternative methods, the t-statistics of the difference of the results is computed. 
Under the null hypothesis, this value has a Student’s distribution with 9 degrees of 
freedom. The confidence level is set to 5% and a two-tailed test is performed to 
reject the null hypothesis. 

The whole result tables are too large to be printed in this paper. The results are 
summarized in table 2, which reports the mean of the accuracy and interval number 
per attribute discretization and the number of significant wins and losses. 
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Table 2: Mean accuracy and interval number for 181 attribute discretizations, 
number of significant wins and losses for the optimal Equal Frequency method 

 Test Accuracy  Interval Number 
 Mean EF(Opt) wins  Mean EF(Opt) wins 
EF(Opt) 68.4   7.7  
EF(Sturges) 67.4 31/8  8.2 116/46 
EF(Scott) 67.0 29/6  13.0 121/40 
EF(10) 67.7 29/9  7.3 48/103 
MDLPC 68.0 21/14  3.2 1/134 
EW(Opt) 67.8 23/12  11.9 100/17 
EW(Sturges) 67.2 37/10  9.4 134/35 
EW(Scott) 67.2 31/4  14.5 138/31 
EW(Birgé) 67.7 24/5  30.0 162/1 
EW(10) 67.1 40/9  8.5 124/39 

 
In order to analyze both the accuracy and interval number results, we reported 

the mean results on a two-criteria plan in figure 3, with the accuracy on the x-
coordinate and the interval number on the y-coordinate. We also performed the 
experiments for the Equal Frequency and Equal Width methods with all bin 
numbers ranging from 1 to 30 and reported the results on figure 3. 

The optimal Equal Frequency method clearly dominates all the other methods. It 
performs even better than the MDLPC supervised discretization method on the 
accuracy criterion, at the expense of twice the number of intervals. Both optimal 
Equal Frequency and Equal Width methods are clearly superior to the matching 
methods performed with any fixed number of bins. The Equal Width strategies for 
fixing the number of bins in histograms may perform well as density estimators, but 
they are not adequate for a good evaluation of the distribution of the class values. 
The most sophisticated method from [2] works better than the preceding methods 
from [19] or [18], but it is outperformed by the optimal Equal Width method, both 
on the accuracy and the number of intervals criteria. The heuristic choices for the 
Equal Frequency methods derived from the histogram methods are not better than 
the basic choice of 10 bins. 

These results demonstrate that the optimization of the Equal Frequency and 
Equal Width methods allow to outperform the other strategies used to set the 
number of bins. The Equal Frequency method should be preferred to the Equal 
Width method in supervised learning. When the number of bins is optimized, it 
becomes competitive even with supervised methods. 
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Figure 3: Bi-criteria evaluation of the discretization methods for the accuracy and 
the interval number 

 
3.2.3 Naïve Bayes evaluation 

In order to evaluate the impact of our approach on supervised learning, we 
conduct a study similar to [8], using the Naïve Bayes classifier. The Naïve Bayes 
classifier [13] assigns the most probable class value given the explanatory attributes 
values, assuming independence between the attributes for each class value. The 
discretization is used as a preprocessing step to estimate the probabilities of the 
continuous attributes using counts in each interval. In [8], several discretization 
methods (the MDLPC method, the 1RD method [10] and the Equal Width method 
with 10 bins) are compared; the evaluation shows that the MDLPC method is the 
best choice among the tested methods. In our study, we focus on the Equal 
Frequency and Equal Width methods, and use the MDLPC method for comparison 
reasons. We set the bin number both to 10 and using our approach. 

As the purpose of our experimental study is to compare discretization methods, 
we chose to ignore the nominal attributes to build the Naïve Bayes classifiers. We 
ran ten stratified tenfold cross-validations and report the mean and the standard 
deviation of the test accuracy in table 3. In figure 4, we plot the differences of 
accuracy between the tested methods and the reference MDLPC method for all 
datasets. 
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Table 3: Accuracy of the Naïve Bayes classifier with different discretization 
methods 

 Dataset EF(Opt) EW(Opt) EF(10) EW(10) MDLPC 
1 Adult 84.50±0.46 84.45±0.44 80.62±0.45 81.39±0.49 84.32±0.45 
2 Australian 78.80±4.43 75.72±5.21 79.28±4.11 70.38±4.86 76.94±4.54 
3 Breast 97.38±1.94 97.28±1.98 97.44±1.91 97.38±1.93 97.14±2.04 
4 Crx 78.57±4.60 76.04±5.00 78.90±4.93 70.32±4.90 77.17±4.91 
5 German 72.98±4.12 74.94±3.91 76.01±4.22 75.23±3.82 72.86±3.77 
6 Heart 80.41±7.30 80.67±7.78 81.78±7.46 82.00±7.07 80.59±7.72 
7 Hepatitis 79.27±10.7 80.34±10.2 80.38±11.2 82.88±10.5 78.68±9.31 
8 Hypothyroid 98.21±0.72 98.62±0.59 97.36±0.96 97.46±0.72 98.62±0.52 
9 Ionosphere 89.35±4.68 88.89±4.69 89.78±4.60 90.83±4.36 89.58±4.67 
10 Iris 93.87±5.63 94.87±5.32 94.13±6.27 95.13±5.15 93.07±5.96 
11 Diabete 74.40±4.29 75.27±4.25 75.05±4.18 75.87±4.05 75.51±3.63 
12 SickEuthyroid 96.08±1.03 95.50±1.11 93.97±1.23 92.82±1.18 95.97±0.98 
13 Vehicle 62.13±4.05 62.55±3.67 60.84±4.46 61.43±4.02 60.81±3.92 
14 Waveform 81.02±1.42 80.73±1.52 80.85±1.36 80.86±1.43 80.91±1.50 
15 Wine 97.29±3.62 97.35±3.33 97.79±3.58 96.78±4.12 98.48±2.75 
 Average 84.28 84.22 84.28 83.38 84.04 

 
The experiment confirms that the MDLPC method obtains better results on 

average than the Equal Width method with 10 bins. However, this is no longer true 
when the bin number is optimized by our method. Both Equal frequency 
discretization methods perform better than the MDLPC methods and the Equal 
Width methods. The Equal Frequency method with optimized bin number 
outperforms the MDLPC method on ten datasets. At the 95% confidence level, it is 
better on five datasets and worse on three. Looking at figure 4, the optimized bin 
number methods seem to be less prone to the variability of the datasets than the 
fixed bin number methods. 

Overall, the study shows that even simple unsupervised methods can be 
competitive compared to the state of the art MDLPC method when the target class is 
considered and when the bin number is optimized. 
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Figure 4: Comparison of the Equal Frequency and Equal Width discretization 
methods using MDPLC as the reference method, when discretization is used as the 
preprocessing step for the Naïve Bayes classifier. Graphs indicate the accuracy 
difference between the four displayed method and the MDLPC method on fifteen 
datasets  

4 Conclusion 

The method presented in this paper allows finding the optimal number of bins 
for the Equal Frequency and Equal Width discretization methods in the context of 
supervised learning. This method takes advantage of the precise definition of a 
family of discretization models with a general prior. This provides a new evaluation 
criterion which is minimal for the Bayes optimal discretization, i.e. the most 
probable discretization given the data sample. An algorithm is proposed to find the 
optimal discretization with super-linear time complexity. 

Extensive evaluations demonstrate that the method allows building 
discretizations that are both robust and accurate. The theoretical potential of the 
method is confirmed on synthetic random data, where the most probable 
discretization given the data is composed of a single interval. This might be helpful 
to detect noise attributes and more generally to improve the selection of attributes. 
The optimal Equal Width method can be used in the exploration step of data mining 
to produce highly accurate stacked histograms. The optimal Equal Frequency 
discretization method performs at least as well as the MDLPC supervised method. 
When used as a preprocessing step of the Naïve Bayes classifier, it obtained better 
results than the MDLPC method in two third of the datasets used in our evaluation. 

When continuous data needs to be discretized, the unsupervised Equal Width 
and Equal Frequency discretization methods are appealing because of their 
simplicity. The method presented in this paper keeps these methods simple and 
makes them become competitive to explore and preprocess continuous data in 
supervised learning. 
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Appendix 

Universal prior for integers 

In this section, we describe and comment the universal prior for integers 
presented in [13]. 

When an integer belongs to a finite set of size N, a uniform prior can be used, 
where each integer has the same probability 1/N of appearance. This approach does 
not apply when the set is infinite, and Rissanen has proposed a universal prior for 
integers. This universal prior is defined so that the small integers are more probable 
than the large integers, and the rate of decay is taken to be as small as possible. 
According to Rissanen, this prior is "universal" because its resulting code length 
(negative log of the probability) realizes the shortest coding of large integers. This 
prior is attractive even in the case of finite sets of integers, because it makes small 
integers preferable to large integers with the slightest possible difference. 

 
The code length of the universal prior for integers is given by 
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The universal prior for integers is then ( )nLnp −= 2)( . 
 

Proof of theorem 1 

Theorem 1: A SDM model M distributed according to the Equal Frequency prior is 
Bayes optimal for a given set of instances if the value of the following criterion is 
minimal: 
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Proof: 
The prior probability of a discretization model M can be defined by the prior 

probability of the parameters of the model { { } { }
JjIiijIii nnI

≤≤≤≤≤≤ 1,11 ,, }. 

Let us introduce some notations: 
• ( )Ip : prior probability of the interval number I , 
• { }( )inp : prior probability of the parameters { }Inn ,...,1 , 
• ( )inp : prior probability of the parameter in , 
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• { }( )ijnp : prior probability of the parameters{ }IJij nnn ,...,,...,11 , 
• { }( )

iijnp : prior probability of the parameters{ }iJi nn ,...,1 . 

The objective is to find the discretization model M that maximizes the 
probability )( SMp for a given string S of class values. Using the Bayes formula 
and since the probability )(Sp is constant under varying the model, this is equivalent 
to maximize )()( MSpMp . 

Let us first focus on the prior probability )(Mp of the model. We have 
{ } { }( )iji nnIpMp ,,)( =  

 
( ) { }( ) { } { }( )iiji nInpInpIp ,= . 

The first hypothesis of the equal frequency prior is that the number of intervals 
is distributed according the universal prior for integers. Thus we get 

( ) ( )nnL

c
np

*
2log

0
212)( −− == . 

The second hypothesis is that every admissible partition has the same frequency 
for a given I. Thus we obtain { }( ) 1=Inp i  when the bounds of intervals correspond 
to I equal frequency intervals and { }( ) 0=Inp i  otherwise. In real datasets, it is not 
always possible to construct intervals having exactly the same frequency. The key 
point is that for a given number of intervals, the discretization algorithm must 
provide a unique way of building the intervals. 

The last term to evaluate can be rewritten as a product using the hypothesis of 
independence of the distributions of the class values between the intervals. We have 
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For a given interval i with size ni, all the distributions of the class values are 
equiprobable. Computing the probability of one distribution is a combinatorial 
problem, which solution is: 
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The prior probability of the model is then 
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Let us now evaluate the probability of getting the string S for a given model M. 
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We first split the string S into I sub-strings Si of size ni and use again the 
independence assumption between the intervals. We obtain 

{ } { }( )iji nnISpMSp ,,)( =  

 
{ } { }( )ijiI nnISSSp ,,,...,, 21=  
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as evaluating the probability of a sub-string Si under uniform prior turns out to be a 
multinomial problem.  

 
Taking the negative log of the probabilities, the maximization problem turns into 

the minimization of the claimed criterion 
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