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Abstract. In supervised machine learning, variable ranking aims at
sorting the input variables according to their relevance w.r.t. an output
variable. In this paper, we propose a new relevance criterion for vari-
able ranking in a regression problem with a large number of variables.
This criterion comes from a discretization of both input and output vari-
ables, derived as an extension of a Bayesian non parametric discretization
method for the classification case. For that, we introduce a family of dis-
cretization grid models and a prior distribution defined on this model
space. For this prior, we then derive the exact Bayesian model selection
criterion. The obtained most probable grid-partition of the data empha-
sizes the relation (or the absence of relation) between inputs and output
and provides a ranking criterion for the input variables. Preliminary
experiments both on synthetic and real data demonstrate the criterion
capacity to select the most relevant variables and to improve a regression
tree.

1 Introduction

In a data mining project, the data preparation step aims at providing a dataset
for the modeling step [CCK+00]. Variable (or feature) selection consists in select-
ing a subset of the variables which is useful for a given problem. This selection
process is an essential part of data preparation, which becomes critical in case of
databases having large numbers of variables (order of thousands of). Indeed, the
risk of overfitting the data quickly increases with the number of input variables,
which is known as the curse of dimensionality. The objective of variable selec-
tion is three-fold: to improve the performance of predictors, to provide faster
and more cost-effective predictors and to allow an easier interpretation of the
prediction [GE03]. Variable selection methods generally use three ingredients
[LG99]: a criterion to evaluate the relevance of a variable subset and compare
variable subsets, a search algorithm to explore the space of all possible variable
subsets and a stopping criterion. Variable selection is often linked to variable
ranking which aims at sorting the variables according to their relevance. These
two problems clearly differ as a subset of useful variables may exclude redundant
but relevant variables. Conversely, the subset of the most relevant variables can
be suboptimal among the subsets of equal size. Compared to variable selection,
variable ranking is much more simple as it does not need any search algorithm



but only the evaluation of the relevance criterion for each variable. For linear
dependencies, the classical relevance criterion is the correlation coefficient or its
square. To capture non linear dependencies, the mutual information is more ap-
propriate but it needs estimates of the marginal and joint densities which are
hard to obtain for continuous variables.
In this paper, we introduce a new relevance criterion for variable ranking in a
regression problem with a large number of input variables. This criterion is based
on the discretization of both the input and the output variables. Discretization
has been widely studied in the case of supervised classification [Cat91] [Hol93]
[DKS95] [LHTD02]. Our discretization method for regression extends our dis-
cretization method for the classification case to deal with numeric output vari-
ables. We apply a non parametric Bayesian approach to find the most probable
discretization given the data. Owing to a precise definition of the space of dis-
cretization models and to a prior distribution on this model space, we derive a
Bayes optimal evaluation criterion. We then use this criterion to evaluate each
input variable and rank them. Besides a new variable ranking criterion, our
method provides a robust discretization-based interpretation of the dependence
between each input variable and the output variable and an estimator of the
conditional densities for the considered regression problem.
The remainder of the document is organized as follows. Section 2 presents our
discretization method for regression, with its criterion and optimization algo-
rithm. In Section 3, we show preliminary experimental results both on synthetic
and real data.

2 The MODL Discretization Method for Regression

We begin by recalling the principles of the Bayesian approach and the MDL
approach [Ris78] for the model selection problem. We then present our approach
(called MODL) which results in a Bayesian evaluation criterion of discretizations
and the greedy heuristic used to find a near Bayes optimal discretization. We
first present the principle of our discretization method for classification, and then
extend it to the case of regression.

2.1 Bayesian versus MDL model selection techniques

In the Bayesian approach, the searched model is the one which maximizes the
probability p(Model|Data) of the model given the data. Using Bayes rule and
since the probability is constant while varying the model, this is equivalent to
maximizing:

p(Model)p(Data|Model) (1)

Given a prior distribution of the models, the searched model can be obtained
provided that the calculation of the probabilities p(Model) and p(Data|Model)
is feasible. For classical parametric model families, these probabilities are gen-
erally intractable and the Bayesian Information Criterion (BIC) [Sch78] is a



well-known penalized Bayesian selection model criterion. As detailed in the se-
quel, our approach, called MODL, conducts to an exact Bayesian model selection
criterion.
To introduce the MDL approach, we can reuse the Bayes rule, replacing the
probabilities by their negative logarithms. These negative logarithms of prob-
abilities can be interpreted as Shannon code lengths, so that the problem of
model selection becomes a coding problem. In the MDL approach, the problem
of model selection is to find the model that minimizes:

DescriptionLength(Model) + DescriptionLength(Data|Model) (2)

The relationship between the Bayesian approach and the MDL approach
has been examined by [VL00]. The Kolmogorov complexity of an object is the
length of the shortest program encoding an effective description of this object. It
is asymptotically equal to the negative log of a probability distribution called the
universal distribution. Using these notions, the MDL approach turns into ideal

MDL: it selects the model that minimizes the sum of the Kolmogorov complexity
of the model and of the data given the model. It is asymptotically equivalent
to the Bayesian approach with a universal prior for the model. The theoretical
foundations of MDL allow focusing on the coding problem: it is not necessary
to exhibit the prior distribution of the models. Unfortunately, the Kolmogorov
complexity is not computable and can only be approximated.
To summarize, the Bayesian approach allows selecting the optimal model relative
to the data, once a prior distribution of the models is fixed. The MDL approach
does not need to define an explicit prior to find the optimal model, but the
optimal description length can only be approximated and the approach is valid
asymptotically.

2.2 The MODL approach in supervised classification

The objective of a supervised discretization method is to induce a list of in-
tervals which splits the numerical domain of a continuous input variable, while
keeping the information relative to the output variable. A compromise must be
found between information quality (homogeneous intervals in regard to the out-
put variable) and statistical quality (sufficient sample size in every interval to
ensure generalization). For instance, we present on left of Figure 1 the number
of instances of each class of the Iris dataset w.r.t the sepal width variable. The
problem is to find the split of the domain [2.0, 4.4] in intervals which gives us
optimal information about the repartition of the data between the three classes.

In the MODL approach [Bou06], the discretization is turned into a model
selection problem. First, a space of discretization models is defined. The param-
eters of a specific discretization are the number of intervals, the bounds of the
intervals and the output frequencies in each interval. Then, a prior distribution
is proposed on this model space. This prior exploits the hierarchy of the param-
eters: the number of intervals is first chosen, then the bounds of the intervals
and finally the output frequencies. The choice is uniform at each stage of the
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Fig. 1. MODL discretization of the Sepal Width variable for the classification of the
Iris dataset in 3 classes

hierarchy. A Bayesian approach is applied to select the best discretization model,
which is found by maximizing the probability p(Model|Data) of the model given
the data. Using the Bayes rule and since the probability p(Data) is constant un-
der varying the model, this is equivalent to maximize p(Model)p(Data|Model).
Let N be number of instances, J the number of output values, I the number
of intervals for the input domain. Ni. denotes the number of instances of input
value in the interval i (total per column), N.j is the number of instances of class
j (total per raw), and Nij the number of instances of output value j in the
interval i. In the context of supervised classification, the number of classes J
and the number of instances per class N.j are supposed known. A discretization

model is then defined by the parameter set
{

I, {Ni}1≤i≤I , {Nij}1≤i≤I,1≤j≤J

}

. We remark that the data partition obtained by applying such a discretization
model is invariant by any monotonous variable transformation since it only de-
pends on the variable ranks. Owing to the definition of the model space and its
prior distribution, the Bayes formula is applicable to exactly calculate the prior
probabilities of the models and the probability of the data given a model. Taking
the negative log of the probabilities, this provides the evaluation criterion given
in formula (3):

log N + log

(

N + I − 1
I − 1

)

+

I
∑

i=1

log

(

Ni + J − 1
J − 1

)

+

I
∑

i=1

log
Ni!

Ni,1!Ni,2! . . . Ni,J !

(3)
The first term of the criterion stands for the choice of the number of intervals
and the second term for the choice of the bounds of the intervals. The third term
corresponds to the choice of the output distribution in each interval and the last
term encodes the probability of the data given the model. The complete proof
can be found in [Bou06].
Once the optimality of the evaluation criterion is established, the problem is to
design a search algorithm in order to find a discretization model that minimizes
the criterion. In [Bou06], a standard greedy bottom-up heuristic is used to find
a good discretization. The method starts with initial single value intervals and
then searches for the best merge between adjacent intervals. The best merge is
performed if the MODL value of the discretization decreases after the merge
and the process is reiterated until no further merge can decrease the criterion.



In order to further improve the quality of the solution, the MODL algorithm
performs post-optimizations based on hill-climbing search in the neighborhood
of a discretization. The neighbors of a discretization are defined with combina-
tions of interval splits and interval merges. Overall, the time complexity of the
algorithm is O(JNlog(N)). The MODL discretization method for classification
provides the most probable discretization given the data sample. Extensive com-
parative experiments report high quality performance. For the example given,
the three obtained intervals are shown on left of Figure 1. The contingency table
on the right gives us comprehensible rules such as ”for a sepal width in [2.0, 2.95],
the probability of occurence of the Versicolor class is 34/57 = 0, 60”.

2.3 Extending the approach to regression
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Fig. 2. Scatter-plot of the Petal Length and Sepal Length variables of the Iris dataset
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Fig. 3. Two discretization grids with 6 or 96 cells, describing the correlation between
the Petal Length and Sepal Length variables of the Iris dataset.

In order to illustrate the regression problem, we present in figure 2 the scatter-
plot of the Petal Length and Sepal Length variables of the Iris dataset [Fis36].
The figure shows that Iris plants with petal length below 2 cm always have a
sepal length below 6 cm. If we divide the sepal length values into two output
intervals of values (below or beyond 6 cm), we can provide rules to describe the
correlation between the input and the output variable. The regression problem
is now turned into a classification problem. In this context, the objective of the



MODL 2D-discretization method is to describe the distribution of the output
intervals given the rank of the input value. This is extented to the regression
case, where the issue is now to describe the rank of the output value given the
rank of the input value. Discretizing both the input and output variable allows
such a description, as shown in figure 3. The problem is still a model selection
problem. Compared to the classification case, one additional parameter has to
be optimized: the number of output intervals. A compromise has to be found
between the quality of the correlation information and the generalization ability,
on the basis of the grain level of the discretization grid. Let us now formalize this
approach using a Bayesian model selection approach. A regression discretization

model is defined by the parameter set
{

I, J, {Ni}1≤i≤I , {Nij}1≤i≤I, 1≤j≤J

}

.

Unlike the supervised classification case, the number J of intervals in the output
domain is now unknown but the number of instances N.j can be deduced by
adding the Nij for each interval. We adopt the following prior for the parameters
of regression discretization models:

1. the numbers of intervals I and J are independent from each other, and
uniformly distributed between 1 and N ,

2. for a given number of input intervals I, every set of I interval bounds are
equiprobable,

3. for a given input interval, every distribution of the instances on the output
intervals are equiprobable,

4. the distributions of the output intervals on each input interval are indepen-
dent from each other,

5. for a given output interval, every distribution of the rank of the output values
are equiprobable.

The definition of the regression discretization model space and its prior distri-
bution leads to the evaluation criterion given in formula (4) for a discretization
model M :

creg(M) = 2 log (N) + log

(

N + I − 1
I − 1

)

+

I
∑

i=1

log

(

Ni + J − 1
J − 1

)

+

I
∑

i=1

log
Ni!

Ni,1!Ni,2! . . . Ni,J !
+

J
∑

j=1

log Nj !

(4)

Compared with the classification case, there is an additional log(N) term which
encodes the choice of the number of output intervals, and a new last term (sum
of log(Nj !)) which encodes the distribution of the output ranks in each output
interval. To give a first intuition, we can compute that for I = J = 1 the crite-
rion value is 2 log(N) + log(N !) (about 615 for N = 150) and for I = J = N it

gives 2 log(N) + log

(

2N − 1
N − 1

)

+ N log(N) (about 224 for N = 150).

We adopt a simple heuristic to optimize this criterion. We start with an initial
random model and alternate the optimization on the input and output variables.



For a given output distribution with fixed J and Nj , we optimize the discretiza-
tion of the input variable to determine the values of I, Ni and Nij . Then, for this
input discretization, we optimize the discretization of the output variable to de-
termine new values of J , Nj and Nij . The process is iterated until convergence,
which usually takes between two and three steps in practice. The univariate
discretization optimizations are performed using the MODL discretization al-
gorithm. This process is repeated several times, starting from different random
initial solutions. The best solution is returned by the algorithm. The evaluation
criterion creg(M) given in formula (4) is related to the probability that a regres-
sion discretization model M explains the output variable. We then propose to
use it to build a relevance criterion for the input variables in a regression prob-
lem. The input variables can be sorted by decreasing probability of explaining
the output variable. In order to provide a normalized indicator, we consider the
following transformation of creg:

g (M) = 1 −
creg (M)

creg (M∅)
,

where M∅ is the null model with only one interval for the input and output
variables. This can be interpreted as a compression gain, as negative log of
probabilities are no other than coding lengths [Sha48]. The compression gain
g(M) hold its values between 0 and 1, since the null model is always considered
in our optimization algorithm. It has value 0 for the null model and is maximal
when the best possible explanation of the output ranks conditionally to the input
ranks is achieved.
Our method is non parametric both in the statistical and algorithmic sense : any
statistical hypothesis needs to be done on the data distribution (like Gaussianity
for instance) and, as the criterion is regularized, there is no parameter to tune
before minimizing it. This strong point enables to consider large datasets.

3 Experimental evaluation

In this section we first present the performance of the MODL 2D-discretization
method on artificial datasets. Then, we apply it to rank the input variables of
the Housing dataset from U.C. Irvine repository [DNM98] and show the interest
of such a ranking criterion to improve regression tree performance.

3.1 Synthetic data experiments

We first test our method on a noise pattern dataset of size 100 where the input
and output variables are independent and uniformely distributed on [0; 1]. As
expected, the absence of relevant information in X to predict Y produces a 1 by
1 partition, i.e., a null compression gain.
Secondly, we test the ability of the MODL 2D-discretization to partition a

noisy XOR pattern. Our dataset contains one hundred instances uniformely dis-
tributed in the square [0; 0.5] × [0; 0.5] and one other hundred in the square
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Fig. 5. Correlation diagram with optimal MODL grid for noisy circle synthetic data.

[0.5; 1]× [0.5; 1]. Fifty instances have been added uniformely in the square [0; 1]×
[0; 1]. The optimal MODL partition with compression gain of 0.074 precisely de-
tects the noisy XOR pattern as shown in Fig. 4. The associated contingency
table gives the number of instances in each cellule of the partition. It enables
to construct conditional density estimators as follows : from the first column we
can say that if x is in [0; 0.5], then y is in 0; 0.5] with probability 116

116+13
= 0.90.

The last synthetic experiment shows how the proposed method detects the pres-
ence of relevant information when two variables are not linearly correlated. We
generate for this purpose a circle data set: three hundred instances have been
generated on the circle of radius 1 with an additional noise such that their mod-
ule is uniformely distributed in [0.9 ; 1.1]. As the empirical correlation is equal
to −0.0169, any method based on the search of linear dependence fails. In con-
trast, the MODL 2D-discretization method underlines the relation between the
two variables since the obtained compression gain is not zero. The optimal grid
clearly identifies interesting regions as shown in Fig. 5.

3.2 Housing data

In this section, we study the regression problem of the Housing MEDV variable
which describes housing values in suburbs of Boston. The Housing dataset con-



tains 506 instances, 13 numeric variables (including output variable MEDV) and
1 binary-valued variable which are described in Table 1.

Table 1. Description of the 13 variables of the Housing dataset.

CRIM per capita crime rate by town

ZN proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS proportion of non-retail business acres per town

CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

NOX nitric oxides concentration (parts per 10 million)

RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940

DIS weighted distances to five Boston employment centres

RAD index of accessibility to radial highways

TAX full-value property-tax rate per $10,000

PTRATIO pupil-teacher ratio by town

B 1000(Bk − 0.63)2 where Bk is the proportion of blacks

LSTAT % lower status of the population

MEDV Median value of owner-occupied homes in $1000’s

Table 2. Sorted compression gains and empirical correlation coefficients for the 12
numerical variables of the Housing regression dataset

Input variable Compression gain Correlation coefficient

LSTAT 0.092 -0.748

RM 0.0617 0.715

NOX 0.0444 -0.414

CRIM 0.0397 -0.377

INDUS 0.0395 -0.462

PTRATIO 0.0365 -0.523

AGE 0.0346 -0.384

DIS 0.0280 0.239

TAX 0.0252 -0.435

RAD 0.017 -0.36

B 0.0115 0.3

ZN 0.0109 0.358

We have split the Housing dataset in a 70% learning set and a 30% test set.
Using the learning set, we have computed the optimal MODL 2D-discretizations
for all of the twelve numeric variables. Considered as a relevance criterion, the
associated compression gains are used to sort the variables according to the pre-
dictive information they contained w.r.t. the MEDV variable. To illustrate the
interest of the MODL ranking criterion for variable selection, we then use this
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relevance criterion to improve CART regression trees [BFOS84]: we estimate
such a tree with only the best MODL variable LSTAT, then with the two best
variables and so on until the tree obtained with all the variables.
The sorted compression gains with the corresponding empirical correlation coef-
ficients are shown in Table 2. For lack of space, the correlation diagram with the
optimal MODL grids and the associated contingency table are shown in Fig 6
for the two better variables LSTAT and RM and in Fig 8 for the worst variable
ZN. The PTRATIO variable seems also an interesting variable as its empirical
correlation coefficient ranks it at the third position whereas the MODL criterion
places it at the sixth (cf Fig 7). All these examples show the capacity of our
MODL 2D-discretization algorithm to deal with complex datasets : the optimal
grids present coarse grain when there is no predictive information or when the
data are too noisy and capture fine details as soon as there is enough instances.
We then estimate the twelve trees with the 70% learning set. The first is esti-
mated using only the best LSTAT variable, the second with the two best variables
LSTAT and RM and so on until the twelfth tree estimated with all the variables.
The obtained trees are used to predict the MEDV variable for both the learning
and the test set. The resulting root mean squared errors are plotted in Fig. 9 for
learning and test datasets. For both sets, we notice that:
- considering all the variables to estimate the regression tree is less efficient than
considering only the more relevant ones according to the MODL criterion.
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Fig. 9. Root Mean Squared Errors for the MEDV variable predicted from the regression
trees estimated on a 70% learning dataset using an increasing number of ranked MODL
variables (a) on the learning set (b) on the test set.

- the optimal tree is obtained with the three best variables and degrades after
the incorporation of the eighth.
We can then conclude that, for this dataset, choosing the third tree during train-
ing step conducts to the best choice for the test set.



4 Conclusion and future work

The MODL 2D-discretization method proposed in this paper is a Bayesian model
selection method for discretization grid models. The exact MODL criterion ob-
tained enables to find the most probable discretization-based explanation of the
data. Using a heuristic iterative algorithm which alternatively performs the dis-
cretization of the input and of the output variable, the obtained partitions accu-
rately show linear and non linear relation and their compression gain can be used
as a relevance criterion for the input variable ranking problem. It seems a very
promising method to efficiently detect the relevant variables in large datasets
during the data preparation step of regression problems.
In a future work, we plan to pursue the validation of our approach on larger
numerous datasets and to use it to build a multivariate naive Bayes regressor
exploiting the MODL discretized grids.
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