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Abstract. Histograms are among the most popular methods used in exploratory analysis to summarize univariate distributions.
In particular, irregular histograms are good non-parametric density estimators that require very few parameters: the number
of bins with their lengths and frequencies. Although many approaches have been proposed in the literature to infer these
parameters, most existing histogram methods are difficult to exploit for exploratory analysis in the case of real-world data sets,
with scalability issues, truncated data, outliers or heavy-tailed distributions. In this paper, we focus on the G-Enum histogram
method, which exploits the Minimum Description Length (MDL) principle to build histograms without any user parameter.
We then propose to extend this method by exploiting a new modeling space based on floating-point representation, with the
objective of building histograms resistant to outliers or heavy-tailed distributions. We also suggest several heuristics and a
methodology suitable for the exploratory analysis of large scale real-world data sets, whose underlying patterns are difficult
to recover for digitization reasons. Extensive experiments show the benefits of the approach, evaluated with a dual objective:
the accuracy of density estimation in the case of outliers or heavy-tailed distributions, and the effectiveness of the approach for
exploratory data analysis.
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1. Introduction

Histograms are among the most popular methods used in exploratory analysis to summarize univariate
distributions. Regular histograms are the simplest savor of histograms to represent a distribution: all
bins are of the same width and the only parameter to select is the number of bins. While they are suited
to roughly uniform distributions [1], they fail to capture the density of more complex distributions.
Irregular histograms are non-parametric piecewise constant density estimators that require very few
parameters: the number of bins with their widths and frequencies. Several irregular histogram methods
have been proposed in the literature, but they often require user-defined parameters, such as the number
of bins or the accuracy ϵ at which the data is to be approximated. For example, the minimum description
length (MDL) histogram methods [1, 2] automatically choose the number of bins and their widths, but
these widths need to be a multiples of a user parameter ϵ. In the context of exploratory analysis, the
choice of this parameter is not an easy task, and fully automatic histogram methods are preferable.
Several automatic irregular histogram methods have been proposed in the literature, such as the taut
string methods based on penalized likelihood [3, 4], the Bayesian blocks histograms based Bayesian
regularization [5] or the G-Enum method [6] based on the MDL approach. In a comparison between
several regular and irregular histograms methods, the G-Enum method achieves state-of-the-art accuracy
for estimated density while being much more scalable than its closest competitors [6]. It is also among
the most parsimonious methods, with far fewer intervals than the most accurate alternative methods,
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which is an essential feature for exploratory analysis when interpretability is an issue. These properties
being in line with our main objective in this paper, we focus on this method.

The G-Enum method [6] extends the MDL method [2] with an automatic choice of ϵ, a fast to com-
pute closed-form evaluation criterion and scalable efficient optimization heuristics. Its modeling space is
described on the basis of ϵ-length elementary bins, where each histogram bin consists of a subset of adja-
cent ϵ-length bins. A granularity parameter is exploited to automatically select the ϵ parameter. Together
with efficient linearithmic optimization heuristic, this granulated MDL criterion provides a resilient, ef-
ficient and fully automated approach to histogram density estimation. Nevertheless, this method reaches
its limits in the case of outliers or heavy-tailed distributions and in the case of real world data sets.

This paper presents an extension of the G-Enum method that exploits the floating-point representation
of real number on computers, and a methodology for univariate exploratory analysis of large scale real-
world data sets. The first key contributions are related to

• histograms for density estimation:

* introduction of a space of floating-point bins, as an alternative to equal-width bins,
* extension of the G-Enum method with new criterion and algorithm,
* extensive experiments in the case of outliers or heavy-tailed distributions.

However, while the method works very well on challenging artificial data sets with known distribu-
tions, preliminary experiments show the limitations of the approach when applied to real-world data sets,
where the aim is to provide a better understanding of the data through exploratory analysis. The second
key contributions are related to

• histograms for exploratory analysis:

* characterization of some issues that come with real-world data,
* proposal of a methodology for effective exploratory analysis using histograms,
* illustration with several use cases related to challenging real-world data sets.

The rest of the paper is organized as follows. We briefly recall the G-Enum method in Section 2. We
illustrate the limit of histogram methods in the case of outliers and discuss possible solutions to push
these limits in Section 3. We introduce the notion of floating-point bins in Section 4, and exploit them to
suggest an approach named G-Enum-fp in Section 5. We perform extensive experiments with artificial
data sets in Section 6. We then propose a methodology for the exploratory analysis of real-world data
sets in Section 7, which we evaluate in Section 8. Finally, we give a summary and suggest future work
in Section 9.

2. G-Enum method: summary

This section is a brief reminder of the G-Enum method [6].

2.1. Problem formulation

We consider a sample of n observations xn = (x1, ..., xn) on the interval [xmin, xmax]. Let ϵ be the ap-
proximation accuracy, so that each x j ∈ xn can be approximated by x̃ j ∈ X = {xmin + tϵ; t = 0, ..., E}
where E = L/ϵ and L = xmax − xmin is the ‘domain length’ of the data. We expect to have E ∈ N.
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Let C be the set of possible endpoints for sub-intervals as

C = {ct = xmin −
ϵ

2
+ tϵ; t = 0, . . . , E}.

These endpoints define E elementary bins of length ϵ, which are called ϵ-bins. They are the building
blocks of histogram intervals: each combination of ϵ-bins into K intervals, with K ranging from 1 to E,
defines a histogram model. In this range of possibilities, the goal is to select a set of K − 1 endpoints
C = (c1, ..., cK−1), ck ∈ C such that [c0, cK ] = [xmin − ϵ/2, xmax + ϵ/2] is partitioned into K intervals
{[c0, c1], ]c1, c2], ..., ]cK−1, cK ]} that are well-suited to the actual data distribution. Each interval k has a
data count of hk entries and a length Lk = ck − ck−1, which is a multiple of ϵ:

∀k, ∃ Ek ∈ N such that Lk = Ek · ϵ

A histogram model is entirely defined by the choice of the number of intervals, the set of endpoints
that define them and their data counts. We thus note a histogram model M = (K,C, {hk}1⩽k⩽K). The
relevance of each model can be measured through different types of MDL criteria, for example using an
enumerative criterion.

2.2. Granularity and choice of ϵ

The role of approximation accuracy ϵ has been studied in [6] for the Enum method, both theoretically
and empirically. When ϵ tends towards 0, or equivalently E tends towards +∞, the MDL criterion is
dominated by the prior terms and the number of intervals decreases asymptotically down to a single
interval.

To get rid of this user parameter ϵ, a new model parameter is introduced, that will automatically be
inferred. Let G be the granularity parameter. For a given E, the numerical domain is split into G bins
(1 ⩽ G ⩽ E) of equal width. In practice, the constant E = 109 is used, which is both close to the
limits of the representation of machine integers and allows to obtain very accurate histograms, with an
accuracy of up to one billionth of the value domain. Each of these new elementary bins, that are called
g-bins, is composed of g = E/G ϵ-bins. Each of the intervals of any histogram constructed has then a
length that is a multiple of these g-bins. In other words, each interval is no longer composed of a multiple
of ϵ-bins but rather composed of Gk g-bins.

This new criterion, which is called G-Enum is still very similar to the MDL-based enumerative cri-
terion Enum for histograms, as shown in table 1. The resulting method is parameter-free, as it does not
depend on any user parameter 1.

2.3. Enum and G-Enum criteria for histogram models

Table 1 recalls the Enum criterion for histogram models and its granulated extension G-Enum. The
log ∗K and log ∗G prior terms encode the choice of the number of intervals and of the granularity pa-
rameter. They exploit Rissanen’s universal prior for integers [7], that favors small integers, i.e. sim-
pler histograms. The log

(G+K−1
K−1

)
term encodes the boundaries of the intervals at the granularity pre-

cision. The multinomial terms are used to encode the multinomial distribution of the n instances on

1user parameters (e.g. ϵ) have to be adjusted by the data analyst, model parameters belong to the modeling space and are
inferred automatically by optimizing a criterion, technical parameters are internal constants, used for example as upper-bounds
of model parameters (e.g. E = 109, with 1 ⩽ G ⩽ E)



4 M. Boullé / Floating-point histograms for exploratory analysis of large scale real-world data sets

Table 1
Term comparison of the Enum and G-Enum criteria

Criterion Indexing terms Multinomial terms Bin index terms

Enum log ∗K +

log

(
E + K − 1

K − 1

) log

(
n + K − 1

K − 1

)
+ log

n!
h1!...hK !

∑K
k=1 hk log Ek

G-Enum log ∗K + log∗ G +

log

(
G + K − 1

K − 1

) log

(
n + K − 1

K − 1

)
+ log

n!
h1!...hK !

∑K
k=1 hk logGk +

n log E
G

the K intervals. They rely on an enumerative criterion with appealing optimality properties [8]. The∑K
k=1 hk logGk +n log E

G term encodes the position of the hk instances of each interval on the Ek = Gk
E
G

elementary ϵ-bins of the interval.

2.4. Optimization algorithms

For additive criteria such as Enum, a dynamic programming algorithm can be applied to obtain the
optimal solution. However, its computational complexity is cubic w.r.t. the number endpoints E, mak-
ing it impractical in the case of large data sets. To achieve a practicable computational complexity, the
Enum method exploits a greedy bottom-up optimization heuristic that starts with the most refined his-
togram based on ϵ-bins, then merges adjacent intervals until the criterion can no longer be improved.
The quality of the model is then improved using post-optimization heuristics, which mainly consist of
adding, removing, or moving endpoints around the local optimal solution. Moreover, in the case of the
Enum criterion, the optimal endpoints are necessarily close to data points, as demonstrated in [6], which
reduces the number of candidate endpoints from E to O(n), resulting in an overall computational com-
plexity is O(n log n) instead of O(E3). Experiments show that the accuracy of histograms optimized
using these heuristics is indistinguishable from those using the optimal algorithm, while being much
faster to compute. As for the G-Enum method, only the powers of two granularities are considered and
the Enum algorithm is called O(log E) times, the computational complexity remaining O(n log n) since
E is a constant.

2.5. Experimental results

We summarize below the results of the comparative experiments performed to evaluate the G-Enum
method [6]. The comparison includes the following irregular and regular histogram methods:

• G-Enum, the method summarized in this section,
• Enum, the base method, with user parameter ϵ = 0.01,
• NML histograms [2], with user parameter ϵ = 0.01,
• Taut string histograms [3, 9],
• RMG histograms [4],
• Bayesian blocks [5],
• Sturges rule histograms,
• Freedman-Diaconis rule histograms [10].
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It is worth noting that the Enum and NML methods are similar in that they both require a ϵ user pa-
rameter, share the same modeling space and exploit a MDL approach. They differ in terms of optimized
MDL code and computational complexity: Normalized Maximum Likelihood code and O(E3) for NML,
versus enumerative code and O(n log n) for Enum. All the other methods are parameter-free.

The histogram methods are evaluated on artificial data sets with known distributions: Normal, Cauchy,
Uniform, Triangle, Triangle mixture and Gaussian mixture. The methods are compared on three criteria:
accuracy evaluated with the Hellinger distance, parsimony using the number of intervals and computa-
tion time. The analysis of the experimental results shows that the G-Enum method achieves state of the
art accuracy while being much more parsimonious and faster than its closest competitors.

"Although rarely the best for each distribution type, G-Enum histograms are consistently among the
best estimators, and this without the high variability of the other methods. Focusing on irregular his-
tograms, G-Enum is certainly among the most parsimonious in number of intervals. For exploratory
analysis, this is an important quality because it makes the interpretation of the results easier and
more reliable. G-Enum is also by far the fastest of irregular methods, making it suitable to large data
sets." ([6])

In particular, in the case of the heavy-tailed Cauchy distribution with the largest evaluated data set size
(n = 105) and widest value domain, G-Enum histograms are the most accurate density estimators while
being between 10 and 1000 times faster than their accurate competitors.

3. Limits of histogram methods w.r.t. outliers

We first give an illustrative example of the limits of the G-Enum method in the case of outliers, and
then discuss possible solutions to push these limits.

3.1. Illustative exemple

Let us consider a data set containing n = 10, 000 data entries distributed according to a Gaussian
distribution G(µ = 0, σ = 1). The range of the numerical domain is L = (xmax − xmin). As σ = 1, we
have L ⩽ 10 with high probability. The range of the numerical domain at ϵ accuracy is E = L/ϵ. Let us
recall that we have chosen E = 109 to be compliant with the computer representation of integers using
four bytes. As a matter of fact, computer integers are in the value domain ] − INT_MAX; INT_MAX[, with
INT_MAX = 231 ≈ 2.109. Using the E = 109 precision parameter, the bounds of the histogram intervals
are very precise, and the underlying distribution can be very well approximated as the number of data
entries n increases.

Let us now assume that we have an outlier data entry in our data set, with value xout = 1012. The range
of the value domain becomes L ≈ 1012 and using the same precision parameter E = 109 amounts to
setting ϵ ≈ 1000. With this ϵ parameter, the optimal histogram reduces to a histogram with two intervals,
consisting of a first interval of width E1 = 1 that contains all the n initial Gaussian data entries in a bin
of width 1000, and a second interval of width E2 = E − 1 containing the outlier data entry. The quality
of the histogram becomes very poor as the whole data set except one outlier is summarized using one
single interval.

Let us note that, to the best of our knowledge, this problem is likely to occur with most alternative
histogram methods. In the following we investigate on solutions to push these limits.
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3.2. Possible solutions to push these limits

We suggest possible solutions to push the limits of the G-Enum method and summarize their potential
benefits and drawbacks.

3.2.1. Use of long integers
The use of computer integers beyond 109 could be considered for the number E of ϵ-bins. For example,

arbitrary large integers such as python integers could be used. However, this solution is unlikely to work
reasonably well for the following reasons.

• this greatly increases computation time, as large integers are not processed at processor level.
• this poses numerical problems in calculating the optimization criterion for integers beyond 1015,

since mathematical functions such as logarithm are limited to a mantissa precision of 15 digits,
• this cannot work well when small g-bins are needed to recover the main patterns of a data set, at the

expense of very large granularity G to keep the outliers in the numerical domain; indeed, when G
tends towards +∞, the number of intervals decreases asymptotically down to a single interval (see
Section 2.2).

3.2.2. Removing outliers
Removing outliers before calculating the histogram could be considered. Outlier detection has been

widely studied [11] and many methods have been proposed in the literature. There is no generic or uni-
versally applicable outlier detection method, and most existing methods require user thresholds, which
are difficult to adjust. In the case of exploratory data analysis with no prior knowledge of the data, outlier
removal prior to histogram calculation is questionable. For example, in the case of a heavy-tailed dis-
tribution with no mean or variance, such as a Cauchy or Lévy distribution, many extreme values could
be removed regardless of the user threshold, and the remaining extreme values could still be considered
outliers.

The primary purpose of histograms is to provide an initial overview of the data for exploratory analysis
without any prior knowledge, and ideally no data should be excluded. The resulting histograms can then
be used as building blocks for anomaly and outlier detection methods [12, 13].

3.2.3. Extension to hierarchical histogram models
One solution to cope with outliers consists in extending the G-Enum method to a hierarchical model.

A histogram consists in a set of adjacent intervals, whereas a hierarchical histogram consists in a tree of
intervals, where:

• each leaf node is an interval,
• each intermediate node can be seen both as an interval, union of its children intervals, and as a

histogram, set of its children intervals,
• the root node represents the whole value domain.

Such a hierarchical histogram could potentially cope with outliers. For example, using the data set de-
scribed in Section 3.1, we could have one root node with three children nodes; the first one for all the
Gaussian data entries, the second one with an empty interval and the last one with the outlier. Then the
first node could be divided again to produce a standard histogram focused on the Gaussian data entries,
without any outlier issue.

This possible solution looks appealing, but its implementation may encounter several problems:

• devising an effective prior for hierarchical models is not an easy task,



M. Boullé / Floating-point histograms for exploratory analysis of large scale real-world data sets 7

• optimizing hierarchical models is known to be difficult, with little hope of achieving optimality
efficiently,

• the optimization algorithm may face numerical problems, since many models to be compared may
have almost the same cost.

3.2.4. Bi-level heuristic for histograms
A heuristic variant of hierarchical histogram models have been investigated in [14]. The resulting

bi-level heuristic exploits a logarithmic transformation of the data to split the data set into a list of
data subsets with a controlled range of values. The second level builds a sub-histogram for each data
subset and aggregates them to obtain a complete histogram. Extensive experiments have demonstrated
the applicability of the method to a wide range of data sets, including the case of outliers or heavy-tailed
distributions. However, this method is hampered by some heuristic trade-offs:

• it relies on several hard to tune heuristic thresholds, mainly to split or not the initial data set into
a list of data subsets and to deal with tiny value ranges that reach the limit of the precision of the
mantissa of real values,

• it relies on a sub-optimal heuristic to split the initial data set into a list of data subsets,
• it requires hard to tune heuristic methods to aggregate the independent sub-histograms, with poten-

tially different granularity parameters, obtained per data subset,
• the overall optimization heuristic is tricky to implement, with a significant computation time over-

head,
• an overall evaluation criterion is missing for the bi-level method, which prevents from providing a

quality indicator and from post-optimizing the overall histogram or simplifying it wisely.

4. Floating-point bins for histograms

Histogram methods are univariate non-parametric density estimators which provide a summary of
the underlying distribution using piece-wide constant densities per interval. These methods are devised
with the assumption of data values belonging to R. In practice, the only values that can be observed
have to be represented on computers and rely on floating-point representation, with radically different
properties compared to values of R. We suggest to exploit this floating-point representation, with the
objective of building histograms for data distributions that can be represented on a computer rather that
arbitrary distributions on R. In this section, we first recall the format of floating-point representation and
analyze some of its properties. We then introduce the definition of floating-point bins, an alternative to
equal-width bins as building blocks for histogram intervals.

4.1. Floating-point representation

Let us first summarize how real values are encoded on computers using the floating-point represen-
tation [15]. Computer real values with double-precision floating-point format are stored on 8 bytes and
thus encoded using 64 bits:

• sign: rs = 1 bit,
• exponent: re = 11 bits,
• mantissa: rm = 52 bits.
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The sign bit encodes the sign of the number, -1 or +1. The exponent bits encode exponents between
DBL_MIN = 2−1022 and DBL_MAX = 2+1023, that is between around 10−308 and 10308. Exponents 2−1023

and 2−1024 are reserved for special values. The mantissa bits {bi}1⩽i⩽rm exploit an additional implicit bit
of value 1 for the integer part and encode numbers of the form 1+

∑rm
i=1 bi2

−i, between 1 and 2− 2−rm .
The zero value, which is a singular value in the floating-point representation, is encoded differently as a
special value.

Whereas mathematical real values that belong to R are continuous and unbounded, computer floating-
point values are discrete in essence and bounded. They belong to a finite set R(cr) (where (cr) stands
for computer representation). The set R(cr) contains 264 ≈ 1.8 1019 distinct values that belong to
the finite numerical domain [−10308,−10−308] ∪ {0} ∪ [10−308, 10308], with half the values within
[−1, 1]. Notice that all computer real values have an approximately constant relative precision w.r.t the
exponent, but an absolute precision that exponentially increases around the value 0. More precisely, each
power of two range [2i, 2i+1[ contains 2rm distinct equidistant values, and the distance between successive
values doubles each time the exponent is incremented. This translates into a piecewise constant density
within each power of two range, and an approximately constant relative density w.r.t the exponent.
There are more than 600 orders of magnitude of difference of absolute precision between the largest and
the smallest computer real values. To summarize, mathematical real values have translation-invariant
density properties all over R. Conversely, the density of floating-point representation values in R(cr) is
heavily peaked around the value 0: it increases exponentially for x → 0 until reaching the underflow and
decrease exponentially for x → ∞ until reaching the overflow.

Impact on histograms. While histograms are invariant to translation in R, this is not the case in R(cr).
This is a limitation of the data representation, not of the histogram models. To illustrate this non intuitive
behavior, let us take D as a data set in R(cr) and ta(D) the data set obtained by translating D by the value
a. As the mantissa is limited to around 15 digits, we have for example:

• ∀D ∈ [0, 1], t1015(D) = {a},
• ∀D ∈ [1015, 1016], t1(D) = D.

And all intermediate behaviors can be observed between these two extremes.

4.2. Floating-point bins

The direct exploitation of floating-point representation to design a histogram modeling space is of
great interest, as all the data that can be observed and processed are stored on computers.

Histograms where the length of intervals are multiple of ϵ-bins rely on a constant absolute precision
and they cannot cope well with outliers. The G-Enum method builds intervals on the basis of at most
Gmax = E elementary ϵ-bins, with E = 230 ≈ 109. We suggest to extend the method by changing
the definition of elementary bins used to build the intervals, replacing the equal-width bins of length
ϵ = (xmax − xmin)/E by floating-point bins of varying length.

Let us first introduce floating-point bins, that can be divided into:

• main bins

* exponent bins of length 2i, BE−,i =]− 2i+1,−2i] or BE+,i =]2i, 2i+1];
* central bins of length 2i around 0, BC−,i =]− 2i, 0] or BC+,i =]0, 2i]

• mantissa bins of equal-width 2i × 2−m,m ⩾ 0 within each main bins of length 2i.
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Figure 1. Examples of floating-point bins.

Figure 1 shows an example of main bins and mantissa bins that form a partition of the ] − 16, 16]
numerical domain. There are 8 main bins, including two central bins of length 21 = 2, and 32 mantissa
bins corresponding to 22 = 4 equal-width bins within each main bin

Standard histograms rely on a set of equal-width elementary bins, which seems well suited to the
inference of piecewise constant density estimators. Our objective is to exploit the floating-point repre-
sentation while keeping close to equal-width bins across the entire value domain. We need to take care
of the value 0, which is a singular value in the floating-point representation. For parsimony reasons, we
try to avoid unnecessary exponent bins around zero, and for smoothness reasons, we look for a set of
floating-point bins that are as close possible as possible to equal-width bins.

We suggest to cover the numerical domain [xmin, xmax] of the data set to analyze with the most precise
possible floating-point bins, in the limit of at most E = 230 elementary bins. To do this, we first cover
the data set with as few adjacent mains bins as possible. Let i⋆ be the exponent of the largest possible
central bins that does not contain any non-zero value of the data set. i⋆ is also the smallest exponent
among the exponent bins that contain at least one value of the data set. We then cover the numerical
domain with exponent bins, the exponents of which are derived from xmin and xmax, plus potentially one
or two central bins around the zero value.

We formalize this below, assuming that xmin < xmax.

• if 0 ⩽ xmin,
use exponent bins: {BE+,i}i⋆⩽i⩽imax with imax = ⌈log2(xmax)⌉,

* if xmin = 0,
plus two central bins: BC−,i⋆ and BC+,i⋆ ,

• if xmax ⩽ 0:
use exponent bins: {BE−,i}imin⩽i⩽i⋆ with imin = ⌊log2(−xmin)⌋

* if xmax = 0,
plus one central bin: BC−,i⋆ ,

• if xmin < 0 < xmax,
use exponent bins for negative values: {BE−,i}imin⩽i⩽i⋆ with imin = ⌊log2(−xmin)⌋,
use exponent bins for positive values: {BE+,i}i⋆⩽i⩽imax with imax = ⌈log2(xmax)⌉,
plus two central bins: BC−,i⋆ and BC+,i⋆ .

We get a set of nB mains bins. If nB = 1, all the data set is contained in one single exponent bin. In this
case, we look for the smallest mantissa bin that contains all the data set. This mantissa bin can be split
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into mantissa bins of increased precision, until either the total number of elementary bins that cover to
data set is greater than 230 or reaching the maximum precision of mantissa (rm = 52). In the end, all the
data set is covered with a set of elementary floating-point bins of equal width.

If nB > 1, the data set requires several main bins to be covered. As the maximum number of main bins
available using the floating-point representation is given by (2rc − 2) × 2 + 2 < 212 (cf. Section 4.1),
each main bin can be split into at least 230/212 = 218 mantissa bins, that is a relative precision of about
four millionths. This gives us the set of elementary floating-point bins that will be used in our modeling
space at the maximum precision. We get a set of elementary floating-point bins that are of equal width
within each main bin.

All the interval boundaries ck will be chosen among the boundaries of these elementary bins, with
cmin = c0 equal to the lower bound of the first elementary bin and cmax = ck equal to the upper bound of
the last one. Although the elementary bins have lengths spanning over a range of values exponentially
large, they are locally close to equal-width bins, as each elementary bin has a length that is either the
same, half or twice that of its adjacent bins.

Finally, like in the G-Enum method, we propose to define the granulated bins by building a hierarchy
of bins based on these elementary bins. At the maximal depth, we keep all our elementary bins. Then
each time we decrease the depth d, we merge adjacent mantissa bins to obtain super-mantissa bins with
one bit less in precision. When the precision m = 0 of mantissa bins is attained, that is when we reach
the level of main bins, we continue agglomerating the adjacent mains bin using a binary tree, until we
obtain one single root bin (d = 0).

Let us notice that at any depth of the hierarchy, all the granulated bins are exact floating-point bins,
except for the two extrema bins that contain xmin and xmax, which may be truncated to keep the covered
values within ]cmin, cmax]. Let us finally define Gd as the number of granulated bins obtained at each level
of the hierarchy. We have 2d−1 < Gd ⩽ 2d, since the number of main bins is not necessarily a power of
two and the extrema bins are likely to be truncated at some depths of the hierarchy.

Figure 2. Granulated bins in case of one single main bin.

Example with one single main bin. Let us consider a data set with values in [1.3, 1.4]. Only one expo-
nent bin BE+,0 =]20, 21] is enough to cover the data set. Within this exponent bin, the smallest mantissa
bin that covers the whole data set is ]1.25, 1.5], with a mantissa precision m = 2. This allows to choose
a set a mantissa bins at precision 32 (dmax + m=30+2) to cover our data set in a range ]cmin, cmax], with
|cmin − 1.3| < 2−32 and |cmax − 1.4| < 2−32. For d = 30, all the bins have the same length 2−32 and
the total number of bins is G30 = (cmax − cmin)/2

−32 < 230. As the whole data set is contained in one
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single main bin, all the granulated bins have the same length 2−2−d at any depth d, except for the two
extrema bins that need to be intersected with ]cmin, cmax]. This is illustrated in Figure 2, which shows the
partition of the value domain in granulated bins for depths ranging from 0 to 6. For d = 0, there one
single root bin ]cmin, cmax]. For d = 1, two mantissa bins of length 2−3, ]1.25, 1.375] and ]1.375, 1.5] are
used, resulting in two granulated bins ]cmin, 1.375] and ]1.375, cmax].

Figure 3. Granulated bins in case of multiple main bins.

Example with multiple main bins. Let us consider a data set with values in [−3, 5], and where the
smallest non-zero absolute value is 0.15. We have xmin = −3, xmax = 5, imin = 1, imax = 2 and i⋆ = −3
(as 2−3 < 0.15 ⩽ 2−2). The value domain is covered using five negative exponent bins ]− 22,−21], ]−
21,−20], ]−20,−2−1], ]−2−1,−2−2], ]−2−2,−2−3], six positive exponent bins ]2−3, 2−2], ]2−2, 2−1],
]2−1, 20], ]20, 21], ]21, 22], ]22, 23], plus two central bins ] − 2−3, 0], ]0, 2−3]. Altogether, nB = 13 main
bins are used, and for d = 4, the granulated bins consist of these G4 = 13 bins. For 4 < d ⩽ 0,
the mains bins are grouped by 2, 4, 8, 16, leading to G3 = 7,G2 = 4,G1 = 2,G0 = 1 granulated
bins. Conversely, for d ⩾ 5, the main bins are split into mantissa bins exploiting d − 4 digits for the
precision of the mantissa. This is illustrated in Figure 3, which shows the partition of the value domain
in granulated bins for depths ranging from 0 to 6. For d = 230, each exponent or central bin is divided
into 226 equal-width mantissa bins, ranging from the smallest absolute length 2−29 in ] − 0.25, 0.25] =
]− 2−2,−2−3]∪]− 2−3, 0]∪]0, 2−3]∪]− 2−3,−2−2] to the largest absolute length 2−24 in ]4, 5].

Figure 4. Granulated bins in case of multiple main bins, using a logarithmic scale.

Figure 4 presents an alternative view of Figure 3, keeping the linear scale within the central bins and
exploiting a logarithmic scale for the negative and positive exponent bins. This shows that the lengths of
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the granulated bins are quite balanced when the relative precision of the interval boundaries is considered
rather than their absolute precision. This also suggests an appealing visualization for histograms related
to data sets with a dynamic range of values both in the negative and positive domains.

5. G-Enum-fp histogram method

In the previous section, we have exploited the floating-point representation of real values to introduce
an alternative definition of the elementary bins used as building blocks for a new histogram method
called G-Enum-fp. We first summarize the principles of this new method, then summarize its specific
components.

5.1. Principle

The G-Enum method exploits a representation space based on elementary equal-width bins, using
a granularity parameter G to explore simplified versions of this representation space. It exploits these
elementary bins as building blocks that provide a set of predefined bounds, from which the bounds of
the histogram intervals are chosen.

The main novelty of the G-Enum-fp method is to replace the elementary equal-width bins of G-Enum
with the floating-point bins and their granulated hierarchy introduced in Section 4. This makes a radical
difference regarding the impact of the granularity parameter G, 1 ⩽ G ⩽ E:

• with the G-Enum method, E = 109 is considered huge, but it sets a limit of one billionth of the
value domain for the smallest interval, which is harmful in event of outliers (see Section 3.1),

• with the G-Enum-fp method and the same E, this limit is extended by more than six hundred orders
of magnitude (see Section B.2).

In addition to this major change, the G-Enum-fp method extends the modeling space and the optimiza-
tion algorithms of the G-Enum method to take full account of the particularities of floating-point bins.
To begin with, the bounds of the entire numerical domain are explicitly specified as hyper-parameters.
The other difference related to the floating-point representation is the management of the singularity
around 0, which relies on the choice of a central bin, treated as an additional model parameter. These
extensions are summarized in the following subsections and detailed in Appendix A. Some properties of
the G-Enum-fp method are also discussed in Appendix B.

5.2. Specification of domain bounds

With the G-Enum method, the domain bounds are implicitly derived from the data using [xmin −
ϵ/2, xmax+ϵ/2]. With the G-Enum-fp method, the domain lower and upper bounds are explicitly defined
using hyper-parameters that belong to the modeling space:

• main bin containing the domain lower bound,
• main bin containing the domain upper bound,
• central bin exponent of the domain if necessary,
• digit precision used for mantissa bins,
• mantissa bins containing the domain bounds.

These domain lower and upper bounds are inferred once for all, before optimizing the histogram. An
evaluation criterion is obtained using a MDL-based approach. Its optimization consist of two steps:
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• recover the extreme values xmin and xmax using a loop over the data set in O(n),
• encode a lower bound of xmin and an upper bound of xmax using the floating-point representation

and optimize the number of digits used for the mantissa, in O(rm) where rm = 52 is the maximum
number of bits in the mantissa.

The details regarding the specification and optimization of these hyper-parameters are given in Ap-
pendix A.2.

5.3. Choice of the central bin

With the G-Enum-fp method, we introduce a new parameter icen to choose the exponent of the central
bin used to obtain a representation space based on floating-point bins. In fact, we can choose any value of
icen that conforms with the domain bounds, between icenmin corresponding to the central bin exponent of
the domain, and icenmax which allows us to contain the domain lower and upper bounds. With icen = icenmin ,
we obtain a maximally floating-point representation, as the related exponent bins extends over a wide
range of values. With icen = icenmax , we obtain a maximally equal-width representation, as the bins
considered are of equal-width.

Optimizing the exponent of the central bin is mainly a matter of calling the G-Enum optimization
algorithm twice, keeping its overall computational complexity:

• optimize a first histogram M(icenmin) for icen = icenmin , corresponding to the maximally floating-point
representation,

• search for the largest value icenopt of icen in [icenmin , icenmax ] which maintains the same partition of the
data set into intervals as in M(icenmin), with interval endpoints recoded on the basis of icenopt ,

• optimize a second histogram M(icenopt) for icen = icenopt and keep this histogram if its evaluation
criterion is better than that of the first histogram.

The introduction of this new parameter icen and its optimization are detailed in Section A.3.

5.4. G-Enum-fp criterion

Table 2
G-Enum-fp criterion

Criterion Indexing terms Multinomial terms Bin index terms

G-Enum-fp log ∗(1 + icenmax − icen) +
log ∗K + log ∗(1 + d) +

log

(
Gd + K − 1

K − 1

) log

(
n + K − 1

K − 1

)
+

log
n!

h1!...hK !

∑K
k=1 hk log Ek

Table 2 shows the G-Enum-fp criterion for the parameters of histogram models. Compared with the
G-Enum criterion recalled in Table 1, the only differences concern the indexing terms:

• the term log ∗(1 + icenmax − icen) is used to encode the new parameter icen,
• the exponent d of the granularity (G = 2d) is encoded instead of the granularity G itself,
• the exact number of considered floating-point bins Gd, 2

d−1 < Gd ⩽ 2d at a given granularity is
used instead of G = 2d in the case of equal-width bins.
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In addition, new hyper-parameters have been introduced for the domain bounds (see Table 4 for the
corresponding criterion). Note that the G-Enum-fp method is parameter-free, as all its parameters and
hyper-parameters belong to the modeling space.

6. Experiments with artificial data sets

In this section, we evaluate the G-Enum-fp method using artificial data sets with known underlying
data distribution. We focus on resistance to outliers and heavy-tailed distribution, beyond the limits
of state-of-the art methods. A binary standalone implementation of the method is available here: http:
//marc-boulle.fr/khisto/.

6.1. Evaluation protocol

Metrics. The accuracy of histograms for density estimation is evaluated using the Hellinger distance
to the original model density, which is known in the case of artificial data sets. The Hellinger Distance
(HD) H(p, q) for p, q being probability density functions, is defined as

H(p, q) =
1√
2

√∫
(
√

p(x)−
√

q(x))2dx

A HD close to 0 indicates a strong similarity between probability distributions. The HD measures
reported are obtained via numerical integration to estimate the probability distributions of the model
density and of the histogram that models it.

The number of intervals per histogram is also collected.

Histogram methods. Histogram methods are limited in the case of outliers or heavy-tailed distribution,
as indicated in Section 3. We evaluate the G-Enum-fp method in these challenging cases. We also report
the results obtained by the G-Enum method, chosen as a strong baseline, especially in the case of heavy-
tailed distributions and large data sets (cf Section 2.5). Since our aim is to push the limits of histograms
with data set sizes and value domain widths several orders of magnitude larger than those evaluated in
[6], the G-Enum method is in fact the most appropriate method that can be used for comparison purposes.

Data sets. As a sanity check, we first evaluate the behavior of the methods in the case of common
distributions, using the uniform, normal and a mixture of normal distributions. The results of these
experiments are presented in Appendix C. We then analyze the case of data sets with outliers and heavy-
tailed distributions using the Lévy distribution and a pathological mixture of lognormal distributions.
The results of these experiments are presented in the following subsections.

6.2. Normal distribution with an outlier

The objective of this experiment is to evaluate the impact of an outlier on the quality of the built
histograms. We exploit a data set of size n = 10, 000 generated from a normal distribution N (1, 0.1). We
add one outlier with value vout = 2i, 0 ⩽ i ⩽ 34 from vout = 1 to vout = 234 ≈ 1.7 1010. The experience
is repeated 100 times, which represents 3,500 data sets. We collect the Hellinger distance and number

http://marc-boulle.fr/khisto/
http://marc-boulle.fr/khisto/
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Figure 5. Hellinger distance and number of intervals for N (1, 0.1) with an outlier.

of intervals. The Hellinger distance is computed using the underlying N (1, 0.1) distribution, assuming
that the impact of one outlier among n = 10, 000 instance should be negligible.

The overall results are reported in Figure 5. They show that the G-Enum is rather resilient to the
outlier on a large scale of values, up to about 107, that is more than one million times the range of values
of the underlying distribution. The built histograms have a slowly decreasing quality, from around 17
intervals without outlier, down to 12 intervals for vout ≈ 107. For more distant outliers, the 109 equal-
width elementary bins are no longer sufficient to accurately estimate the underlying distribution. In the
end, the histogram consists of two intervals, the first one exploiting one single elementary ϵ-length bin
and containing all the normal values, the second one containing only the outlier.

The G-Enum-fp method benefits from its floating-point representation to be highly resilient to the
outlier. Beyond vout > 2, the G-Enum-fp method always exploits the maximally floating-point repre-
sentation corresponding to a minimum central bin exponent. As the outlier becomes more distant, the
G-Enum-fp method exploits an increasing number of exponent bins, up to around 35 for the largest
outlier value vout = 234. The first exponent bins can then be split accurately into mantissa bins, allow-
ing an accurate approximation of the underlying density whatever be the distance of the outlier, which
is contained alone in one large interval. We conducted additional experiments with a googol outlier
(vout = 10100). The number of exponent bins necessary to cover the value domain increases up to 334,
resulting in largest cost for the prior terms of the G-Enum-fp. The method is still very accurate, using 14
intervals to approximate the normal distribution plus the outlier, instead of 15 for vout = 1010.

6.3. Lévy distribution

The objective of this experiment is to compare the behavior of the methods in the case of a heavy-tailed
distribution. We exploit the Lévy distribution that is pathological, having neither mean nor variance. We
also evaluate the scalability of the methods, by generating samples of size n = 10i, 1 ⩽ i ⩽ 9. Note that
the range of data set values increases very quickly with the sample size, with maximum values greater
than 1018 for one billion data points. The experiment is repeated 10 times and we collect the Hellinger
distance and number of intervals per sample size.

The overall results are reported in Figure 6. The G-Enum method is not able to produce an accurate
approximation of the underlying density for n above 103. Beyond this threshold, even 109 equal-width
elementary bins are not sufficient to approximate accurately the Lévy distribution. Indeed, the bins nec-
essary to cover the tails of the distribution become too large for a correct approximation around the
median value, which contains most of the probability mass.
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Figure 6. Hellinger distance and number of intervals for a Lévy distribution.

The G-Enum-fp method exploits up to 66 exponent bins to cover the huge range of values for n = 109,
and it keeps an approximately constant relative precision with its mantissa bins, whatever be the position
of the interval boundaries. It is able to continuously improve the approximation of the underlying density
as n increases, building more and more intervals.

(a) Density. (b) G-Enum-fp histogram. (c) G-Enum histogram.

Figure 7. Density and histograms for a Lévy distribution, with n = 109.

Figure 7 shows an example of the histograms obtained by each method for n = 109. The histograms
are displayed using a log× log scale for the interval boundaries on the X axis and their densities of the
Y axis. The G-Enum-fp histogram that accurately approximates the Lévy distribution consists of 1,253
intervals with lengths ranging from 6.1 × 10−4 to 2.3 × 1018, frequencies from 8 to 16.03 × 106 and
densities 3.4× 10−27 to 0.46.

6.4. Lognormal mixture distribution

The objective of this last experiment is to push the G-Enum-fp to its limits, using a pathological
mixture of heavy-tailed distributions. We generate data sets of size n = 10i, 1 ⩽ i ⩽ 9 using a mixture
of ten lognormal distributions.

10∑
i=1

1

10
logN (10i,

10
√
10i) (1)

The experiment is repeated 10 times and Table 9 reports the mean and standard deviation of the num-
ber of intervals per sample size. With this pathological distribution, the range of values is enormous,
from 101 to 1024 for data sets with one billion data points, and we were unable to calculate the Hellinger
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Figure 8. Number of intervals for a mixture of lognormal distributions.

distance due to numerical problems. Due to this huge range of values, the G-Enum method fails to
correctly approximate the underlying distribution and ends with histograms containing about ten inter-
vals. On the opposite, as with the Lévy distribution, the G-Enum-fp method continuously improves the
approximation of the underlying density as n increases, building more and more intervals.

(a) Density. (b) G-Enum-fp histogram. (c) G-Enum histogram.

Figure 9. Density and histograms for a mixture of lognormal distributions, with n = 109.

Figure 9 displays an example of the histograms obtained by each method for n = 109. The G-Enum-
fp histogram that accurately approximates the underlying distribution consists of 2,295 intervals with
lengths ranging from 4.8×10−4 to 2.6×1024, frequencies from 8 to 90.5 million and densities 3.0×10−33

to 0.13.

7. Histograms for exploratory analysis

In this section, we apply the G-Enum-fp method to real-world data sets. However, histograms may not
be directly useful for the exploratory analysis of real data, as shown in a first example. We then propose
heuristics to better process real data and suggest a methodology for using histograms in the context of
exploratory analysis. This methodology is illustrated using some standard data sets.

7.1. Applying histograms to real-world data sets

We apply the G-Enum-fp method to the petal length variable of the iris data set [16]. The obtained
histogram is presented in Figure 10

The resulting combed histogram consists of 51 intervals, 25 of them containing one single value and
of width 3× 10−8. In fact, the G-Enum-fp method is a density estimator, and it reveals that the iris data



18 M. Boullé / Floating-point histograms for exploratory analysis of large scale real-world data sets

Figure 10. Iris petal length histogram, with the density on a linear scale (left) and a logarithmic scale (right).

set consists mostly of discrete data, leading to a list of density peaks. This is actually a good density
estimate, as the petal length variable is recorded with a decimal precision of 0.1, with the 150 instances
containing only 43 distinct values.

However, this combed histogram is not very useful for exploratory analysis. Usually, this problem of
truncated data is solved by practitioners by setting an adequate minimum bin width, the truncation gap,
for the histogram intervals. This can be a tricky task for new data for which there is no prior knowledge
to guess this truncation gap, and tedious trial and error testing may be required.

7.2. Heuristic to deal with truncated data

We propose an adaptation of the G-Enum-fp method to process integer data, then a heuristic to auto-
matically process truncated data.

7.2.1. Dealing with integer data
First, note that all integers n that can be represented on a computer belong to floating-point bins

]n − 1, n]: either the central bins ] − 20, 0] and ]0, 20], the exponent bins ] − 21,−20] and ]20, 21], or
mantissa bins of width at least 20 for the exponent bins with larger exponents. To adapt the G-Enum-fp
method to integer data, we suggest to exploit the subset of floating-point bins that are compatible with
integers, that is all floating-point bins larger than 1. There are few impacts on the G-Enum-fp method:

• the domain bounds represented by the hyper-parameters need to be integers,
• the exponent of the central bin is at least 0,
• the granulated bins are constrained to be of width at least 1.

In the main algorithm (cf. Section A.4), at each depth d of the hierarchy of granulated bins, the main
bins of width 2e, e ⩾ 0 are split into max(2d, 2e) granulated bin. This results in a lower value of Gd, the
number of granulated bins Gd that cover the data set, in the indexing terms of the G-Enum-fp criterion.
Apart from these changes concerning the granulated bins to consider and the value of Gd, the method is
the same.

This extension of G-Enum-fp to integer data allows to process truncated data with a truncation gap of
1, which translates into floating-point bins with a minimum width of 20. Note this can be applied in the
same way to any floating bins of width at least 2i, to process any truncated data which truncation gap is
a power of two.

7.2.2. Dealing with truncated data
Our objective is to automatically process truncated data to facilitate the task of exploratory analysis.

We then suggest a three-steps truncation management heuristic (TMH):
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(1) detection of truncated data,
(2) calculation of the truncation gap,
(3) construction of a histogram adapted to truncated data.

Detection of truncated data. Let us define a peak as a histogram interval which density is greater than
that of its previous and next intervals, a spike as a peak containing one single value and a singularity as
a spike which previous and next intervals are empty. For example, the combed histogram in Figure 10
contains 25 spikes, 14 of which being singularities. We assume that spikes are a signature of truncated
data and choose to trigger the next steps in the presence of at least one spike. We expect this very
simple criterion to correctly identify most of the relevant cases while avoiding unnecessary additional
computation time in the other cases.

Calculation of the truncation gap. After sorting the n data entries x1, . . . , xn by increasing values, we
collect the (n − 1) variations of values δxi = xi+1 − xi, 1 ⩽ i ⩽ n − 1, and compute a histogram from
these variations of values.

Figure 11. Histogram of variations of values for petal length.

As an example, the resulting variation histogram is shown in Figure 11 in the case the petal length
variable of the iris data set. We propose to detect the following truncation pattern within the variation
histogram to confirm whether the data is truncated:

• the first interval contain only the value 0,
• the second interval is empty,
• the third interval has a strictly smaller length than the second interval.

This pattern is present in Figure 11, which contains two spikes related to the variation of values 0.1 and
0.2. Note than we do not impose that the third interval of the variation histogram be a spike, in order to be
resilient to potential rounding errors. We finally exploit the truncation pattern to calculate the truncation
gap, as the mean value contained in the third interval, that is the averaged minimum distance between
two consecutive distinct values.

Construction of a histogram adapted to truncated data. If a non-zero truncation gap γt is available, we
exploit the adaptation of the the G-Enum-fp method to integer data described in Section 7.2.1. We first
choose a binary truncation gap γbt as close as possible to the truncation gap, according to γbt = 2ibt with
ibt = ⌈log2(γt)⌉. We then transform the initial data so that they conform to the binary truncation gap,
then we compute the histogram using the method described in Section 7.2.1 with a minimum floating
bin of width γbt, and finally reverse transform the obtained interval bounds to conform with the initial
value domain.
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To transform the initial data and get values that are all multiples of the binary truncation gap, we
project the data on the upper bounds of the floating-point bins of width γbt that contain each data entry:

yi = ⌈xi/γt − 1/2⌉γbt. (2)

Symmetrically, the reverse transformation of the interval bounds is calculated using

xi = (yi/γbt + 1/2)γt. (3)

Figure 12. Iris petal length histogram, taking into account truncated data.

For example, the obtained histogram related to the petal length variable of the iris data set is presented
in Figure 12. It consists in five intervals, which looks reasonable given that the data set contains only 150
data entries. Its shape seems consistent with the knowledge available concerning the iris data set. It is
mixture a three classes of iris flowers, setosa, versicolor and virginica, of small, medium and large sizes,
with the petal lengths in [1.0, 1.9] for setosa, in [3.0, 5.1] for versicolor and in [4.5, 6.9] for virginica.

7.3. Methodology for exploratory analysis

Our first objective in this paper was to devise a histogram method that could be applied automatically
for the exploratory analysis of any real-world data set. While this goal seems attained in the case of
artificial data set where the data generation process is controlled (see Section 6), it may not be achievable
with real-world data sets. During the digitization process, the data may exhibit a wide range of tricky
patterns beyond rounding or truncation issues, meaning that

"the digitized structure of the data is a much more robust feature than the statistical structure of
the original data. In such cases, an uninvertible transformation has been applied to the data, and
information has been irrevocably lost." ([17])

The method based on an optimal histogram algorithm [17] allows to identify digitization problems,
which is useful as "it may be desirable for researchers to know that information has been discarded".
Beyond this useful feature, our relaxed goal is to help the data analyst filter the digitized structure of the
data and discover its statistical structure. We suggest first computing a series a histograms of varying
granularities, the finest grain allowing to discover local patterns and the coarsest grain allowing to focus
on global patterns. We then provide a list a indicators per histogram to facilitate the task of exploratory
analysis.
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It is worth noting that this methodology may also be used with other histogram methods. However, its
deep integration with the G-Enum-fp method brings several interesting advantages: resistance to outliers
and heavy-tailed distributions (cf. Section 6), fine-tuning of the criterion and algorithms in the case of
truncated data (cf. Section 7.2.1), and reuse of the intermediate histograms obtained at each depth of
granularity as a by-product of the main G-Enum-fp optimization algorithm (cf. Section 7.3.1).

7.3.1. Series of histograms
We optimize a first histogram using the G-Enum-fp method and keep it even in the case of singu-

larities, as it may bring some information regarding digitization problems (as in [17]). We then apply
the TMH heuristic to build an adequate histogram if the data are detected as truncated. The current
histogram, obtained for an optimal depth of granularity dopt, can be seen at coarser grains for all the
intermediate depths d, 0 ⩽ d ⩽ dopt: we collect all these intermediate histograms evaluated along the
optimization trajectory. In order to focus on interpretability and to automatize the exploratory analysis
as much as possible, we apply a singularity removal heuristic (SRH) by discarding the finest grained
histograms having singularities (spikes with two surrounding empty intervals). We could relax the re-
moval criterion by considering spikes or even empty intervals, but this might destroy some potentially
useful information.

To summarize, we get a list of interpretable histograms by decreasing depth of granularity, doptinter ⩾
d ⩾ 0, plus potentially a raw histogram if the first optimized histogram was not interpretable.

7.3.2. Indicators per histogram
To facilitate the exploration of the list of interpretable histograms, we provide the following indicators

based on elementary patterns: number of intervals, peaks, spikes and empty intervals. We also introduce
a last indicator based on the level-fp criterion (see Section B.4) that is the percentage of information kept
in an interpretable histogram compared to the finest grained interpretable histogram:

%information(M) =
level-fp(M)

level-fp(Mdoptinter
)
. (4)

7.4. Illustration

We illustrate the exploratory analysis methodology introduced in this section using some simple data
sets. Extensive evaluation is performed in Section 8.

7.4.1. Old Faithful geyser
This data set contains 272 data entries related to eruptions of the Old Faithful geyser [18], with du-

ration and waiting time between eruptions. The duration is used in [9] to illustrate the difficulties of
correctly identifying density peaks applying automatic histogram methods on heavily rounded real data.
Whereas histograms with two peaks are usually expected, nine automatic histogram methods evaluated
in [9] largely disagree on the shape of the histogram, building 5, 11, 19, 23, 37, 42, 111, 143 or 149
intervals.

Similarly, the G-Enum-fp method fails to identify the underlying statistical pattern and reveals the
digitization structure with a histogram having 71 intervals, including 35 spikes. The TMH method iden-
tifies a truncation gap of 0.001 and outputs the interpretable histogram shown in Figure 13a. Its contains
two density peaks as expected, and its shape seems to correspond with the underlying statistical density,
as suggested by a visual inspection of the scatterplot in Figure 13b.
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(a) Histograms of eruption durations. (b) Duration vs waiting time.

Figure 13. Old faithful geyser.

Note that the truncation pattern seems rather surprising for this data set, as only two pairs of successive
values are separated by 0.001, while 31 are separated by 0.016 and 57 by 0.017. As 1/60 ≈= 0.0166
and after inspecting the data in their plain text format, we assume that the data were recorded with a
precision of one second, then transformed to decimal minutes according to x = m + s/60 and finally
truncated using 3 decimal digits. The digitization process thus includes three steps: recording of ob-
servations with limited precision, transformation then truncation of the data. This leads to fine-grained
digitization patterns that dominate the underlying statistical patterns. Using the methodology suggested
in Section 7.3 provides useful information and allows to recover the statistical structure of the data
beyond their digitization structure.

7.4.2. Adult
The adult data set [16] contains 48,842 data entries extracted from a census database. We apply our

method to the age variable, which is an integer variable as ages are commonly recorded with one year
precision. The G-Enum-fp method builds a raw histogram with 143 intervals, 70 of which being spikes,
including 67 singularities. The TMH method correctly identifies a truncation gap of 1 and outputs the
interpretable histogram shown in Figure 14.

Figure 14. Age in adult data set.

Note that there is a surprising increase of density at age 90. This pattern is confirmed by a close
examination of the three last intervals of the histogram, with 39 people between 82 and 84 years of age,
17 between 85 and 89 years of age, and 55 for 90 years of age, the maximum age in the data set. This
may indicate that people over the age of 90 were all recorded with the age of 90.

Discussion. For illustration purposes, the raw histogram obtained before applying the TMH heuristic is
shown in Figure 15a. This raw histogram is a very accurate density estimator for this data set containing
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48,842 data entries for only 74 distinct values. All ages except two are distributed in bins of very small
width separated by empty bins almost a year wide. The two exceptions contains too few data entries to
be isolated: one data entry for age 86 and two for age 89. Although this histogram is very accurate, it is
of little interest for exploratory data analysis.

A regular histogram with a suitably chosen equal-width (value 1 year) is also presented in Figure 15b.
It gives the overall shape of the data, but is very noisy, compared to the interpretable histogram obtained
using the TMH heuristic (see Figure 14) which recovers a smooth version of the distribution.

Let us note that histograms for mixed discrete-continuous data have been proposed [19], with a user-
defined threshold (e.g. 5) for detecting discrete values and a histogram method for the rest of the data.
In the case of the adult data set, this approach would result in a histogram similar to that shown in
Figure 15a, as most values would be detected as discrete. It is not suitable in the case of truncated data,
where the discrete nature of the data is an artifact of the digitization process, masking the underlying
statistical patterns of interest.

(a) Raw histogram (b) Regular histogram

Figure 15. Raw histogram (log scale) and regular histogram (equal-width=1) of age in adult data set.

7.4.3. Forest cover type
The forest cover type data set [16] contains 581,012 observations (30×30 meter cells) from a geolog-

ical survey. We analyze the variable horizontal distance to nearest roadway. The raw histogram contains
10,992 intervals, revealing serious digitization issues. The TMH method correctly identifies a truncation
gap of 1 related to a one meter precision, but it outputs a histogram that is still not interpretable, with
251 singularities. Once the SRH algorithm is applied to get the 1st interpretable histogram, the result has
a globally understandable, albeit comb-like shape, as shown in the Figure 17a. In fact, these data suffer
from at least two effects of digitization. The data are recorded with a precision of one meter, which is
rather accurate but results in the accumulation of data entries around integer values. And the nature of the
observations, based on a mesh of square cells of 30× 30 meters, is likely to introduce local correlations.

Applying the methodology introduced in Section 7.3, a series of histograms is collected for all the
coarse-grained depths of granularities, starting from the 1st interpretable. The indicators collected per
histogram are displayed in Figure 16. They suggest to exploit a two times coarsened histogram to elimi-
nate the comb-like pattern while preserving most of the information. The resulting unimodal histogram
shown in Figure 17b is rather smooth and suitable for an easy interpretation, while keeping 98.9% of the
information.
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Figure 16. Forest cover type: indicators per depth of granularity.

(a) 1st interpretable histogram. (b) 3rd interpretable histogram.

Figure 17. Horizontal distance to nearest roadway in forest cover type data set.

8. Evaluation with large scale real-world data sets

In this section, we evaluate the floating-point histograms as well as the methodology introduced in
this paper for exploratory data analysis, using several large scale real-world data sets.

8.1. Evaluation protocol

Histograms are widely used in exploratory data analysis (EDA) [20] as visualization tools in the data
discovery process. However, in the case of challenging real-world data sets, they are difficult to use in
practice. Even state-of-the-art histograms are hardly usable in the following cases:

• they reach their limit in the case of outliers or heavy-tailed distributions (cf. Section 3),
• they produce accurate but useless comb-shaped histograms in the case of truncated data (cf. Sec-

tion 7.4.2),
• they cannot scale with very large data sets or very large value domains (cf. Section 2.5).

The purpose of this section is to assess whether the proposed exploratory methodology, based on the
G-Enum-fp method, is capable of pushing the limits of the effective use of histograms for EDA. The
approach is evaluated using several real world data set that combine multiple challenges: heavy-tailed
distribution, integer data, large scale, complex patterns. As there is no ground truth in EDA, the evalu-
ation cannot be measured objectively. Instead, the patterns recovered using the proposed approach are
compared to the prior knowledge available for each data set.
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8.2. Moon crater Salamuniccar database

The moon crater Salamuniccar database [21] 2 is a catalog of 78,287 lunar crater impacts. We exploit
this database to analyze the distribution of the radius of the craters. The raw histogram output by the
G-Enum-fp method contains 2,497 intervals, including 1,204 spikes and 325 singularities. The TMH
method identifies a truncation gap of 3 × 10−5, which looks dubious, and the SRH method discards
the 140 remaining singularities to obtain the 1st "interpretable" histogram. This highly combed-shape
histogram still contains 249 intervals, including 97 peaks, which is hardly useful for exploratory analysis.
These numerous peaks could be explained by the data collection process described in [21], which states
that the catalog is globally complete only for crater diameters greater than 8 km, and that the data
were recorded using several instruments, some with an accuracy of about one meter and others with a
resolution of about 100 meters/pixel. These characteristics are consistent with the data in their plain text
format, which consist of less than 3,200 distinct values recorded to a decimal precision of 6 digits.

Figure 18. Moon crater Salamuniccar: indicators per depth of granularity.

Applying the methodology introduced in Section 7.3, the indicators related to coarser-grained his-
tograms are displayed in Figure 18. They suggest using the 6th histogram, obtained at depth 5, which is
reduced to a unimodal distribution summarized with 23 intervals (see Figure 19b). Even with this small
number of intervals, the floating-point representation allows to recover a global shape in power law.
Still, the information curve in Figure 18 suggests a loss of information of more than 20% during this
coarsening process, especially for crater diameters smaller than 10 km, as shown in Figure 20. This is
consistent with the data collection process and may caution the data analyst to avoid drawing too precise
conclusions from this data set.

(a) 1st interpretable histogram. (b) 6th interpretable histogram.

Figure 19. Moon crater Salamuniccar database.

2https://astrogeology.usgs.gov/search/map/Moon/Research/Craters/GoranSalamuniccar_MoonCraters

https://astrogeology.usgs.gov/search/map/Moon/Research/Craters/GoranSalamuniccar_MoonCraters
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(a) 2nd (b) 3rd (c) 4th (d) 5th

Figure 20. Moon crater Salamuniccar database: intermediate histograms.

8.3. Moon crater Robbins database

The moon crater Robbins database [22] 3 contains approximately 1.3 million lunar impact craters.
This recent database is estimated to be a complete census of all craters larger than approximately 1 to
2 km. The G-Enum-fp method directly builds an accurate and smooth histogram with 87 intervals that
looks easy to interpret, as shown in Figure 21. It captures a power law decrease of the densities for
craters between 1 km and 2,500 km, in line with astrophysics literature: power or multiple power laws
are often used to fit the crater size distribution [23].

Figure 21. Moon crater Robbins database.

8.4. HYG stellar database

The HYG stellar database [22] 4 contains 119,614 star records from three catalogs: Hipparcos, Yale
Bright Star and Gliese. We exploit this database to analyze the distribution of stars’ luminosity, as mul-
tiples of the Solar luminosity. The raw histogram output by the G-Enum-fp method contains 17,032
intervals, including 8,513 spikes and 7,348 singularities (see Figure 22a). Although the luminosity is
recorded with an accuracy of 10 decimal digits, there are only 13,451 distinct values for 119,614 records,
which explains the raw histogram with a very comb-like shape.

No truncation gap is identified, and the 1st "interpretable" histogram obtained by the SRH method
contains 81 intervals (see Figure 22b). This histogram, which spans over 14 orders of magnitude, benefits

3https://astrogeology.usgs.gov/search/map/Moon/Research/Craters/lunar_crater_database_robbins_2018
4https://www.datastro.eu/explore/dataset/hyg-stellar-database/information/

https://astrogeology.usgs.gov/search/map/Moon/Research/Craters/lunar_crater_database_robbins_2018
https://www.datastro.eu/explore/dataset/hyg-stellar-database/information/


M. Boullé / Floating-point histograms for exploratory analysis of large scale real-world data sets 27

(a) Raw histogram. (b) 1st interpretable histogram.

Figure 22. HYG stellar database.

from the floating-point representation of the G-Enum-fp method. It highlights an interesting smooth and
precise distribution of the luminosity of the stars, with an approximate mixture of decreasing power
laws. This overall irregular shape of the histogram probably comes from the data set, which is a mixture
of three rather different catalogs. For example, the Yale Bright Star catalog contains essentially all stars
visible with the naked eye, which may explain the "bump" at the end of the histogram. And conversely,
the Gliese catalog is the most comprehensive catalog of nearby stars, that contains many fainter stars not
found in Hipparcos.

8.5. Orange call detail records

The data set studied here is composed of nearly 25 million entries of cumulated call durations for
incoming calls collected during one day, for a large sample of phone numbers of the Orange telecommu-
nication company5. The TMH method correctly identifies a truncation gap of 1 related to a one second
precision and directly outputs the histogram displayed in Figure23, that consists of 222 intervals, with
no singularity.

The fairly compact representation provided by this histogram summarizes a lot of information, beyond
the overall shape of the distribution previously known as being heavy-tailed. For example, the first dense
interval corresponds to phone numbers without any calls during the day, resulting in a cumulated call
duration of 0 seconds. It spans over just one second but represents about half of the data set. Strikingly,
the last interval covers about 3 million seconds and only accounts for 3 data entries, related to incoming
calls collected one day that lasted more than one month. Another finding is that the heavy-tailed form
exhibits two distinct power-law regimes, with a transition for durations of around one hour.

While the histogram looks globally smooth, there still are several dense peaks in-between. One could
apply the methodology introduced in Section 7.3 to treat these peaks as digitization patterns and discard
them, but they seem to be robust patterns that can only be eliminated after coarsening the histogram
almost ten times. The three most notable peaks in the right (in the range [103; 104] of Figure 23) corre-
spond to call durations of exactly 1800, 3600 and 7200 seconds, that is 1/2, 1 and 2 hours. The smaller
peaks at the beginning, which are less contrasted with the overall distribution, correspond to cumulated
call durations of exactly 1, 2, 3, . . . , 15 minutes, plus 18, 19, 20 minutes. A possible explanation for these
denser peaks at round times might be relative to telecommunication services with a fixed contractual
time, such as teleconferences.

5For privacy reasons, this data set is not publicly available.
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Figure 23. Orange CDR.

Overall, this histogram provides an insightful summary with both global and local patterns that were
previously unknown to domain experts.

8.6. Web graph

The eu-2015 data set6 is a large snapshot of the Web graph for European countries in 2015, collected
by the Laboratory for Web Algorithmics [24, 25]. It consists of about 1 billion nodes and 92 billion
edges. We focus on the in-degrees per node, that is the number of edges that point to a given node. These
values range from 1 to more than 20 million, with 86 on average. There are only about 71,000 distinct
values for in-degrees, which is a surprisingly very small number given the billion data entries. The
visualization plot proposed on the website for the data set is shown in Figure 25a. It shows a frequency
plot of the in-degrees, as well a smooth approximation of the distribution using Fibonacci binning.

The values of the in-degrees are integers, which is correctly retrieved by the TMH method, with a
truncation gap of 1. The 1st obtained interpretable histogram, presented in Figure 25b, contains 15,034
intervals. The histogram shows a clear decreasing power law behavior, with most of the nodes having
a very small in-degree, and very few nodes having huge in-degrees. The first interval contains about
230 million nodes with a in-degree of 1. The last interval contains only 7 nodes (among 1 billion), for
in-degrees spanning from 2 million to 20 million.

Although the general shape of the histogram is quite straightforward, it looks noisy for in-degrees
between 1,000 and 1,000,000. A close inspection at some of these dense peaks shows that they are
not pure noise: they actually reveal some surprising patterns. For example, there is one interval that
contains 59 nodes with 297,690 or 297,691 in-degrees. It is surrounded by two intervals that are about
one thousand times less dense: one with 14 nodes spanning over 2000 in-degrees values and another

6Available at http://law.di.unimi.it/webdata/eu-2015/ with some visualization plots

http://law.di.unimi.it/webdata/eu-2015/
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with 152 nodes spanning over 15,000 in-degrees values. Having such a concentration of node with
almost exactly the same huge in-degree might be the signature of a Web farm.

Figure 24. LabWeb: indicators per depth of granularity.

Applying the methodology introduced in Section 7.3 allows to get a simplified summary of the in-
degrees distribution and to capture its global shape. The indicators displayed in Figure 24 suggest to
coarsen the histogram from its initial granularity depth 20 down to 7, which is a considerable coarsening
albeit with minimal loss of information. The simplified histogram, shown in Figure 25c, consists of
75 intervals chosen among only 93 floating-point bins. It has a smooth decreasing power-law shape on
seven orders of magnitude for the in-degrees and 15 orders of magnitude for the densities. The density
estimation is accurate enough to distinguish two regimes for the power law, before and after around
10,000 in-degrees. It should be noted that these results are visually consistent with the frequency plot
and Fibonacci binning provided with the data set (cf. Figure 25a), both for the noisy patterns for in-
degrees above 1,000 and for the overall shape of the distribution.

(a) frequency plot (b) 1st interpretable histogram. (c) 14th interpretable histogram.

Figure 25. LabWeb.

8.7. New York Times Annotated Corpus

The New York Times Annotated Corpus (NYTAC)7 contains over 1.8 million articles written and
published by the New York Times between January 1, 1987 and June 19, 2007. Texts can be decom-
posed into sets of tokens, where tokens can be words, letters or even bytes, or their sequences named
n-grams: n-grams of words, letters or bytes. In this section, we study the decomposition of the articles
of the NYTAC into n-grams of bytes. There are about 166,000 distinct 3-grams in the corpus and their

7Available from the Linguistic Data Consortium (LDC) at https://catalog.ldc.upenn.edu/LDC2008T19

https://catalog.ldc.upenn.edu/LDC2008T19
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total number of occurrences is about 6.2 billion. Let us call the popularity of a 3-gram its number of
occurrences in the corpus. A popular 3-gram has a large number of occurrences, while a noteless one
has a small number of occurrences8. We apply the G-Enum-fp method to summarize the density of this
popularity variable for the 3-grams in the NYTAC. The popularity is an integer variable, which is recov-
ered by the TMH method using a truncation gap of 1. The resulting histogram has 73 intervals and is
directly interpretable, with a very smooth shape, as shown in Figure 26a.

(a) Histogram of 3-grams’ popularity. (b) Histogram of 9-grams’ popularity.

Figure 26. New York Times Annotated Corpus: popularity of n-grams.

We evaluated the popularity of all n-grams of bytes, from 1-grams to 9-grams. We report the results
for the 9-grams, which are the most numerous, with about 254 million distinct 9-grams in the corpus.
The noteless 9-grams are very frequent, with over 134 million 9-grams having a popularity of 1. And
the popular 9-grams are rare, the most popular " for the " having a popularity of around 1.9 million. The
resulting histogram displayed in Figure 26b is very accurate, with 230 intervals and a density spanning
over 12 orders of magnitude. The length of the 65 first intervals is 1 while that of the last interval is
greater than 1.2 million. This last interval contains the 27 most popular 9-grams, that behave as outliers
in this histogram.

The histograms build for each kind the n-grams provide a smooth and accurate estimation of the
underlying probability density function of the popularity of the n-grams. Although the data set combines
several challenges, with integer data in addition to heavy-tailed distribution and large size, the retrieved
histograms do not suffer from com-shaped or noisy patterns such as those displayed in Figure 15. They
are remarkably smooth and parsimonious, which make them easy to analyze and interpret. The shape
of the density function given by the histograms is very similar for each kind of n-grams. It is almost a
straight line, especially for the noteless n-grams, but is still concave, especially for the popular n-grams.

The frequency of tokens in text corpora has been widely studies in the literature. The Zipf’s law [26]
for word tokens in a corpus states that if f is the frequency of a word in the corpus and r is the rank of
a word by decreasing frequency, then f = k/r where k is a constant for the corpus. When f is drawn in
relation to r using a log× log graph, which is called a Zipf curve, a straight line is obtained with a slope
of −1. To take into account deviations from this behavior, several modifications of the law have been
proposed, in particular the one derived theoretically in [27], f = k

(r+α)β where α and β are constants for
the analyzed corpus.

8This notion of popularity for 3-grams has been introduced to avoid confusing comments such as "frequent words are rather
infrequent" or "rare words are very frequent".
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(a) Empirical Zipf curve. (b) Estimation using a histogram.

Figure 27. New York Times Annotated Corpus: Zipf curves of 3-grams.

The Zipf curve for 3-grams in the NYTAC is drawn in Figure 27a. Except for the least frequent 3-gram
on the right side of the curve, the shape of the curve is clearly concave, far from a straight line. We now
focus on the relationship between the Zipf curve for 3-grams in Figure 27a and the probability density
function of the popularity of 3-grams in Figure 26a. Let wi, 1 ⩽ i ⩽ n be a 3-grams, f (wi) its frequency
in the corpus, and r(wi) its rank by decreasing frequency. The Zipf curve plots r(wi) versus f (wi) using
a log× log scale. Let us now focus on the complementary cumulative distribution function (ccdf) of the
popularity of 3-grams, that is

F̄X(x) = P(X > x) (5)

where X is the popularity variable, which is estimated using the frequency of the 3-grams. The empirical
ccdf is computed from the data entries in the sample according to

F̂X(x) =
number of 3-grams in the corpus with popularity above x

n
, (6)

=
1

n

n∑
i=1

1( f (wi)>x), (7)

where 1( f (wi)>x) is 1 if f (wi) > x and 0 otherwise. When 3-grams are sorted by decreasing frequencies,
we have

F̂X( f (wi)) =
1

n
r(wi). (8)

This demonstrates that the Zipf curve is none other than the empirical ccdf of the popularity drawn using
a log× log scale with the two axes inverted [28]. As the histogram displayed in Figure 26a represents
an estimate of the popularity distribution function of the 3-grams, we exploit it to get an estimate of the
ccdf and obtain the graph displayed in Figure 27b, based on 73 intervals instead of 166,000 points in the
Zipf curve of Figure 27a. This shows that the histograms obtained using the G-Enum-fp method provide
a very accurate summary of the Zipf curve, much easier to study given their parsimony. It opens new
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research avenues for the study of the word frequency distribution, either directly using the probability
distribution or its cumulative variants9.

9. Conclusion

In line with our goal of exploratory analysis of large scale real-world data sets, we chose the G-Enum
histogram method [6] as our starting point because it is automatic, scalable, parsimonious and achieves
state-of-the art accuracy in density estimation. The G-Enum method builds irregular histograms with
intervals of variable lengths, based on a modeling space consisting of equal-width elementary bins. This
makes sense for a piecewise-constant density estimator for distributions with real values in R. Although
it works well in many cases, this method cannot cope with distant outliers or heavy-tailed distributions.
When the number of equal-width elementary bins required to cover the entire value domain increases to
its limits, the elementary bins become over-lengthy to properly approximate the dense density regions
of the underlying distributions.

In this paper, we have suggested to extend the G-Enum method, by replacing its equal-width elemen-
tary bins by floating-point elementary bins that exploit the floating-point representation of real numbers
on computers. This alternative representation space enables to treat any data set that can be represented
on a computer, rather than data sets with values in R. The new method, named G-Enum-fp, keeps most
of the features of the G-Enum method: the modeling space (only the definition of the elementary bins
has changed), the evaluation criterion and the optimization heuristics. This allows to inherit from the
appealing properties of the G-Enum method: parameter-less, robustness, accuracy, parsimony and scala-
bility. Extensive experiments have been conducted to analyze the impact of this new representation space
using various artificial distributions. The results show indistinguishable performance in the case of stan-
dard regular distributions. On the other hand, in the case of outliers or heavy-tailed distribution, the
G-Enum-fp method brings considerable improvements, as it can accurately approximate the underlying
distributions regardless of their shape and scale.

However, these very promising results collapsed during the first experiments with real data. The prob-
lem is not the limited precision of the computer representation of real numbers. As shown by artificial
experiments with known distributions, the precision of the 15-digit decimal mantissa is clearly sufficient,
even in the case of very large data sets. The problem is that real-world data sets involve a digitization
process, with many potential issues such as for example, inherently integer data, biased data collection,
limited recording accuracy, data transformation, rounding or truncation errors. As the size of the data
sets increases, the digitized structure of the data may dominate the statistical structure of the original
data, and accurate histograms retrieve the dominant structure, which may be of little interest for ex-
ploratory analysis. Abandoning the objective of fully automated histograms for exploratory analysis, we
have proposed heuristics to process truncated data and eliminate singularities, as well as a methodology
to facilitate the task of recovering the statistical structure of the data beyond their digitization structure.
Extensive experiments on large scale real-world data sets show the effectiveness of the approach.

The first immediate objective of future work is to apply the methodology proposed in this paper
to discover new insights in areas where histograms could not be easily applied previously. Another
research direction includes extensions of the G-Enum-fp method to the processing of huge data stores
or fast data streams. Finally, it is noteworthy that one of the most striking surprises in this article is the

9The normalized word frequency f (wi)/
∑

j f (w j) could also be used to obtain less corpus-dependent information.
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strong interweaving of digitization and statistical structures in large real-world data sets. This implies
that accurate methods can sometimes produce results without much interest. As the current trend in
supervised classification is to apply methods with numerous parameters on very large data sets, one can
cautiously consider the excellent accuracy of the predictions obtained. Analyzing this potential issue
appears to be a promising direction for research.
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Appendix A. G-Enum-fp histogram method

In the Section 4, we have exploited the floating-point representation of real values to introduce an
alternative definition of the elementary bins used as building blocks for a new histogram method called
G-Enum-fp. We first summarize the principles of this new method, then detail its specific components.

A.1. Principle

The G-Enum method exploits a representation space based on elementary equal-width bins, using
a granularity parameter G to explore simplified versions of this representation space. It exploits these
elementary bins as building blocks that provide a set of predefined bounds, from which the bounds of
the histogram intervals are chosen.

The main novelty of the G-Enum-fp method is to replace the elementary equal-width bins of G-Enum
with the floating-point bins and their granulated hierarchy introduced in Section 4. In addition to this
major change, the G-Enum-fp method extends the modeling space and the optimization algorithms of
G-Enum to take full account of the particularities of floating-point bins. With, the G-Enum-fp method,
the bounds of the whole numeric domain are explicitly specified as hyper-parameters, in Section A.2.
Another difference related to floating-point representation is the management of the singularity around 0,
which relies on a central bin. This leads to the introduction of a new parameter in Section A.3. Once the
domain’s bounds and the central bin are specified, the G-Enum-fp method extends the G-Enum method,
as detailed in Section A.4.

A.2. Specification of domain bounds

Domain bounds are usually derived from the data in most existing histogram methods. This sometimes
results in some undesirable side-effects, such as under or over-estimated density around the extrema
values. While the impact is negligible when density estimation is the only objective, this may cause
some harm in the context of exploratory analysis. To reduce such potential problems, we suggest to
introduce hyper-parameters to explicitly specify the bounds of the numerical domain. Our objective is
also to clarify some modeling choices and to exploit a full Bayesian model selection approach.

With the G-Enum-fp method, we explicitly specify the lower and upper bounds Dlb,Dub of the nu-
merical domain by choosing two extrema floating-points bins, as well as a central bin that is compatible
with the data set10. To do this, we introduce the following hyper-parameters:

• ilb: exponent of the main bin BMlb containing the lower bound Dlb,
• iub: exponent of the main bin BMub containing the upper bound Dub,
• icb: exponent of the central bin that is empty, except for the value zero,
• db: digit precision used to encode the index of the mantissa bins containing the lower and upper

bounds,
• mlb,mub: index of the mantissa bins Bmlb , Bmub with db digits precision, containing the lower and

upper bounds within their main bins.

Our objective is to set the values of these hyper-parameters once for all, before optimizing the his-
tograms. To do this, we assume that we only know the number of instances n, the extreme values xmin,

10In Section 4, the floating-point bins were introduced using directly the extreme values of the data set as the bounds of the
value domain, only for reasons of simplicity.
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xmax and the smallest non-zero value in the data set. With no further assumption about the distribution
of the data, we optimize the hyper-parameters using a Bayesian approach, more precisely a Bayesian
interpretation of MDL criteria, since negative logarithms of probabilities can be considered as coding
lengths [29].

Prior. For each main bin BMlb , BMlb , we use 3 bits to encode the choice between central or exponent
bin, the sign of the bin and the sign of the exponent. To introduce a slight bias towards small exponents,
we use the universal prior for integers of Rissanen [7] to encode the absolute value of the exponent. This
results in

3 log 2 + log∗(1 + |ilb|) + 3 log 2 + log∗(1 + |iub|). (9)

The sign and the absolute value of the exponent icb are encoded in the same way, only if necessary,
that is if it cannot be deduced from BMlb , BMub :

1{Dlb⩽0<Dub}(log 2 + log ∗(1 + |icb|)). (10)

We exploit again the universal prior for integers of Rissanen to encode the digit precision db, and then
db bits are necessary to encode the index of the mantissa bins Bmlb , Bmub which extremities are Dlb and
Dub. We get

log ∗(1 + db) + 2db log 2. (11)

Altogether, the criterion for encoding the prior terms of the hyper-parameters is

costHPP = (6 + 2db) log 2 (12)

+ log∗(1 + |ilb|) + log∗(1 + |iub|) + log ∗(1 + db) (13)

+1{Dlb⩽0<Dub}(log 2 + log ∗(1 + |icb|)). (14)

As log∗ ≈ log, this gives the approximation costHPP = 2db log 2 + O(log(1 + db)), which shows that
the prior terms mainly increase linearly with the mantissa precision used to encode the domain bounds.

Likelihood. Given ilb, iub, icb, the number nB of main bins can be deduced, as well as the maximum
number of bits dbmax , 0 ⩽ dbmax ⩽ dmax = 30, available to encode the mantissa of the domain bounds:
dbmax = dmax − ⌈log2 nB⌉.

As with the G-Enum method, we encode the position of each instance of the data set on the value
domain using the bin index terms (see Table 1). We only know the extreme values xmin, xmax and the
smallest non-zero value in the data set, and have no assumption about the distribution of the data. We
then exploit only one interval, and the bin index terms reduce to

n log E, (15)

where E is total number of elementary ϵ-bins in the value domain. Let ϵ be the minimum length over all
the elementary floating-point bins of the value domain, that is the length of the mantissa bins within the



38 M. Boullé / Floating-point histograms for exploratory analysis of large scale real-world data sets

main bins having the smallest exponent when the maximum granularity is chosen. All the elementary
floating-point bins have a length that a multiple of ϵ by a power of two factor, and E can be obtained
using E = (Dub − Dlb)/ϵ, resulting in the following likelihood terms

costHPL = n log
Dub − Dlb

ϵ
, (16)

that increases with the range (Dub − Dlb) of the domain.

Optimization. To start with a minimal range (Dub −Dlb), we first choose the exponent of the main bins
of the domain from the extreme values of the data set according to:

• ilb: exponent of the main bin containing the minimum value xmin of the data set,
• iub: exponent of the main bin containing the maximum value xmax of the data set,
• icb: exponent of the largest central bin that does not contain any non-zero value of the data set.

We now have to optimize the mantissa precision db, 0 ⩽ db ⩽ dbmax , used to encode the domain bounds
Dlb and Dub. Removing the fixed terms from costHPP + costHPL , this reduces to optimizing

log(1 + db) + 2db log 2 + n log(Dub(db)− Dlb(db)), (17)

where Dlb(db) and Dub(db) correspond to the encoding of xmin and xmax using a floating-point represen-
tation with db bits of mantissa precision.

We obtain

db = argmin
0⩽d⩽dbmax

log(1 + d) + 2d log 2 + n log(Dub(d)− Dlb(d)). (18)

Illustration. Let us consider a data set with n = 1, 000 instances in [10.4, 114.7]. The index of the
main bin containing the domain lower bound is ilb = 3, as xmin = 10.4 ∈]23, 24]. For the domain
upper bound, we have iub = 6, as xmax = 114.7 ∈]26, 27]. As all the values of the data set are strictly
positive, we do not need a central bin. The domain is covered by nb = 5 main bins, and we obtain
dbmax = dmax − ⌈log2 nB⌉ = 27. Table 3 shows the optimization details for 0 to 15 bits precision of the
mantissa bins. With 0 bits, the domain bounds are coarse since they reduce to the bounds of their main
bins. With 15 bits, they are very precise and very close to the extreme values of the data set. The best
trade-of between the number of bits need to encode the domain bounds and the likelihood of the data is
achieved with 6 bits, as highlighted in Table 3.

A.3. Choice of the central bin

We introduce a new parameter icen to choose the exponent of the central bin used to obtain a
representation space based on floating-point bins. As a matter of fact, we can choose any value of
icen compliant with the domain bounds introduced in Section A.2, that is between icenmin = icb and
icenmax = 1 + max(ilb, iub).

For example, in Figure 3, we have ilb = 1, iub = 2, icb = −3, and the floating-point representation
is chosen for icenmin = icb. At each granularity, we obtain a set of floating-point bins of varying sizes
according to their main bins that exploit exponents between −3 and 3. Alternatively, we could choose
icenmin = 3 to have the data contained in the two central bins ] − 23, 0]∪]0, 23] and get an equal-width
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Table 3
Optimization of domain bounds

d Dlb(d) Dub(d) Total cost log(1 + d) 2d log 2 n log(Dub(d)− Dlb(d))
0 8 128 4792.9 2.6 2.8 4787.5
1 8 128 4794.8 3.1 4.2 4787.5
2 10 128 4779.9 3.7 5.5 4770.7
3 10 120 4711.5 4.1 6.9 4700.5
4 10 116 4676.2 4.4 8.3 4663.4
5 10.25 116 4675.5 4.7 9.7 4661.1
6 10.375 115 4666.4 4.9 11.1 4650.4
7 10.375 115 4668.0 5.1 12.5 4650.4
8 10.375 114.75 4667.1 5.3 13.9 4648.0
9 10.3906 114.75 4668.5 5.4 15.2 4647.8
10 10.3984 114.75 4670.0 5.6 16.6 4647.8
11 10.3984 114.719 4671.2 5.7 18.0 4647.5
12 10.3984 114.703 4672.5 5.8 19.4 4647.3
13 10.3994 114.703 4674.0 5.9 20.8 4647.3
14 10.3999 114.703 4675.5 6.0 22.2 4647.3
15 10.3999 114.701 4677.0 6.1 23.6 4647.3

representation across the entire numerical domain at each granularity. And any central bin exponent
between the maximally floating-point representation and the maximally equal-width representation is
possible.

Prior. We have icen ∈ [icenmin , icenmax ]. An equal-width representation looks more suitable to the infer-
ence of histogram, as they are piece-wise constant density estimator. We translate this preference into a
slight bias towards equal-width representation using the uniform prior of Rissanen to encode the expo-
nent of the central bin:

log∗(1 + icenmax − icen). (19)

Optimization. To avoid a loop over all possible values of icen ∈ [icenmin , icenmax ], we start with the max-
imally floating-point representation and optimize a fist histogram M(icenmin) for icen = icenmin , using the
optimization algorithm summarized in Section A.4. With this histogram, the accuracy of the interval
boundaries is maximal around zero, as the values close to zero are located in the main bins with the
smaller exponents.

For larger values of icen and keeping the same granularity, the central bins become larger, as well as
their mantissa bins. Therefore, instances separated in adjacent intervals with the first histogram M(icenmin)
may no longer be separable for larger values of icen. We then try to adapt the boundaries of each interval
of M(icenmin) to the new representations induced by larger values of icen, and test whether the instances of
the data set can still be divided into intervals of the same frequency. This test can be performed in O(K),
where K is the number of intervals of M(icenmin). By dichotomy, we look for the largest value icenopt of icen
where this property is still valid. This dichotomous search can be performed in O(K log(icenmax − icenmin +
1) which is bounded by O(n log re) and is negligible in practice compared to the main optimization time.

We finally optimize a second histogram M(icenopt) for icen = icenopt , and keep the histogram having the
best cost. This is summarized by the three-steps process below:

(1) optimize a first histogram M(icenmin) for icen = icenmin ,
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(2) by dichotomy in [icenmin , icenmax ], search for the largest value icenopt of icen related to a floating-point
representation where the partition of the data set according to M(icenmin) is still possible while
keeping the same frequencies per interval,

(3) optimize a second histogram M(icenopt) for icen = icenopt and keep this histogram if its cost is better
than that of the first histogram.

A.4. Main optimization algorithm

For fixed domain boundaries and exponent of the central bin, we obtain a set a floating-point bins for
each granularity (see Section 4). The rest of the G-Enum-fp model is identical to the G-Enum model, as
we have to choose the granularity, the number of intervals, the partition of the considered elementary bins
into intervals and the interval frequencies. The only difference is that the elementary bins are floating-
point bins rather that equal-width bins. We refer to Table 1 that summarizes the G-Enum criterion to
comment the slight changes related to G-Enum-fp method.

Hyper-parameter terms. The hyper-parameter terms that encode the domain bounds (see Section A.2)
are optimized once for all using the extreme values of the data set, before seeing the data. They thus can
be ignored during the optimization of the histograms that exploit all the values of the data set.

Indexing terms. The new parameter icen (see Section A.3) is treated as a new indexing term with value
fixed during the optimization of the central bin exponent (see Section A.3). Both the G-Enum-fp and G-
Enum methods encode the number of intervals K using a log ∗K term. The G-Enum method encodes the
granularity G using the log ∗G term, then exploits it in using only power of 2 granularities. With the G-
Enum-fp, we suggest to encode the depth d of the hierarchy of granulated bins using a log ∗(d+1) term.
For a given depth d, the number of granulated bins that cover the data set is Gd, with 2d−1 < Gd ⩽ 2d

(see Section 4.2). We thus use Gd rather than G = 2d to be more parsimonious in the indexing terms.
Note that this encoding that finely exploits the floating-point modeling space is actually very close from
that of the G-Enum method, since at most one bit per interval can be saved.

Multinomial terms. Both methods need to encode the partition of the elementary bins into intervals
and distribution of the n instances on the K intervals, and they rely on the same terms.

Bin index terms. With the G-Enum method, the bin index terms are used to encode the position of the hk

instances of each interval on the elementary ϵ-bins of the interval. As interval k consists of Gk granulated
equal-width bins, each containing E

G ϵ-bins, we obtain Ek = Gk
E
G ϵ-bins per interval, which translates

into bin indexing terms
∑K

k=1 hk log Ek =
∑K

k=1 hk logGk + n log E
G . With the G-Enum-fp method, the

length of each interval is also chosen using Gk granulated bins, except than these bins are floating-point
bins and their size vary with the corresponding main bins. However, the length Lk = ck − ck−1 of each
interval can also be expressed as Lk = Ek × ϵ, but we need to define ϵ precisely. Let ϵ be the minimum
length over all the elementary floating-point bins, that is the length of the mantissa bins inside the main
bin with the smallest exponent. All elementary bins have a length that a multiple of ϵ by a power of
two factor. Since each histogram interval consists of a subset of elementary bins, the length Lk of each
interval is a multiple Ek of ϵ, as in the G-Enum method.

Optimization. Overall, the G-Enum-fp criterion given in Tables 4, 5 is very close to the G-Enum
criterion (see Table 1). Once the hyper-parameters terms and the central bin exponent are set, they can
be ignored during optimization and the G-Enum-fp criterion becomes almost identical to the G-Enum
criterion. This allows to inherit from its theoretical properties and to reuse its efficient optimization
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Table 4
G-Enum-fp hyper-parameters criterion

Term Criterion

Main bin containing the domain lower bound 3 log 2 + log ∗(1 + |ilb|)
Main bin containing the domain upper bound 3 log 2 + log ∗(1 + |iub|)
Central bin exponent if necessary 1{Dlb⩽0<Dub}(log 2 + log ∗(1 + |icb|))
Digit precision used for mantissa bins log ∗(1 + db)

Mantissa bins containing the domain bounds 2db log 2

Table 5
G-Enum-fp criterion

Criterion Indexing terms Multinomial terms Bin index terms

G-Enum-fp log ∗(1 + icenmax − icen) +
log ∗K + log ∗(1 + d) +

log

(
Gd + K − 1

K − 1

) log

(
n + K − 1

K − 1

)
+

log
n!

h1!...hK !

∑K
k=1 hk log Ek

algorithm that mainly consists of a loop on granularities, and for each granularity a bottom-up greedy
heuristic to optimize the intervals bounds. The overall algorithmic complexity is still O(n log n), since
at most two values of the central bin exponent are tested (see Section A.3).

Note that the optimized histograms may contain extreme empty intervals if the optimal digit precision
d is greater than the precision db used to encode the domain bounds. This means that the domain bounds
can be refined if necessary after all values of the data set have been processed. In this case, we eliminate
these extreme empty intervals in a post-processing step, as they do not provide useful information for
exploratory analysis.

Appendix B. Properties of G-Enum-fp method

In this section, we further analyze the G-Enum-fp criterion and investigate on some of its properties.

B.1. Alternative formulations of the criterion

Let us focus on the bin index terms Cbin of the criterion of the G-Enum-fp criterion (see Table 5).

Cbin =

K∑
k=1

hk log Ek. (20)

Let us recall that the interval boundaries ck, 0 ⩽ ck ⩽ K, are borrowed from a set of floating-point
bins and that their length Lk = ck − ck−1 are multiples of ϵ. We have

Cbin =

K∑
k=1

hk log
Lk

ϵ
,

=

K∑
k=1

hk log
ck − ck−1

ϵ
,
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=

K∑
k=1

hk log (ck − ck−1)− n log ϵ. (21)

Note that the length of the intervals can be potentially very large, up to DBL_MAX, and ϵ can be very
small, down to DBL_MIN. Contrarily to the G-Enum method, the numbers Ek = Lk/ϵ cannot be directly
used without raising numerical problems such as overflow. Formula 21 shows how to effectively compute
the bin index term, provided that we keep track of the interval boundaries. And in the optimization
algorithm, the constant term −n log ϵ can be ignored.

Let us normalize the lengths of the intervals on the [0, 1]. Using this relative lengths instead of the
absolute lengths, we get

Cbin =

K∑
k=1

hk log
ck − ck−1

Dub − Dlb
+ n log

Dub − Dlb

ϵ
. (22)

Interestingly, Formula 22 shows that the bin index term can be decomposed into a term that depends
only of the relative lengths of the intervals, and a constant term that depends on the range [Dlb,Dub] of
the value domain and of the precision ϵ and can be ignored during the optimization.

B.2. Advanced comparison with the G-Enum method

Hyper-parameters. While the G-Enum method needs only two extreme values xmin and xmax of the data
set to define the elementary bins, the G-Enum-fp method requires two domain bounds Dlb and Dub plus
an additional parameter, icb, which is the exponent of the largest possible central bin that does not contain
any non-zero value of the data set. The hyper-parameters were explicitly introduced in the G-Enum-fp
method mainly to clarify some modeling choices and to avoid potential undesirable density side-effects
around the domain bounds. Since the value of the hyper-parameters is constant whatever the model, the
impact on the optimized histograms is likely to be negligible when the average quality of the estimated
density is the only concern. Nevertheless, in a context of exploratory analysis, a better treatment of the
density around the extreme values may be beneficial.

Central bin exponent parameter. Beyond the different representation spaces, floating-point bins ver-
sus equal-with bins, the G-Enum-fp method exploits the new parameter icen to choose the central bin
exponent. This allows to consider a list of intermediate representation spaces, ranging from maximally
floating-point, which may be suitable in the case of heavy-tailed distributions, to maximally equal-width
which looks natural for distributions with bounded and not too large support.

The precision parameter. In the G-Enum method, the ϵ parameter is obtained simply by ϵ = (xmax −
xmin)/E, where E = Gmax = 230. In the G-Enum-fp method, the ϵ parameter is given by the length of the
smallest mantissa bin with the main bin having the smallest exponent, obtained at the maximum depth
dmax = 30.

Applicability to a huge range of values. The total number of ϵ-bin length intervals considered in the
G-Enum-fp method is

E =
Dub − Dlb

ϵ
.

In the extreme case of a data set with xmin = −DBL_MAX, xmax = DBL_MAX, i⋆ = −1022 (as DBL_MIN =
10−1022), the number of main bins used to cover the data set is maximum: nB = 2046 ∗ 2 + 2 = 4094.
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As 12 bits are necessary to encode the index of the main bins, the mantissa bins can be encoded using
up to 18 bits at the maximum depth dmax = 30, keeping a relative precision of around four millionths.

E ⩽
2× DBL_MAX

DBL_MIN/218
= 22064

Compared to the G-Enum method that is limited to at most 230 ≈ 109 ϵ-bin intervals, the G-Enum-fp
method extends this limit by more than six hundred orders of magnitude, to 22064 ≈ 10621.

Boundary of intervals. Another difference is that all elementary or granulated bins have the same width
in the G-Enum method, which means that the index of an elementary or granulated bin is sufficient to
derive its bounds and its width. With the G-Enum-fp method, both the elementary and granulated bins
have variable lengths, and we must keep track of the boundaries of each interval at the precision given
by the current depth d to correctly compute the terms of criterion (see Formula 21). Finally, let us
note that with the G-Enum method, the bounds of the elementary bins are calculated using a formula
(ck = xmin − ϵ/2 + kϵ). Although this formula is very simple, it can lead to tricky numerical problems
due to rounding problems on computers. With the G-Enum-fp method, the elementary bins are selected
from the predefined set of floating-point bins. They are more complex to index easily, but their bounds
are exact on computers and they does not suffer from rounding problems.

B.3. Invariance to linear transformation of the data.

When the data are linearly transformed, the resulting histogram model is expected to consist of the
same intervals, with their boundaries linearly transformed in the same way. Formula 22 shows that
optimized histograms depend only of the relative lengths of each interval, regardless of the range of
the values. When the boundaries of the intervals are linearly transformed, their relative lengths remain
unchanged and the optimization algorithm should result in the expected histogram.

However, there are differences that depend on the range [xmin, xmax] of the data set, which can impact
the optimization results. The definition of the elementary floating-point bins may involve a single main
bin if the data is far from 0, or many main bins if data is close to 0 and require a central bin with a small
exponent. The number of main bins nB may therefore vary depending on the transformation of the data
set, and the remaining bits m = dmax −⌈log2(nB)⌉ used to encode the mantissa may change accordingly.
This has an impact on the bin index term of the criterion which depends slightly on the accuracy of the
interval boundaries. Another impact is that the prior term log

(Gd+K−1
K−1

)
is likely to vary a lot when a

data set far from 0 is translated to the origin. As log
(Gd+K−1

K−1

)
≈ (K − 1) logGd ≈ (K − 1)d log 2,

this implies that a few more bits are needed per interval if a greater depth d is required to encode the
interval boundaries with better accuracy. Note that these two impacts should be of secondary importance
compared to the other terms of the G-Enum-fp criterion.

Overall, we can expect the histograms to be roughly invariant to the linear transformation of the data
in a larger number of cases. Nevertheless, this property of invariance may be slightly violated in the case
of data sets with values close to the origin and few instances.

B.4. Normalized criterion

In order to get a standardized criterion that evaluates the quality of a histogram, we suggest to normal-
ize the cost a histogram model (the value of the corresponding evaluation criterion) by that of the null
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histogram consisting of a single interval. We analyze the merits and limitations of the resulting criterion,
and suggest some corrections to improve it.

The level criterion. Let M∅ be the null model with one single interval.
The cost of the null model is

cost(M∅) = costhp(D) + 3 log ∗1 + n log
Dub − Dlb

ϵ
,

where costhp(D) is the value of the criterion for the hyper-parameters, that is constant for a given data
set D.

The standard level criterion is defined as

level(M) = 1− cost(M)

cost(M∅)
.

It can be interpreted as a compression ratio with values between 0 and 1. Its value is 0 when the best
histogram consists in one single interval, which corresponds to a uniform density. And its value is close
to 1 in the case of densities that are far from the uniform density.

Since the data range (xmax − xmin) ⩽ (Dub − Dlb) can be arbitrarily large and ϵ arbitrarily small, the
null cost can be arbitrarily large. As for the cost of a model, it can be very close to zero in the case of
singular histograms, where most instances are in singular intervals of length ϵ. In the case of extreme
outliers where the range of data is much larger than the range of the underlying distribution, the level
criterion is likely to be close to 1.

Limits of the level criterion. Since histograms are approximately invariant to linear transformation
(see Section B.3), one would expect the level criterion to be nearly constant in this case. Unfortu-
nately, while the numerator cost(M∅) − cost(M) should be approximately constant (because the term
n log (Dub − Dlb)/ϵ is common to both costs: see Formula 22), the denominator cost(M∅) is subject to
arbitrarily large variations. This results in a level criterion that can vary considerably in cases where its
is supposed to be nearly constant.

Level criterion for floating-point histogram models. We suggest to adapt the level criterion by replacing
its denominator by an invariant null cost term costDre f (M∅), related to a reference data set Dre f within
the value domain [1, 2] and containing the same number of instances. As Dre f is contained in one single
exponent bin of length 20 = 1, the maximum depth dmax = 30 corresponds to mantissa bins of length
ϵ = 2−30 ≈ 10−9. Dre f is therefore a data set where all elementary floating-point bins are of the same
length, and it behaves identically to the G-Enum method that relies on equal-width elementary bins. We
have

level-fp(M) =
cost(M∅)− cost(M)

costDre f (M∅)

with

costDre f (M∅) = costhp(Dre f ) + 3 log ∗1 + dmaxn log 2,

= ((6 + 2db) log 2 + log ∗1 + log ∗2 + log ∗(1 + db)) + 3 log ∗1 + dmaxn log 2,

= 4 log ∗1 + log ∗2 + log ∗(1 + db) + (30n + 2db + 6) log 2.
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For a given data set D, let us consider the linear transformation of D to Dre f . As the resulting his-
tograms are approximately invariant to linear transformation, we have

level-fp =
costD(M∅)− costD(M)

costDre f (M∅)
,

≈
costDre f (M∅)− costDre f (M)

costDre f (M∅)
,

which gives a stable normalized criterion. For most data sets, a relative accuracy of one billionth should
be more than sufficient to reliably encode the relative lengths of the intervals. However, singular his-
tograms may have singular intervals close to the origin, with a relative length less than 10−9, resulting
in a level value greater that 1 in extreme cases.

Overall, the level-fp criterion is a good candidate for assessing the quality of regular histograms for
most data sets. This criterion may be greater than 1 in the case of pathological data sets involving singular
intervals or outliers that are more than a billion times larger than the underlying distribution value range.

Appendix C. Experiments with common artificial data sets

In this appendix, we evaluate the G-Enum-fp method in the case of common artificial data sets, using
the uniform, normal and a mixture of normal distributions. The evaluation protocol is that of Section 6.1.

C.1. Uniform distribution

The objective of this experiment is to evaluate the robustness of the histogram methods, that should
build one single interval in the case of a uniform distribution. A second objective is to finely compare the
impact of the prior terms in each method criterion, and of the representation space, floating-point bins
versus equal-width bins. We then exploit data sets of very small size as a magnifying glass to highlight
the differences that are likely to disappear as the size of the data increases.

We generate data sets of size 10, 100, 1000, 10,000, using the uniform distribution U(1, 2) and U(0, 1).
The experiment is repeated 10,000 times and we show in Figure 28 the percentage of cases where each
method constructs a histogram containing more than one interval. To get insights on the impact of the
central bin exponent parameter icen, we also report the results of the G-Enum-fp method obtained with
icenmin and icenmax .

Comparing the G-Enum-fp and G-Enum methods, the main result is that both methods are very robust,
as they estimate the density using one single interval in most cases, as expected for a piecewise constant
density estimator applied to a uniform density. The percentage of histograms having more than one
interval is below 0.5% for n = 100 and decreases as n increases, both for the G-Enum-fp and G-
Enum methods that behave similarly. However, in the case of tiny data sets of size 10 for the U(0, 1)
distribution, the G-Enum-fp method produces histograms with two or even three intervals in about 1%
of the cases, up to ten times more frequently than the G-Enum method. In fact, as the experiments
is repeated 10,000 times, some generated data sets show non-uniform patterns, for example with one
instance far from all the others, resulting in two intervals. Below we discuss why these weak patterns are
more frequently detected using the G-Enum-fp method.
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(a) U(1, 2) (b) U(0, 1)

Figure 28. % histograms with multiple intervals.

Uniform distribution U(1, 2). With the U(1, 2) distribution, both methods share the same representa-
tion space based on equal-width bins, as the [1, 2] value domain is covered by one single exponent bins
with all mantissa bins of the same length. The only differences between the two methods are the prior
terms that encode the granularity and the boundaries of the intervals:

log ∗(d + 1) + log

(
Gd + K − 1

K − 1

)
(23)

for G-Enum-fp versus

log∗ G + log

(
G + K − 1

K − 1

)
(24)

for G-Enum. With one single exponent bin fully covered by the [1, 2] value domain, the number Gd of
mantissa bins considered at each depth d is a power of two and we get Gd = 2d for G-Enum-fp, the
same as the G term for G-Enum that considers only power of two granularities. Overall, the difference
between the two methods reduces to log ∗(d + 1) for G-Enum-fp versus log∗(2d) for G-Enum.

d G = Gd = 2d log ∗(d + 1) log∗ G log
(Gd+K−1

K−1

)
K=2

0 1 1.05 1.05 0.69
1 2 1.75 1.75 1.10
5 32 4.11 7.17 3.50

10 1,024 5.27 12.04 6.93
20 1,048,576 6.43 20.20 13.86
30 1,073,741,824 7.11 27.85 20.79

Table 6
Prior terms for the granularity and the interval boundaries.

Table 6 gives the value of these prior terms for each method in the case of a histogram with K = 2
intervals. As a point of comparison, let us assume that a histogram is built using two intervals of lengths
α and (1 − α) with frequencies h1, h2. According to formula (22), the gain in coding length for the bin
index terms is h1 log α + h2 log(1 − α) compared to the histogram with a single interval. With n = 10
and α = 1/2, this amounts to 10 log 2 ≈ 6.93, which is comparable to the values in Table 6.
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Although the difference between log ∗(d + 1) and log ∗G is small, it is not negligible in the case of
tiny data sets. This slightly more parsimonious prior of the G-Enum-fp method explains why some weak
patterns are slightly more frequently detected, as shown in Figure 28a.

Uniform distribution U(0, 1). With the U(0, 1) distribution, both methods exploit very different repre-
sentation spaces, as the number of exponent bins involved in the G-Enum-fp method increases as more
and more instances are generated near 0. Beyond the slight difference between their prior, the G-Enum-
fp relies on floating-point bins of exponentially variable lengths, accurate around 0 and imprecise around
1. Encoding interval boundaries accurately is thus more expensive around 1 than around 0. This results
in asymmetric behavior, depending on whether density patterns peak around 0 or 1, with more or less
expensive trade-offs for more complex patterns. Figure 28b shows that the central bin exponent has a
non negligible impact for the G-Enum-fp method in the case of tiny data sets, with multiple intervals
about 50% more frequently for G-Enum-fp-min that exploits the maximally floating-point representation
(icen = icenmin). Compared to the U(1, 2) distribution that does not include the value 0, the G-enum-fp
methods builds multiple intervals up to 10 times more frequently for tiny data sets. To put this differ-
ence in behavior into perspective, it should be remembered that this false detection of multiple intervals
occurs in less than 1% of cases within the limit of data sets of the order of ten instances.

C.2. Normal distribution

The objective of this experiment is to empirically evaluate the invariance of histograms w.r.t. a linear
transformation of the data, as analyzed in Section B.3. We generate data sets of size 100, 1000, 10,000
using the normal distributions centered around 0, 1 and 10. Whereas these data translations should have
no impact for the G-Enum method, they involved important changes in the representation spaces for the
G-Enum-fp method:

• N (0, 1): many exponent bins are necessary to cover the data set symmetrically around the value 0,
• N (1, 1): an asymmetric representation space is involved, as many exponent bins are necessary for

values below 1 and very few for values above 1,
• N (10, 1): most of the data fall in the exponent bin ]8, 16], and the involved floating-point bins are

mostly of the same length, as for the G-Enum method.

Beyond the G-Enum-fp method that optimizes the central bin exponent icen, we also analyze its vari-
ants obtained with icenmin and icenmax . We compute the Hellinger distance between the densities estimated
from the histograms and the underlying normal distributions. We also collect the number of intervals
per histogram as an indirect measure of the quality of the histograms. Indeed, as the G-Enum-fp and G-
Enum methods are regularized, they are not likely to overfit the data and the number of intervals appears
to be highly correlated with the accuracy of the retrieved patterns. The experiment is repeated 100 times
and we report in Figures 29,30 the mean and standard deviation of the Hellinger distance and number of
intervals per sample size for each normal distribution N (µ, 1), with the mean µ on the X axis.

Both the G-Enum and G-Enum-fp methods give an increasingly accurate approximation of the normal
distribution as the sample size increases, with an increasing number of intervals and decreasing Hellinger
distance. As expected, the G-Enum method obtains results that are invariant to data translation, with
almost the same mean number of intervals and Hellinger distance. As for the G-Enum-fp-min method,
its maximally floating-point representation is stretched around 0, which is a singularity in the floating-
point representation. This implies an increasing number of exponent bins for data sets that are dense
around 0, and leads to more expensive prior terms to accurately encode interval boundaries throughout
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(a) n = 100 (b) n = 1000 (c) n = 10, 000

Figure 29. Hellinger distance between histograms and normal distributions.

(a) n = 100 (b) n = 1000 (c) n = 10, 000

Figure 30. Number of intervals per histogram for normal distributions.

(a) initial data set (b) data set translated by 1

Figure 31. Example of a data set from N (0, 1), n = 100, with an observable impact of translation.

the value domain. This is confirmed by Figures 29,30, which show that histograms contain about one
less interval with a less accurate Hellinger distance as the mean of the normal distribution approaches
0. Note that these mean differences are not very large or significant given their standard deviation, but
they are not negligible. Finally, the G-Enum-fp method optimizes the central bin exponent and almost
always exploits the maximal one, corresponding to a maximally equal-width representation: its results
are almost identical on average to those of the G-Enum method.

To exemplify a case where the difference can be observed, we choose the most unfavorable parameters
according to Figures 29,30, with a tiny data set of size 100 generated from N (0, 1) and its translation by
1. Figure 31 illustrates such a case, showing that the differences due to translation remain acceptable for
exploratory data analysis.
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Figure 32. Evaluation criteria for histograms obtained with the G-Enum-fp method.

Finally, we display in Figure 32 the value of the criteria suggested in Section B.4 to evaluate the
quality of histograms built using the G-Enum-fp method. The curves confirm that the level criterion is
not stable and that its extended version level-fp is almost constant w.r.t data translation.

C.3. Normal mixture distribution

The objective of this experiment is to compare the histogram methods using a complex density dis-
tribution. We generate data sets of size n = 10i, 1 ⩽ i ⩽ 6 using a mixture of ten normal distributions.

10∑
i=1

1

10
N (10i − 5, 1) (25)

The experiment is repeated 100 times and we collect the Hellinger distance and number of intervals
per sample size.

Figure 33. Hellinger distance and number of intervals for a mixture of ten normal distributions.

The overall results summarized using the mean and standard deviation of the Hellinger distance and
number of intervals are shown in Figure 33. For all sample sizes, the two methods behave almost identi-
cally and the differences in representation space have an indistinguishable effect on the built histograms,
as the the G-Enum-fp method almost always exploits the maximally equal-width representation, corre-
sponding to the maximum central bin exponent.

Figure 34 shows an example of the histograms obtained by each method for n = 106.
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Figure 34. Histograms built with G-Enum-fp (left) and G-Enum (right) for a mixture of ten normal distributions.
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