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Abstract

With the rapid growth of computer stor-
age capacities, available data and demand
for scoring models both follow an increasing
trend, sharper than that of the processing
power. However, the main limitation to a
wide spread of data mining solutions is the
non-increasing availability of skilled data an-
alysts, which play a key role in data prepara-
tion and model selection.
In this paper we present a parameter-free
scalable classification method, which is a step
towards fully automatic data mining. The
method is based on Bayes optimal univariate
conditional density estimators, naive Bayes
classification enhanced with a Bayesian vari-
able selection scheme, and averaging of mod-
els using a logarithmic smoothing of the pos-
terior distribution. We focus on the complex-
ity of the algorithms and show how they can
cope with datasets that are far larger than
the available central memory. We finally re-
port results on the Large Scale Learning chal-
lenge, where our method obtains state of the
art performance within practicable computa-
tion time.

1. Introduction

Data mining is “the non-trivial process of identifying
valid, novel , potentially useful, and ultimately un-
derstandable patterns in data” (Fayyad et al., 1996).
Several industrial partners have proposed to formal-
ize this process using a methodological guide named
CRISP-DM, for CRoss Industry Standard Process for
Data Mining (Chapman et al., 2000). The CRISP-
DM model provides an overview of the life cycle of
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a data mining project, which consists in the follow-
ing phases: business understanding, data understand-
ing, data preparation, modeling, evaluation and de-
ployment. Practical data mining projects involve a
large variety of constraints, like scalable training algo-
rithms, understandable models, easy and fast deploy-
ment. In a large telecommunication companies like
France Telecom, data mining applies to many domains:
marketing, text mining, web mining, traffic classifica-
tion, sociology, ergonomics. The available data is het-
erogeneous, with numerical and categorical variables,
target variables with multiple classes, missing values,
noisy unbalanced distributions, and with numbers of
instances or variables which can vary over several order
of magnitude. The most limiting factor which slows
down the spread of data mining solutions is the data
preparation phase, which consumes 80% of the pro-
cess (Pyle, 1999; Mamdouh, 2006) and requires skilled
data analysts. In this paper, we present a method1

which aims at automatizing the data preparation and
modeling phases of a data mining project, and which
performs well on a large variety of problems.

The paper is organized as follows. Section 2 summa-
rizes our method and Section 3 focuses on its computa-
tional complexity. Section 4 reports results obtained
on the Large Scale Learning challenge. Finally, Sec-
tion 5 gives a summary and discusses future work.

2. A Parameter-Free Classifier

Our method, introduced in (Boullé, 2007), extends the
naive Bayes classifier owing to an optimal estimation of
the class conditional probabilities, a Bayesian variable
selection and a compression-based model averaging.

1The method is available as a shareware, downloadable
at http://perso.rd.francetelecom.fr/boulle/
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2.1. Optimal discretization

The naive Bayes classifier has proved to be very ef-
fective on many real data applications (Langley et al.,
1992; Hand & Yu, 2001). It is based on the assumption
that the variables are independent within each output
class, and solely relies on the estimation of univari-
ate conditional probabilities. The evaluation of these
probabilities for numerical variables has already been
discussed in the literature (Dougherty et al., 1995; Liu
et al., 2002). Experiments demonstrate that even a
simple equal width discretization brings superior per-
formance compared to the assumption using a Gaus-
sian distribution. In the MODL approach (Boullé,
2006), the discretization is turned into a model se-
lection problem and solved in a Bayesian way. First,
a space of discretization models is defined. The pa-
rameters of a specific discretization are the number of
intervals, the bounds of the intervals and the output
frequencies in each interval. Then, a prior distribu-
tion is proposed on this model space. This prior ex-
ploits the hierarchy of the parameters: the number of
intervals is first chosen, then the bounds of the inter-
vals and finally the output frequencies. The choice
is uniform at each stage of the hierarchy. Finally,
the multinomial distributions of the output values in
each interval are assumed to be independent from each
other. A Bayesian approach is applied to select the
best discretization model, which is found by maximiz-
ing the probability p(Model|Data) of the model given
the data. Owing to the definition of the model space
and its prior distribution, the Bayes formula is appli-
cable to derive an exact analytical criterion to evalu-
ate the posterior probability of a discretization model.
Efficient search heuristics allow to find the most prob-
able discretization given the data sample. Extensive
comparative experiments report high performance.

The case of categorical variables is treated with the
same approach in (Boullé, 2005), using a family of con-
ditional density estimators which partition the input
values into groups of values.

2.2. Bayesian Approach for Variable Selection

The naive independence assumption can harm the per-
formance when violated. In order to better deal with
highly correlated variables, the selective naive Bayes
approach (Langley & Sage, 1994) exploits a wrapper
approach (Kohavi & John, 1997) to select the subset of
variables which optimizes the classification accuracy.
Although the selective naive Bayes approach performs
quite well on datasets with a reasonable number of
variables, it does not scale on very large datasets with
hundreds of thousands of instances and thousands of

variables, such as in marketing applications or text
mining. The problem comes both from the search al-
gorithm, whose complexity is quadratic in the number
of variables, and from the selection process which is
prone to overfitting. In (Boullé, 2007), the overfitting
problem is tackled by relying on a Bayesian approach,
where the best model is found by maximizing the prob-
ability of the model given the data. The parameters
of a variable selection model are the number of se-
lected variables and the subset of variables. A hierar-
chic prior is considered, by first choosing the number
of selected variables and second choosing the subset of
selected variables. The conditional likelihood of the
models exploits the naive Bayes assumption, which
directly provides the conditional probability of each
label. This allows an exact calculation of the poste-
rior probability of the models. Efficient search heuris-
tic with super-linear computation time are proposed,
on the basis of greedy forward addition and backward
elimination of variables.

2.3. Compression-Based Model averaging

Model averaging has been successfully exploited in
Bagging (Breiman, 1996) using multiple classifiers
trained from re-sampled datasets. In this approach,
the averaged classifier uses a voting rule to classify
new instances. Unlike this approach, where each clas-
sifier has the same weight, the Bayesian Model Aver-
aging (BMA) approach (Hoeting et al., 1999) weights
the classifiers according to their posterior probability.
In the case of the selective naive Bayes classifier, an
inspection of the optimized models reveals that their
posterior distribution is so sharply peaked that aver-
aging them according to the BMA approach almost
reduces to the maximum a posteriori (MAP) model.
In this situation, averaging is useless. In order to
find a trade-off between equal weights as in bagging
and extremely unbalanced weights as in the BMA ap-
proach, a logarithmic smoothing of the posterior dis-
tribution, called compression-based model averaging
(CMA), is introduced in (Boullé, 2007). Extensive ex-
periments demonstrate that the resulting compression-
based model averaging scheme clearly outperforms the
Bayesian model averaging scheme.

3. Complexity Analysis

In this section, we first recall the algorithmic complex-
ity of the algorithms detailed in (Boullé, 2006; Boullé,
2007) in the case where all the data fit in central mem-
ory, then introduce the extension of the algorithms
when data exceed the central memory.

The algorithm consists in three phase: data prepro-
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cessing using discretization or value grouping, vari-
able selection and model averaging. The prepro-
cessing phase is super-linear in time and requires
O(KN log N) time, where K is the number of vari-
ables and N the number of instances. In the vari-
able selection algorithm, the method alternates fast
forward and backward variable selection steps based
on randomized reorderings of the variables, and re-
peats the process several times in order to better ex-
plore the search space and reduce the variance caused
by the dependence over the order of the variables. The
number of repeats is fixed to log N +log K, so that the
overall time complexity of this phase is O(KN(log K+
log N)), which is comparable to that of the preprocess-
ing phase. The model averaging algorithm consists in
collecting all the models evaluated in the variable se-
lection phase and averaging then according to a loga-
rithmic smoothing of their posterior probability, with
no overhead on the time complexity. Overall, the train
algorithm has a O(KN(log K +log N)) time complex-
ity and O(KN) space complexity.

When Data Exceeds Central Memory. With
the O(KN) space complexity, large datasets cannot
fit into central memory and training time becomes
impracticable as soon as memory pages have to be
swapped between disk and central memory2. To avoid
this strong limitation, we enhance our algorithms with
a specially designed chunking strategy. First of all, let
us consider the access time from central memory (t1)
and from sequential (t2) or random (t3) disk access.
In modern personal computers (year 2008), t1 is in the
order of 10 nanoseconds. Sequential disk access are so
fast (based on 100 Mb/s transfer rates) that t2 is in the
same order as t1: CPU is sometimes a limiting factor,
when parsing operations are involved. Random disk
access t3 is in the order of 10 milliseconds, one million
times slower than t1 or t2. Therefore, the only way
to manage very large amounts of memory space is to
exploit disk in a sequential manner.

Let S=(KN) be the size of the dataset and M the size
of the central memory. For the preprocessing phase of
our method, each variable is analyzed once after being
loaded into central memory. We partition the set of in-
put variables into C chunks of KC variables, such that
KCN < M and C > S/M . The preprocessing phase
loops on the C subsets, and at each step of the loop,
read the dataset, parse and load the chunk variables
only, preprocess them to build conditional probability
tables and unload the chunk. In the variable selection
phase, the algorithm first replaces each input value by

2On 32 bits CPU, central memory is physically limited
to 4 Go, or even to 2 Go on Windows PCs

Table 1. Challenge datasets and validation results of our
method for the aoPRC criterion.

Dataset Training Dimensions aoPRC

alpha 500000 500 0.2536
beta 500000 500 0.4616
gamma 500000 500 0.0112
delta 500000 500 0.0818
epsilon 500000 2000 0.0663
zeta 500000 2000 0.034
fd 5469800 900 0.2314
ocr 3500000 1156 0.1564
dna 50000000 200 0.8612
webspam 350000 variable 0.0033

its index in the preprocessed conditional probability
table, and creates as many preprocessed chunk files as
necessary. The variable selection algorithm then loops
on the preprocessed chunks in random order: one sin-
gle chunk is loaded in memory at a time.

4. Results on the Large Scale Learning
Challenge

The Pascal Large Scale Learning Challenge3 is de-
signed to enable a direct comparison of learning meth-
ods given limited resource. The datasets, summarized
in Table 1 represent a variety of situation, from artifi-
cial datasets (alpha to zeta), face detection (fd), char-
acter recognition (ocr), dna split point prediction and
webspam detection. They contain up to millions of in-
stances, thousands of variables and tens of gigabytes
of disk space.

Although it is not designed to compete with online
learning methods from a training time point of view,
the challenge datasets are a convenient way to evalu-
ate the scalability of our offline method, when dataset
size is larger than the central memory by one order of
magnitude (on computers with 32 bit CPU). We made
one fully automatic submission, using the raw repre-
sentation of the dataset for all the datasets. For the
two image-based datasets (fd and ocr), we also stud-
ied the impact of initial representation using centered
reduced rows, and finally chose the raw representation
for ocr and centered-reduced representation for fd.

Table 1 reports our accuracy results in the challenge
for the area over the precision recall curve (aoPRC)
criterion. Except for the alpha dataset, these results
always rank among the first competitors, which is a
remarkable performance for a fully automatic method,

3Web site: http://largescale.first.fraunhofer.de/about/
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which exploits the limited naive Bayes assumption. It
is noteworthy that when the datasets size if far beyond
the size of the central memory, the overhead in wall-
clock time (whole load time plus training time) is by
only a factor two.

As anticipated, our offline training time is far longer
than that of the online methods of the other competi-
tors, by about two orders of magnitude. However,
when the overall process is accounted for, with data
preparation time and data loading time, our train-
ing time become competitive, with about one hour
of training time per analyzed gigabyte. Overall, our
method is highly scalable and obtains competitive per-
formance fully automatically, without tuning any pa-
rameter.

5. Conclusion

We have presented a parameter-free classification
method that exploits the naive Bayes assumption. It
estimates the univariate conditional probabilities using
the MODL method, with Bayes optimal discretization
and value groupings for numerical and categorical vari-
ables. It searches for a subset of variables consistent
with the naive Bayes assumption, using an evaluation
based on a Bayesian model selection approach and ef-
ficient add-drop greedy heuristics. Finally, it combines
all the evaluated models using a compression-based av-
eraging schema.

Our classifier is aimed at automatically producing
competitive predictions in a large variety of data min-
ing contexts. Our results in the Large Scale Learn-
ing Challenge demonstrates that our method is highly
scalable and automatically builds state-of-the art clas-
sifiers. When the dataset size is larger than the avail-
able central memory by one order of magnitude, our
method exploits an efficient chunking strategy, with a
time overhead of only a factor two. In future work, we
plan to further improve the method and extend it to
classification with large number of class values and to
regression.
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