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In this chapter, we present an extension of the wrapper approach applied to the
predictor. The originality is to use the area under the training lift curve as a criterion
of feature set optimality and to preprocess the numeric variables with a new optimal
discretization method. The method is experimented on the NIPS 2003 datasets both
as a wrapper and as a filter for multi-layer perceptron.

25.1 Introduction

The Naive Bayes approach is based on the assumption that the variables are inde-
pendent within each output label, which can harm the performances when violated.
In order to better deal with highly correlated variables, the Selective Naive Bayes
approach (Langley and Sage, 1994) uses a greedy forward search to select the vari-
ables. The accuracy is evaluated directly on the training set, and the variables are
selected as long as they do not degrade the accuracy. For numeric variables, the prob-
ability distribution is evaluated according to a Gaussian distribution whose mean
and variance are estimated on the training examples.

Although the approach performs quite well on datasets with a reasonable number
of variables, it does not scale on very large datasets with hundred or thousands of
variables, such as in marketing applications. We propose to enhance the original
method by exploiting a new Bayes optimal discretization method called MODL and
by evaluating the predictors with a new criterion more sensitive than the accuracy.
In the NIPS Challenge, the method is experimented both as a wrapper approach
(ESNB) and as a filter for multi-layer perceptron (ESNB+NN). The method is fast,
robust and manages to find a good trade-off between the error rate and the number
of selected variables. However, the method needs further improvements in order to
reach better error rates.

We detail and comment the ESNB method in section 25.2 and focus on the
MODL discretization method in section 25.3. We present the results of the method
in the NIPS Challenge in section 25.4.
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25.2 The Enhanced Selective Naive Bayes Method

In this section, we describe three enhancements to the Selective Naive Bayes method:
the use of a new discretization method to pre-process numeric variables, the use
of the area under the lift curve to evaluate the performance of predictors and a
post-processing correction of the predicted output label probabilities. Lift curves
summarize the cumulative percent of targets recovered in the top quantiles of a
sample (Witten and Franck, 2000).

The evaluation of the probabilities for numeric variables has already been dis-
cussed in the literature (Dougherty et al., 1995, Hsu et al., 2002, Yang and Webb,
2002). Experiments have shown that even a simple Equal Width discretization with
10 bins brings superior performances compared to the assumption using a Gaussian
distribution. In a selection process, the risk of overfitting the data raises with the
number of variables. Slight losses in the quality of the evaluation of the probability
distribution of the variables may have cumulated effects and lead to the selection of
irrelevant or redundant variables. We propose to use a new supervized discretization
method called MODL, which is Bayes optimal. This method is described in section
25.3.

In the wrapper approach, (Kohavi and John, 1997) propose to evaluate the selec-
tion process using accuracy with a five-fold cross validation. However, the accuracy
criterion suffers from some limits, even when the predictive performance is the only
concern. (Provost et al., 1998) propose to use Receiver Operating Analysis (ROC)
analysis rather than the accuracy. In marketing applications for example, the lift
curves are often used to evaluate predictors. In the context of variable selection,
there are other justifications to replace accuracy by another criterion. In case of a
skewed distribution of output labels, the accuracy may never be better than the
majority accuracy, so that the selection process ends with an empty set of variables.
This problem also arises when several consecutive selected variables are necessary
to improve the accuracy. In the method proposed in (Langley and Sage, 1994), the
selection process is iterated as long as there is no decay in the accuracy. This solution
raises new problems, such as the selection of irrelevant variables with no effect on
accuracy, or even the selection of redundant variables with either insignificant effect
or no effect on accuracy. We propose to use the area under the lift curve, measured
directly on the training set, to evaluate whether a new variable should be selected.
If we note TP (True Positive), TN (True Negative), FP (False Positive) and FN
(False Negative) the four possible outcomes of the confusion matrix, the lift curve
is obtained by plotting TP (in %) against % x 100% for each confi-
dence value, starting at (0,1) and ending at (1,0). At each step of the algorithm, the
variable which brings the best increase of the area under the lift curve is choosen
and the selection process stops as soon as this area does not rise anymore. This
allows capturing slight enhancements in the learning process and helps avoiding the
selection of redundant variables or probes that have no effect on the lift curve.

The last problem is related to the Naive Bayes algorithm itself, which is a good
rank estimator, but a weak probability estimator (Hand and Yu, 2001). We propose
to add a correction to the estimation of the output labels probabilities at the end
of the learning process, instead of using the standard 50% probability threshold to
predict the output label. For a given probability threshold, we compute the resulting
confusion matrix on the training set and score it owing to the chi-square criterion.
The higher the chi-square criterion is, the more correlated are the predicted output
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labels and the true output labels. The best probability threshold is found by eval-
uating all possible confusion matrices, once the training examples have been sorted
by decreasing probability of output label. This corresponds to finding the best point
on the lift curve, owing to the maximization of the chi-square criterion of the related
confusion matrix.

Altogether, the algorithm can be optimized in O(n*mlog(m)) time, where n is
the number of input variables and m the number of training examples. The pre-
processing step needs O(nmlog(m)) to discretize all the variables. The forward
selection process requires O(n’mlog(m)) time, owing to the decomposability of the
Naive Bayes formula on the variables. The O(mlog(m)) term in the complexity is
due to the evaluation of the area under the lift curve, based on the sort of the train-
ing examples. The post-processing correction needs O(mlog(m)) time by sorting
the training examples and evaluating all possible probability thresholds. However,
the irrelevant variables can be detected just after the discretization step: they are
discretized in a single interval. If n, is the number of relevant variable and ns is
the number of selected variables at the end of the learning process, the practical
complexity of the algorithm is O(n,nsmlog(m)) time, which is often far below the
theoretical complexity when the number of input variables is very high.

Enhanced Selective Naive Bayes algorithm:

e Initialization
— Discretize each variable with the MODL discretization method
— Create an initial empty selected variable set and a set of relevant variables
e Selection process
Repeat the following steps
—  For each unselected relevant variable
Compute the Naive Bayes predictor with the additional variable, on the
basis of the previous best predictor
Evaluate the resulting predictor with the area under the lift curve
— If the evaluation is strictly improved
Add the best variable to the selected variable set
Update the best predictor
e Post-processing
— Find the best decision threshold by maximizing the chi-square criterion of
the contingency table

25.3 The MODL Discretization Method

In this section, we present the MODL approach which results in a Bayes optimal
evaluation criterion of discretizations and the greedy heuristic used to find near-
optimal discretizations.

The objective of the process is to induce a list of intervals that splits the value
domain of a numeric input variable. The training examples are described by pairs
of values: the numeric input value and the output label. If we sort the training
examples according to their input values, we obtain a string S of output labels. We
now propose the following formal definition of a discretization model.

Definition: A standard discretization model is defined by the following proper-
ties:
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e the discretization model relies only on the order of the output labels in the string
S, without using the values of the input variable;

e the discretization model allows to split the string S into a list of substrings (the
intervals);

e in each interval, the distribution of the output labels is defined by the frequencies
of the output labels in the interval.

Such a discretization model is called a SDM model.

Notations:

m : number of training examples

J : number of output labels

I : number of intervals

m; : number of training examples in the interval ¢

m;; : number of examples with output label j in the interval ¢

A SDM model is completely defined by the set of parameters {I,m;(1 < i <
N,mi;(1<i<I,1<j<J)}

This definition is very general, and most discretization methods rely on SDM
models. They first sort the samples according to the variable to discretize (property
1) and try to define a set of intervals by partitioning the string of output labels
(property 2). The evaluation criterion is always based on the frequencies of output
labels (property 3).

In the Bayesian approach, the best model is found by maximizing the proba-
bility P(model/data) of the model given the data. Using the Bayes rule and since
the probability P(data) is constant under varying the model, this is equivalent to
maximize P(Model)P(Data/Model). We define below a prior which is essentially
a uniform prior at each stage of the hierarchy of the SDM model parameters. We
also introduce a strong hypothesis of independence of the distributions of the class
values. This hypothesis is often assumed (at least implicitely) by many discretization
methods, that try to merge similar intervals and separate intervals with significantly
different distributions of class values.

Definition: The following distribution prior on SDM models is called the three-

stage prior:

e the number of intervals [ is uniformly distributed between 1 and m;

e for a given number of intervals I, every division of the string to discretize into I
intervals is equiprobable;

e for a given interval, every distribution of output labels in the interval is equiprob-
able;

e the distributions of the output labels in each interval are independent from each
other.

Theorem 1. (Boullé, 2004b) A SDM model distributed according to the three-stage
prior is Bayes optimal for a given set of training examples to discretize if the fol-
lowing criterion is minimal on the set of all SDM models:

log(m) + log (m +_I ) + Zl (mZ +_J ) + Zlog (mz ,! 'ml Jl)

(25.1)
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The first term of the criterion stands for the choice of the number of intervals,
the second term for the choice of the bounds of the intervals and the third term for
the choice of the output labels distribution in each interval. The last term encodes
the probability of the data given the model.

Once the optimality of the evaluation criterion is established, the problem is
to design an efficient minimization algorithm. The MODL method uses a greedy
bottom-up merge algorithm to perform this optimization, that can be optimized in
O(mlog(m)) time. This algorithm exploits the additivity of the MODL criterion,
memorizes the variations Avalue of the criterion related to the merges, and keeps
these merge evaluations in a maintained sorted list (such as an AVL binary search
tree for example).

The method is fully described and experimented in (Boullé, 2004a,b). Compared
to other discretization methods, the MODL method obtains better classification
performances with fewer intervals. Random variables are discretized with a single
interval since this is the most probable discretization model of such variables. The
MODL method is thus efficient at detecting probes.

25.4 Results on the NIPS challenge

In this section, we report the results obtained by the ESNB method on the NIPS
2003 Challenge datasets (Guyon, 2003). Each dataset is divided in 3 sets: training,
validation and test. In the first period, only the training sets could be used for train-
ing for submission of the original challenge entries. In the second period, the training
and validation sets were used together for the validation entries. We submitted one
original challenge entry using the ESNB method. Since the results looked promiss-
ing, we decided to submit two validation entries, one using the ESNB method and
the other using the method as a filter for multi-layer perceptron (ESNB+NN). The
ESNB method is fully automatic and does not require any parameter. In the fil-
ter approach, we use a non-linear multi-layer perceptron applied on the variables
selected by the ESNB method. The multi-layer perceptron is trained using back-
propagation with sigmoid activation function, regularized with orthogonal weight
decay. The training set of the challenge is used to train and the validation set to
stop training. This predictor is trained with a hidden layer containing 1, 5, 10, 25 or
50 neurons, and the best neural architecture is chosen based on the validation set:
50 neurons for the Madelon dataset and 1 neuron for the other datasets. We report
in Table 25.1 the results of our ESNB entry by Dec. 1°% and in Table 25.2 the results
of our ESNB+NN entry by Dec. 8",

The ESNB method has a low computation time, with on average 5 mn per
dataset on a PC 1.7 Mhz. The MODL discretization methods is very efficient at
detecting probes and the use of the area under the lift curve as a feature subset
selection criterion helps removing redondant variables. This results in small numbers
of selected features, on average 1% of the input variables. Compared to the Dec. 1%
original entry, the ESNB method is able to exploit the increased number of training
examples available in the Dec. 8" experiments. It selects more features (a total of 321
versus 252) while keeping less probes (1 versus 3) and improves the balanced error
rate from 19.85% down to 18.25%. The ESNB+NN method largely improves the
results of the ESNB method, especially when the bias of the Naive Bayes approach
is too limiting. Using the ESNB method as a filter approach is thus relevant. In
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Table 25.1. Challenge results for the ESNB method (Dec. 1°%).

Dec. 1°* ESNB challenge entry The winning challenge entry
Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

OVERALL -57.82 19.85 85.96 1.02 10.6 88.00 6.84 97.22 80.3 47.77
ARCENE -78.18 31.25 75.93 0.05 40 98.18 13.30 93.48 100.0 30.0
DEXTER -45.45 9.80 96.42 0.17 0 96.36 3.90 99.01 1.52 12.87

DOROTHEA -45.45 21.03 89.43 0.05 1.89 98.18 8.54 95.92 100.0 50.0

GISETTE -56.36  3.12 99.49 3.02 0 98.18 1.3798.63 18.26 0.0

MADELON -63.64 34.06 68.51 1.8 11.11 100.00 7.1796.95 1.6 0.0

I = T o S =S SO

Table 25.2. Challenge results for the (ESNB+NN) method (Dec. 8").

Dec. 8" ESNB+NN challenge entry The winning challenge entry
Dataset Score BER AUC Feat Probe Score BER AUC Feat Probe Test

OVERALL  -28 1242 93.12 1.04 1.43 71.43 6.48 97.20 80.3 47.77
ARCENE  -6022.92 83.78 0.14 7.14 94.29 11.86 95.47 10.7 1.03
DEXTER -25.71 7.20 97.49 0.33 0 100 3.3096.70 18.57 42.14

DOROTHEA 54.29 14.59 91.50 0.07 097.14 8.6195.92 100 50

GISETTE -42.86 2.46 99.64 3.26 097.14 1.3598.71 18.32 0

MADELON -65.71 14.94 93.22 1.4 09429 7.1196.95 1.6 0

e e

order to evaluate the method both on the balanced error rate and the number of
the selected variables, we report the method results and the entry results of all the
other participants on a bi-criteria plan displayed in figure 25.1.

The results of the ESNB methods used as a filter approach are on the Pareto
curve in figure 25.1. Many methods obtain a better error rate, up to twice better
than that of the ESNB+NN method, but at the expense of a significantly higher
number of selected variables.

25.5 Conclusion

The ESNB method is a feature selection method derived from the Naive Bayes
method enclosed in a wrapper approach. It benefits from the use of the Bayes optimal
MODL discretization method and from the evaluation of predictor using the area
under the lift curve instead of the accuracy. It can be exploited either directly or as
a filter approach with a powerful predictor applied on the selected features.
Experiments on the NIPS 2003 datasets show that this fully automatic method is
fast, robust, and exhibits results with a good trade-off between error rate and number
of selected variables. However, the method suffers from several weaknesses partly
related to the bias of the Naive Bayes approach. In future work, we plan to improve
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Fig. 25.1. Bi-criteria analysis of the challenge results with the balanced error rate
on the x-coordinate and the number of selected variables on the y-coordinate

the error rate of the method, with the smallest possible decay in computation time
and selected variable number. The wrapper method can be improved by replacing
the forward selection algorithm by a more sophisticated search heuristic. Exploiting
ensemble methods is a promising direction for selecting a more comprehensive set
of selected variables. Although the univariate evaluation of variables is robust owing
to the MODL discretization method, the overfitting behaviour resulting from the
selection of a set of variables could be reduced by using regularization techniques.
A last direction is to decrease the bias of the Naive Bayes approach by detecting
interactions between variables or building new features combining multiple input
variables.
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