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ABSTRACT

We leverage the Minimum Description Length (MDL) prin-

ciple as a model selection technique for Bernoulli distribu-

tions and compare several types of MDL codes. We focus

on the enumerative two-part crude MDL code, suggest a

Bayesian interpretation for finite size data samples, and

exhibit a strong connection with the NML approach. We

obtain surprising impacts on the estimation of the model

complexity together with superior compression performance.

This is then generalized to the case of the multinomial dis-

tributions. Both the theoretical analysis and the experi-

mental comparisons suggest that one might use the enu-

merative code rather than NML in practice, for Bernoulli

and multinomial distributions.

This paper is an extended abstract of the research re-

port [1], which contains all the detailed analysis, proofs

and extensive experiments.

1. INTRODUCTION

Model selection is a key problem in statistics and data

mining, and the MDL approaches [2] to model selection

have been extensively studied in the literature [3], with

successful applications in many practical problems. Sim-

ple models such as Bernoulli or mainly multinomial dis-

tributions are important because they are easier to analyze

theoretically and useful in many applications. For exam-

ple, the multinomial distribution has been used as a build-

ing block in more complex models, such as naive Bayes

classifiers, Bayesian networks , decision trees or coclus-

tering models. These models involve up to thousands of

multinomials blocks, some of them with potentially very

large numbers of occurrences and outcomes. For example

in [4], half a billion call detail records (occurrences) are

distributed on one million coclusters (outcomes). These

various and numerous applications critically rely on the

use of effective and efficient MDL code lengths to get a

robust and accurate summary of the data.

The MDL approaches come with several flavors, rang-

ing from theoretical but not computable to practical but

sub-optimal. Ideal MDL [5] relies on the Kolmogorov

complexity, that is the ability of compressing data using

a computer program. However, it suffers from large con-

stants depending on the description method used and can-

not be computed, not even approximated in the case of

two-part codes [6]. Practical MDL leverages description

methods that are less expressive than general-purpose com-

puter languages. It has been employed to retrieve the best

model given the data in case of families of parametrized

statistical distributions. Crude MDL is a basic MDL ap-

proach with appealing simplicity. In two-part crude MDL,

you just have to encode the model parameters and the

data given the parameter, with a focus on the code length

only. However, crude MDL suffers from arbitrary coding

choices. Modern MDL relies on universal coding result-

ing in Refined MDL [3], with much stronger foundations

and interesting theoretical properties. In this paper, we in-

vestigate the enumerative two-part crude MDL code for

the Bernoulli and multinomial models, exhibit a strong

connection with the NML approach, with surprising im-

pacts on the estimation of the model complexity and su-

perior compression performance.

The rest of the paper is organized as follows. Section 2

describes a particular two-part crude MDL code based on

enumerations and establishes the connection of its param-

eter coding length with its NML parametric complexity.

Section 3 summarizes comparisons between this enumer-

ative MDL code and the standard NML code for Bernoulli

distributions. Section 4 presents an extension of the enu-

merative two-part crude MDL code to multinomial distri-

butions. Finally, Section 5 summarizes this paper.

2. ENUMERATIVE TWO-PART CRUDE MDL

We present the enumerative two-part crude MDL code

for Bernoulli distributions, suggest a finite data sample

Bayesian interpretation and show a connection with the

NML approach. Let us consider the Bernoulli model with

θ ∈ [0, 1] in the case of binary sequences xn ∈ Xn of size

n. Let k(xn) be the number of ones in xn.

2.1. Enumerative interpretation

The enumerative two-part crude MDL code for Bernoulli

distributions has already been proposed in the past litera-

ture, under the names of index or enumerative code (see

for example [3] Example 10.1 Coding by Giving an In-

dex). First, we enumerate all possible θ = i
n

parameter

values given the sample size n. We then use log(n + 1)

bits to encode θ. Second, given θ̂(xn) = k(xn)
n

, we enu-

merate all the
(
n
k

)
binary sequences with k = k(xn) ones

and encode the data xn using log
(
n
k

)
bits. This gives a

total code length of
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L(θ̂(xn), xn) = log(n+ 1) + log
n!

k!(n− k)!
. (1)

Interestingly, this crude MDL approach results in the

same code length as that obtained using Predictive Coding

or Mixture Coding with a uniform prior [3]. This code has

also been studied by [3] (Chapter 10, Section 10.2) under

the name Conditional Two-Part Universal Code, which

suggests that at least for the Bernoulli model, this code

is strictly preferable to the ordinary two-part code.

2.2. Bayesian interpretation

Let M = {Pθ | θ ∈ [0, 1]} be the class of all Bernoulli

distributions. We propose to focus on the family of mod-

els M(n) = {Pθ | θ = i
n
, 0 ≤ i ≤ n} that are models

of description for finite size data samples. M(n) is re-

lated to the set of all the possible maximum likelihood

estimates of θ (from M) for binary strings of size n. The

interest of usingM(n) is that the number of model param-

eters is now finite instead of uncountable infinite. Using

a uniform prior on the model parameters inM(n), we get

P (θ = i
n
) = 1/|M(n)|, leading to L(θ) = log(n+ 1).

Given θ = i
n
∈ M(n), we now have to encode the

data xn. If k(xn)/n 6= θ, we cannot encode the data

and P (xn|θ) = 0. If k(xn)/n = θ, the observed data is

consistent with the model parameter, and we assume that

all the possible observable data are uniformly distributed.

The number of binary strings with k ones is the binomial

coefficient
(
n
k

)
. Thus the probability of observing one of

them is P (xn|θ̂(xn)) = 1/
(
n
k

)
. We have a discrete like-

lihood that concentrates the probability mass on binary

strings that can be observed given the model parameter.

As a result, coding lengths are defined only for strings that

are consistent with the model parameter. This gives a total

code length of

L(θ̂(xn), xn) = log(n+ 1) + log
n!

k!(n− k)!
. (2)

2.2.1. Generative model for the enumerative Bernoulli dis-

tribution

Given a sequence length n and θ = i
n
∈ M(n), we can

formulate these models as generative models of sequences

with exactly i ones and n − i zeros. For example, from a

sequence of n zeros, we randomly choose i times without

replacement a zero in the sequence and replace it with a

one. For this generative model, we have the following

likelihood, as seen previously:

P (xn|θ =
i

n
) = 1{ i

n
=

k(xn)
n }1/

(
n

k(xn)

)
. (3)

For the case of the Bayes mixture model with uniform

prior w(θ) = 1
n+1 , θ = i

n
, 0 ≤ i ≤ n, we have

PBayes(x
n) =

n∑

i=0

w(
i

n
)P (xn|θ =

i

n
), (4)

=
1

n+ 1

k(xn)!(n− k(xn))!

n!
. (5)

The negative log of this probability actually corresponds

to the code length of the enumerative code. Interestingly,

the standard Bernoulli model and the enumerative one are

related to slightly different generative models, but their

Bayes mixture under the uniform prior leads to the same

distribution. In Section 2.3, we will see that on the oppo-

site, their normalized maximum likelihood distribution is

not the same.

2.2.2. Cardinality of models spaces

Let us consider the union of the M(n) models for all the

sample sizes:

M(N) = ∪n∈NM
(n). (6)

Interestingly,M(N) is very close toM, with θ ∈ Q rather

than θ ∈ R. Thus, the number of model parameters in

M(N) is countable infinite rather than uncountable infi-

nite, which provides a significant simplification.

2.3. NML interpretation

Let us compute the NML parametric complexity of this

enumerative code, on the basis of the discrete likelihood

presented in Section 2.2. We have

COMP (n)(θ) = log
∑

yn∈Xn

P
θ̂(yn)(y

n), (7)

= log

n∑

k=0

(
n

k

)(
1/

(
n

k

))
, (8)

= log(n+ 1). (9)

Interestingly, we find exactly the same complexity term

log(n + 1) as the coding length of the best hypothesis in

the enumerative two-part crude MDL code presented in

Section 2.1. This shows that the enumerative code is both

a two-part and a one-part code. It is parametrization in-

variant and optimal w.r.t. the NML approach, with min-

imax regret guarantee. Surprisingly, its parametric com-

plexity is asymptotically twice that of the NML code or

the standard BIC regularization term. We further inves-

tigate on the comparison between the enumerative and

NML codes in next section

3. CODE COMPARISON FOR THE BERNOULLI

DISTRIBUTION

Table 1. Parametric and stochastic complexity per code.

Code name COMP
(n)
name Lname

(
xn|θ̂(xn)

)

enumerative log(n+ 1) log n!
k!(n−k)!

NML 1
2 log

nπ
2 + o(1) log nn

kk(n−k)n−k

In this section, we compare the standard NML code

[3] and enumerative two-part crude MDL code (Section 2)

for the Bernoulli distribution. Table 1 reminds the para-

metric and stochastic complexity of each considered code.

The theoretical and empirical comparison results pre-

sented below are a summary of the extended report [1].
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3.1. Stochastic complexity term

Let δL
(
xn|θ̂(xn)

)
= Lnml

(
xn|θ̂(xn)

)
−Lenum

(
xn|θ̂(xn)

)
.

The stochastic complexity term of the enumerative code

is always smaller than that of the NML code for non-

degenerated binary strings:

∀n, ∀xn ∈ X
n
, 0 < k(xn) < n, δL

(
x
n|θ̂(xn)

)
> 0. (10)

Using the approximation given in [3] (formula 4.36)

with the Bernoulli parameter θ = θ̂(xn) , we have

δL
(
xn|θ̂(xn)

)
=

1

2
log(2πnvar(θ)) +O(1/n). (11)

The difference of coding length is always positive but

not uniform. For k(xn) = 0, δL
(
xn|θ̂(xn)

)
= 0. For

k(xn) ≈ n/2, δL
(
xn|θ̂(xn)

)
≈ 1

2 log(
nπ
2 ).

These results demonstrate that the enumerative code

provides a better encoding of the data with the help of the

model for any binary strings, all the more for strings with

equidistributed zeros and ones.

3.2. Parametric complexity term

The parametric complexity term of the enumerative code

is always strictly greater than that of the NML code and

asymptotically twice it.

∀n > 1, COMP (n)
enum > COMP

(n)
NML. (12)

lim
n→∞

COMP
(n)
enum

COMP
(n)
NML

= 2. (13)

3.3. Overall code length

Both codes have the same length for two parameter values

{θinf , θsup}, with θinf ≈ 0.114 and θsup = 1− θinf .

For heavily unbalanced Bernoulli distributions (θ ∈
[0, θinf [ ∪ ]θsup, 1]), the NML code is shorter and for

θ ∈ {0, 1}, |δ| ≈ 1
2 (log n− log π

2 ).
For balanced Bernoulli distributions (θ ∈]θinf , θsup[),

the enumerative code is shorter and for θ ≈ 1
2 , |δ| ≈

log π
2 .

3.4. Empirical comparisons

Extensive comparisons are reported in [1].

Under the uniform distribution, most binary strings are

better compressed with the enumerative code and the av-

erage compression is slightly better than using the NML

code, with a margin that is asymptotically about log π
2 .

In a biased versus fair coin classification experiment,

both the NML and enumerative codes are used as classi-

fiers by predicting a bias if they can encode a sequence

with a coding length shorter than that of the random code

(n log 2), and predicting fair otherwise. Overall, both codes

exhibit a similar behavior w.r.t. the coin classification

problem, with accuracy increasing from 0.5 for small n to

1 for large n, and a slow increase rate for small bias and

a fast one for large bias. Except in the tiny samples with

n ≤ 20, the difference of accuracy between the two codes

never exceeds around 15%. However, there are some in-

teresting differences. The enumerative code is better at de-

tecting bias while the NML code is better at detecting fair,

and the overall accuracy of prediction exhibits a variety of

behaviors, with tiny differences. When the bias is small

(θbias close from 1
2 ), the enumerative code is slightly more

accurate in the non-asymptotic case, needing less data to

achieve a correct accuracy. When the bias is large (θbias
close from 0 or 1), the advantage is this time in favor of

the NML code. In all cases, the differences between both

codes get tiny for large n, in the asymptotic case.

4. THE CASE OF MULTINOMIAL

DISTRIBUTION

Let us consider the multinomial model with parameter

θ = (θ1, . . . , θm),
∑m

j=1 θj = 1, ∀j, θj > 0, such that

Pθ(X = j) = θj , in the case of m-ary sequences xn ∈
Xn of size n. For a given sequence xn, Pθ(xn) =

∏m

j=1 θ
nj

j ,

where nj is the number of occurrences of outcome j in se-

quence xn.

4.1. Enumerative two-part crude MDL

Like in the Bernoulli case, the enumerative code for multi-

nomial can be obtained using a two-part crude MDL ap-

proach, a Bayesian interpretation or a NML interpretation.

We present below the Bayesian interpretation.

Given a sample size n, the number of tuples (n1, . . . , nm)
such that

∑m

j=1 nj = n is
(
n+m−1
m−1

)
. We then encode the

multinomial model parameter using a uniform prior

P
(
θ =

(n1

n
,
n2

n
, . . . ,

nm

n

))
= 1/

(
n+m− 1

m− 1

)
,

leading to L(θ) = log
(
n+m−1
m−1

)
.

Second, we have to encode the data xn at best given

the θ parameter. We suggest using a probability distribu-

tion for encoding the finite size data sample xn, with the

following likelihood. For θ 6=
(

n1(x
n)

n
, n2(x

n)
n

, . . . , nm(xn)
n

)
,

we cannot encode the data and P (xn|θ) = 0. For θ =

θ̂(xn) =
(

n1(x
n)

n
, n2(x

n)
n

, . . . , nm(xn)
n

)
, the observed data

is consistent with the model parameter and we assume

that all the possible observable data are uniformly dis-

tributed. The number of m-ary strings where the number

of occurrences of outcome j is nj is given by the multi-

nomial coefficient n!
n1!n2!...nm! . Thus the probability of

observing one particular m-ary string is P (xn|θ̂(xn)) =
1/ n!

n1!n2!...nm! . This gives a total code length of

L(θ̂(xn), xn) = log

(
n+m− 1

m− 1

)
+ log

n!

n1!n2! . . . nm!
.

(14)
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4.2. Theoretical and empirical comparisons

The NML code has a parametric complexity that can be ei-

ther approximated [3, 7] with errors that are hard to quan-

tify in the non-asymptotic case or calculated exactly (e.g.

algorithm in o(n + m) [8]) at the expense of computa-

tion time. Table 2 presents the parametric and stochastic

complexity of each considered code.

Table 2. Parametric and stochastic complexity per code.

Code name COMP
(n)
name Lname

(
xn|θ̂(xn)

)

enumerative log
(
n+m−1
m−1

)
log n!

n1!...nm!

NML ≈ m−1
2 log n

2π log nn

n
n1
1 ...n

nm
m

In [1], extensive comparisons are reported, regarding

the stochastic complexity terms, the parametric complex-

ity terms, the overall code length, the expectation of the

code length of all the m-ary sequences under the uniform

distribution and the detection of biased dices. Overall, the

results are similar to the case of Bernoulli distributions,

with differences that increase linearly with the number of

parameters.

5. SUMMARY

In this paper, we have revisited the enumerative two-part

crude MDL code for the Bernoulli model, which com-

pares favorably with the alternative standard NML code.

We have suggested a Bayesian interpretation of the enu-

merative code, that relies on models for finite size sam-

ples and results in a discrete definition of the likelihood

of the data given the model parameter. We have shown

that the coding length of the model parameter is exactly

the same as the model complexity computed by apply-

ing the NML formula using the definition of the enumer-

ative maximum likelihood. This means that the enumer-

ative code is both a one-part and two part code, which

brings parametrization independence, optimality and sim-

plicity. Surprisingly, the obtained parametric complexity

is twice that of the alternative classical NML code or the

standard BIC regularization term. The enumerative code

has a direct interpretation in terms of two part codes for

finite sample data. The model parameter is encoded us-

ing a uniform prior w.r.t. the sample size and the data are

also encoded using a uniform prior among all the binary

strings of given size that can be generated using the model

parameter. Experimental comparisons between the enu-

merative and NML codes show that they are very similar,

with small differences only. Under the uniform distribu-

tion, the enumerative code compresses most individual se-

quences slightly better, resulting in a slightly better com-

pression on average. An application to the detection of

biased coins demonstrates that the enumerative code has

a better sensitivity to biased coins at the expense of more

false detections in case of fair coins, but the differences

are small and vanish asymptotically.

Extension to the multinomial model is also presented.

Using the same approach, we obtain a very simple and in-

terpretable analytic formula for the parametric complexity

term, that once again is approximately twice that of the al-

ternative classical NML code or the standard BIC regular-

ization term. The resulting code, both one-part and two-

part, is optimal w.r.t. NML approach and parameteriza-

tion invariant, with a much simpler parametric complexity

term. It compresses most strings better than the “classi-

cal” NML code with a constant margin and extremely few

heavily unbalanced strings with a margin logarithmic in

the sample size. Experimental comparisons extend the re-

sults obtained with Bernoulli distributions. Both codes are

very similar, with small differences that roughly increase

linearly with the number of model parameters.

Altogether, the theoretical and experimental results sug-

gest that one might use the enumerative code rather than

NML in practice, for Bernoulli and multinomial distribu-

tions.
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