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Abstract

We exploit the Minimum Description Length (MDL) principle as a model selection tech-
nique for Bernoulli distributions and compare several types of MDL codes. We first present a
simplistic crude two-part MDL code and a Normalized Maximum Likelihood (NML) code. We
then focus on the enumerative two-part crude MDL code, suggest a Bayesian interpretation
for finite size data samples, and exhibit a strong connection with the NML approach. We
obtain surprising impacts on the estimation of the model complexity together with superior
compression performance. This is then generalized to the case of the multinomial distri-
butions. Both the theoretical analysis and the experimental comparisons suggest that one
might use the enumerative code rather than NML in practice, for Bernoulli and multinomial
distributions.

1 Introduction

Model selection is a key problem in statictics and data mining, and the MDL approaches (Ris-
sanen, 1978) to model selection have been extensively studied in the literature (Grünwald,
2007), with successful applications in many practical problems. Simple models such as
Bernoulli or mainly multinomial distributions are important because they are easier to ana-
lyze theoretically and useful in many applications. For example, the multinomial distribution
has been used as a building block in more complex models, such as naive Bayes classifiers
(Mononen and Myllymäki, 2007), Bayesian networks (Roos et al., 2008), decision trees (Voi-
sine et al., 2009) or coclustering models (Boullé, 2011; Guigourès et al., 2015). These models
involve up to thousand of multinomials blocks, some of them with potentially very large
numbers of occurrences and outcomes. For example, the text × word coclustering of the 20-
newsgroup dataset described in (Boullé, 2011) exploits a main multinomial block with around
two millions words (occurrences) distributed on 200,000 coclusters (outcomes). In (Guigourès
et al., 2015), half a billion call detail records (occurrences) are distributed on one million
coclusters (outcomes). These various and numerous applications critically rely on the used
model selection approach to get a robust and accurate summary of the data.

The MDL approaches come with several savors, ranging from theoretical but not com-
putable to practical but sub-optimal. Ideal MDL (Vitányi and Li, 2000) relies on the Kol-
mogorov complexity, that is the ability of compressing data using a computer program. How-
ever, it suffers from large constants depending on the description method used and cannot
be computed not even approximated in the case of two-part codes (Adriaans and Vitányi,
2006). Practical MDL exploits description methods that are less expressive than general-
purpose computer languages. For example, it has been employed to retrieve the best model
given the data in case of families of parametrized statistical distributions. Crude MDL is a
basic MDL approach with appealing simplicity. For example, in two-part crude MDL, you
just have to encode the model parameters and the data given the parameter, with a focus
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on the code length only. However, crude MDL suffers from arbitrary coding choices. Mod-
ern MDL exploits universal coding resulting in Refined MDL (Grünwald, 2007), with much
stronger foundations and interesting theoretical properties. In this paper, we investigate on
the enumerative two-part crude MDL code for the Bernoulli and multinomial models, exhibit
a strong connection with the NML approach, with surprising impacts on the estimation of
the model complexity and superior compression performance.

The rest of the paper is organized as follows. For self-containment reasons, Section 2
presents standard codes for the Bernoulli distribution: one simplistic two-part crude MDL
code as well as a refined MDL code based on the NML approach. Section 3 describes a
particular two-part crude MDL code based on enumerations and establishes the connection
of its parameter coding length with its NML parametric complexity. Section 4 proceeds with
a deep comparison between this enumerative MDL code and the NML code presented in
Section 2. Section 5 suggests an extension of the enumerative two-part crude MDL code to
multinomial distributions and Section 6 compares this code with the alternative NML code.
Finally, Section 7 summarizes this paper.

2 Standard MDL codes for Bernoulli strings

We briefly present one simplistic example of two-part crude MDL code for encoding binary
strings using the Bernoulli model, as well as a modern MDL code based on NML. This has
been presented many times in the literature, e.g. (Hansen and Yu, 2001; Grünwald, 2007; De
Rooij and Grünwald, 2009).

Let us consider the Bernoulli model with θ ∈ [0, 1] in the case of binary sequences xn ∈ Xn

of size n. Let k(xn) be the number of ones in xn.

2.1 Simplistic two-part crude MDL approach

Using a two-part version of the MDL principle (Grünwald, 2007), we select the best hypothesis
H that explains the data D by minimizing the sum L(H)+L(D|H), where L(H) is the coding
length of the hypothesis and L(D|H) is the coding length of the data encoded with the help
of the hypothesis.

In the case of the Bernoulli model, we have to encode the parameter θ and the data xn given
θ. The number of ones in the binary string xn is between 0 and n. The θ parameter can thus
be chosen among (n+ 1) values θ = 0

n
, 1
n
, 2
n
, . . . , n

n
, and be encoded using L(θ) = log(n+ 1)

bits.
For θ ∈ {0, 1}, the string xn is degenerated with only zeros or ones, and its coding length

given θ is L(xn|θ) = 0.
For θ = k

n
, 0 < k < n, every symbol of the string xn can be encoded using − log k

n
bit for

a one and − log n−k
n

bit for a zero, leading to L(xn|θ) = −k ln k
n
− (n− k) ln n−k

n
.

This gives a total code length of

L(θ =
k

n
, xn) = log(n+ 1) +

(
−k log

k

n
− (n− k) log

n− k
n

)
. (1)

Equivalently, the likelihood of the whole string xn can be estimated as P (xn|θ = k
n

) =

( k
n

)k(n−k
n

)n−k, with L(xn|θ) = − logP (xn|θ = k
n

).
Using the Shannon entropy H( k

n
) = − k

n
log( k

n
) − n−k

n
log(n−k

n
), we also have L(xn|θ) =

nH(θ).

2.2 Standard NML Approach

The simplistic two-part MDL code defined previously suffers from some arbitrary choices and
may be suboptimal at best, with arbitrary bad behavior for small sample sizes (Grünwald,
2007).

In the case of the Bernoulli model, this is pointed out in (De Rooij and Grünwald, 2009),

“Example 5. . . . A uniform code uses L(θ) = log(n + 1) bits to identify an
element of this set. Therefore the resulting regret is always exactly log(n+ 1). By
using a slightly more clever discretisation we can bring this regret down to about
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logn + O(1), which we mentioned is usually achievable for uncountable single
parameter models.”

Using universal coding, a much more grounded approach is proposed to better evaluate
the model complexity, based on the Shtarkov NML code, which provides strong theoretical
guarantees (Rissanen, 2000).

It exploits the following NML distribution P
(n)
nml on Xn:

P
(n)
nml(x

n) =
P
θ̂(xn)

(xn)∑
yn∈Xn Pθ̂(yn)

(yn)
(2)

where θ̂(xn) is the model parameter that maximizes the likelihood of xn.
The log of the denominator stands for the parametric complexity COMP (n)(θ) of the

model whereas the negative log of the numerator is the stochastic complexity of the data
given the model. The sum of both terms provides the NML code. It is noteworthy that the
NML code is a one-part rather than two-part code: data is encoded with the help of all the
model hypotheses rather than the best hypothesis.

In the case of the Bernoulli model, θ̂(xn) = k(xn)/n. We have

COMP (n)(θ) = log
∑

yn∈Xn

P
θ̂(yn)

(yn), (3)

= log

n∑
k=0

(
n

k

)(
k

n

)k (n− k
n

)n−k
. (4)

Using the Stirling’ formula together with the Fisher information provides the following
accurate approximation (Rissanen, 1996):

COMP (n)(θ) =
1

2
log

n

2π
+

∫
θ

√
detI(θ) + o(1), (5)

=
1

2
log

nπ

2
+ o(1). (6)

Remarkably, this is in line with the classical BIC regularization term 1
2

logn.

3 Revisiting enumerative two-part crude MDL

We present the enumerative two-part crude MDL code for Bernoulli distributions, suggest a
finite data sample Bayesian interpretation and show a connection with the NML approach.

3.1 Enumerative two-part crude MDL

We present an alternative type of two-part crude MDL code for Bernoulli distributions. It
has already been proposed in the past literature, under the names of index or enumerative
code (see for example Grünwald (2007) Example 10.1 Coding by Giving an Index ).

First, like in Section 2.1, we enumerate all possible θ = k
n

parameter values given the
sample size n. We then use log(n+ 1) bits to encode θ. Second, given θ = k

n
, we enumerate

all the
(
n
k

)
binary sequences with k ones and encode the data xn using log

(
n
k

)
bits. This gives

a total code length of

L(θ̂(xn), xn) = log(n+ 1) + log
n!

k!(n− k)!
, (7)

Interestingly, this crude MDL approach results in the same code length as that obtained in
(Hansen and Yu, 2001) using Predictive Coding or Mixture Coding with a uniform prior. This
code has also been studied by Grünwald (2007) (Chapter 10, Section 10.2) under the name
Conditional Two-Part Universal Code, who suggests that at least for the Bernoulli model,
this code is strictly preferable to the the ordinary two-part code.
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3.2 Bayesian interpretation

Let M = {Pθ | θ ∈ [0, 1]} be the class of all Bernoulli distributions. We propose to focus on
the family of modelsM(n) = {Pθ | θ = k

n
, 0 ≤ k ≤ n} that are models of description for finite

size data samples. M(n) is related to the set of all the possible maximum likelihood estimates
of θ (from M) for binary strings of size n. The interest of using M(n) is that the number of
model parameters is now finite instead of uncountable infinite. Using a uniform prior on the
model parameters in M(n), we get P (θ = k

n
) = 1/|M(n)|, leading to L(θ) = log(n+ 1).

Given θ = k
n
∈M(n), we now have to encode the data xn.

If k(xn)/n 6= θ, we cannot encode the data and P (xn|θ) = 0.
If k(xn)/n = θ, the observed data is consistent with the model parameter, and we assume

that all the possible observable data are uniformly distributed. The number of binary strings
with k one is the binomial coefficient

(
n
k

)
. Thus the probability of observing one of them is

P (xn|θ̂(xn)) = 1/
(
n
k

)
. We have a discrete likelihood that concentrates the probability mass

on binary strings that can be observed given the model parameter. As a result, coding lengths
are defined only for strings that are consistent with the model parameter. This gives a total
code length of

L(θ̂(xn), xn) = log(n+ 1) + log
n!

k!(n− k)!
, (8)

defined only when θ = θ̂(xn).

Let us consider the union of the M(n) models for all the sample sizes:

M(N) = ∪n∈NM(n). (9)

Interestingly, M(N) is very close to M, with θ ∈ Q rather than θ ∈ R. Thus, the number
of model parameters in M(N) is countable infinite rather than uncountable infinite, which
provides a significant simplification without sacrificing the precision.

3.3 NML interpretation

Let us compute the NML parametric complexity of this enumerative code, on the basis of the
discrete likelihood presented in Section 3.2. We have

COMP (n)(θ) = log
∑

yn∈Xn

P
θ̂(yn)

(yn), (10)

= log

n∑
k=0

(
n

k

)(
1/

(
n

k

))
, (11)

= log(n+ 1). (12)

Interestingly, we find exactly the same complexity term log(n+ 1) as the coding length of
the best hypothesis in the enumerative two-part crude MDL code presented in Section 3.1.
This shows that the enumerative code is both a two-part and a one-part code. It is parametriza-
tion invariant and optimal w.r.t. the NML approach, with minimax regret guarantee. Sur-
prisingly, its parametric complexity is asymptotically twice that of the NML code described
in Section 2.2. We further investigate on the comparison between the enumerative and NML
codes in next section

4 Code comparison for the Bernoulli distribution

In this section, we compare the NML code (Section 2.2) and enumerative two-part crude MDL
codes (Section 3) for the Bernoulli distribution.
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4.1 Notation

Let us use the names simplistic, NML and enumerative for the specific MDL codes presented
in Sections 2.1, 2.2 and 3.1. We also consider the random code as a baseline: it corresponds
to a direct encoding of each binary string xn with a coding length of n log 2. The likelihood
of each string xn is 1/2n, and as

∑n

k=0

(
n
k

)
1/2n = 1, we have COMP

(n)
random(∅) = 0 and

Lrandom (xn|∅) = n log 2.
Table 1 reminds the parametric and stochastic complexity of each considered code.

Table 1: Parametric and stochastic complexity per code.

Code name COMP
(n)
name Lname

(
xn|θ̂(xn)

)
enumerative log(n+ 1) log n!

k!(n−k)!

NML 1
2 log nπ

2 + o(1) log nn

kk(n−k)n−k

simplistic log(n+ 1) log nn

kk(n−k)n−k

random 0 n log 2

As for the simplistic code, the coding length of the parameter is presented in place of
the parametric complexity. The total coding length of the simplistic code has an overhead of
about 1

2
logn compared to the NML code. This confirms that the simplistic code is dominated

by the NML code, as expected.

4.2 Stochastic complexity term

The stochastic complexity term of the enumerative code is always smaller than that of the
NML code for non-degenerated binary strings:

∀n,∀xn ∈ Xn, 0 < k(xn) < n, Lenum

(
xn|θ̂(xn)

)
< Lnml

(
xn|θ̂(xn)

)
. (13)

An intuitive proof relies on the fact that the enumerative MDL likelihood assigns the same
probability to all binary strings having the same number of ones, with a null probability for all
the other strings. The NML likelihood also assigns the same probability to all binary strings
having the same number of ones, but with a non-null probability for the other strings. Then
they have to share a smaller probability mass, resulting in a smaller probability per string
and a strictly greater coding length.

To gain further insights, let us approximate the difference of coding length:

δL
(
xn|θ̂(xn)

)
= Lnml

(
xn|θ̂(xn)

)
− Lenum

(
xn|θ̂(xn)

)
.

Using the approximation given in (Grünwald, 2007) (formula 4.36) with the Bernoulli param-

eter θ = θ̂(xn) , we have

Lenum (xn|θ) = log

(
n

θn

)
, (14)

= nH(θ)− log
√

2πnvar(θ) +O(1/n), (15)

= Lnml (xn|θ)− 1

2
log(2πnvar(θ)) +O(1/n). (16)

We get

δL
(
xn|θ̂(xn)

)
=

1

2
log(2πnvar(θ)) +O(1/n). (17)

The difference of coding length is always positive but not uniform:

• for k(xn) = 0, δL
(
xn|θ̂(xn)

)
= 0,
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• for k(xn) ≈ n/2, δL
(
xn|θ̂(xn)

)
≈ 1

2
log(nπ

2
).

These results demonstrate that the enumerative code provides a better encoding of the data
with the help of the model for any binary strings, all the more for strings with equidistributed
zeros and ones. The gain in coding length compared to the NML code grows as the logarithm
of the sample size.

4.3 Parametric complexity term

Using inequality 13 and as the parametric complexity of code is the sum of the stochastic
complexity over all possible strings, we get:

∀n > 1, COMP (n)
enum > COMP

(n)
NML. (18)

Both terms are equal for n = 1 and asymptotically, the parametric complexity of the
enumerative code is twice that of the NML code (see Table 1).
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1 10 100 1000
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n

Enum

NML (exact)

NML(approx)

BIC

Figure 1: Parametric complexity for the Bernoulli model.

We now focus on the non-asymptotic behavior of the parametric complexity terms and
their approximations. Figure 1 shows the value of the parametric complexity of the Bernoulli
model, using the enumerative code, the NML code (exact numerical computation and approx-
imation), as well as the related BIC penalization term.

The approximation of the NML parametric complexity is very good as soon as n is beyond
100, but less accurate for small sample sizes. Asymptotically, the parametric complexity of
the enumerative code is twice that of the NML approach. It is always greater, but for very
small sample sizes, the difference becomes smaller and smaller.

4.4 Overall code length

Both the enumerative and NML codes exploit universal distributions on all binary strings
xn ∈ Xn. The compression of the data with the help of the model is better for the enumer-
ative distribution, at the expense of a worse parametric complexity. Adding the parametric
complexity and stochastic complexity terms, previous sections show that the NML code is
much shorter for degenerated binary strings:

for k(xn) = 0 or k(xn) = n, (19)

Lenum

(
θ̂(xn), xn

)
≈ logn

Lnml

(
θ̂(xn), xn

)
≈ 1

2
logn+

1

2
log

π

2
,
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whereas the enumerative code is slightly shorter for equidistributed binary strings (where

H(θ̂(xn)) ≈ log 2), with a margin of log π
2

:

for k(xn) ≈ n/2, (20)

Lenum

(
θ̂(xn), xn

)
≈ 1

2
logn− 1

2
log

π

2
+ n log 2,

Lnml

(
θ̂(xn), xn

)
≈ 1

2
logn+

1

2
log

π

2
+ n log 2.

4.5 Expectation of the coding length of all binary strings
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Figure 2: Expected overhead of coding length w.r.t. random model.

Let us now estimate the expectation of the coding length for all binary strings under the
uniform distribution, where ∀xn ∈ Xn, p(xn) = 1/2n.

E
(
L
(
θ̂(xn), xn

))
=

1

2n

∑
xn∈Xn

L
(
θ̂(xn), xn

)
, (21)

=
1

2n

n∑
k=0

(
n

k

)
L
(
θ̂(xn), xn

)
.

We perform an exact numerical calculation using the exact value of the NML model
complexity term, for all n, 1 ≤ n ≤ 1000. Figure 2 reports the expected coding length for
the enumerative and NML codes minus that of the random code (n log 2). The results show
that both codes have an average overhead of about 1/2 logn compared to the direct encoding
of the binary strings, and that, under the uniform distribution, the enumerative code always
compresses the data better on average that the NML code, especially in the non-asymptotic
case.

Actually, averaging on all binary strings is the same as considering exhaustively all the
binary string outcomes of a Bernoulli distribution with parameter θ = 1/2. Using the central
limit theorem, the proportion of binary strings xn where k(xn)/n ≈ 1/2 goes to 1 as n goes to
infinity, which explains why the shorter coding lengths obtained with the enumerative code for
binary strings with k(xn)/n ≈ 1/2 provide the main contribution in the expectation. Using
Formula 20, the expected coding length of the enumerative code is asymptotically better than
that of the NML code by a margin of log π

2
.
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4.6 Percentage of compressible binary strings

We now focus on the percentage pcompressible of compressible binary strings using both the
enumerative and NML codes, that is the percentage of binary strings with coding length
shorter than n log 2:

pcompressible =
1

2n

∑
xn∈Xn

1{
L
(
θ̂(xn),xn

)
≤n log 2

}, (22)

=
1

2n

n∑
k=0

(
n

k

)
1{

L
(
θ̂(xn),xn

)
≤n log 2

}.
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Figure 3: Percentage of compressible binary strings.

As previously, we perform an exact numerical calculation for all n, 1 ≤ n ≤ 1000. Figure 3
shows that the percentage of compressible strings decreases at a rate of O(1/

√
n) for both

codes, as expected. However, the enumerative code always compresses more binary strings
than the NML code. Due to the discrete decision threshold in formula 22, the exact computed
percentage values are not smooth like in Figure 2, especially in the non-asymptotic case for
small string sizes, but the overall tendency appears clearly for large sample sizes. In the
asymptotic case, around 60% more strings can be compressed using the enumerative code
(empirical evaluation).

4.7 Distribution of compression rates

We now focus on the distribution of the compression rates, that is the ratio of the coding
length of a binary string using the Bernoulli versus the random model:

%compression =
L
(
θ̂(xn), xn

)
n log 2

. (23)

Figure 4 shows the inverse cumulative distribution of compression rates for binary strings
of size 10, 100, 1000, using the NML or enumerative code . For example, from the 1024
(210) strings of size 10, only 0.2% (the two “pure” strings) can be compressed better with the
NML than with the enumerative code. All the other strings are better compressed with the
enumerative code. For both codes, 11% of the strings are compressible (%compression < 1).
For string of size 100, only 3.0 10−15% of the strings are better compressed with the NML
code. However, 2.1% of the strings are compressible using the NML code, which is less that the
3.5% obtained using the enumerative code. The tendency is the same for string of size 1000.
A tiny portion of the strings, those with almost only zeros or only ones, are better compressed
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Figure 4: Inverse cumulative distribution of compression rates for strings of size 10, 100, 1000.

using the NML code. All the other string are better compressed using the enumerative code,
with difference growing for balanced strings. This results in a greater number of compressible
strings using the enumerative code.

Let us evaluate the asymptotic value of the Bernoulli parameter θ for which both codes
achieve the same compression rate. Using Table 1 and Formula 17 in the asymptotic case, we
get :

δ
(
COMP (n) + L

(
xn|θ̂(xn)

))
= 0 ⇔ 1

2
log

nπ

2
− log(n+ 1) +

1

2
log(2πnvar(θ)) = 0

⇔ log(2πnvar(θ)) = log
(n+ 1)2

nπ/2

⇔ var(θ) =
(n+ 1)2

n2π2
≈ 1

π2
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⇔ θ(1− θ) =
1

π2
(24)

Equation 24 has two solutions: θ = 1/2(1±
√

1− 4/π2), that is θ ≈ 0.114 and θ ≈ 0.886.
Thus asymptotically, the enumerative code better compresses the strings for θ ∈ [0.114, 0.886],
that is around 77% of the values of θ.

Overall, both the NML and enumerative codes have the same asymptotic behavior, with
tiny differences in compression rates. However, the enumerative code allows to better compress
far more strings, both in the non-asymptotic and asymptotic cases.

4.8 Detection of a biased coin

We apply the previous Bernoulli codes to the problem of detection of a biased coin. A fair
coin is a randomizing device with two states named heads and tails that are equally likely
to occur. It can be modeled using a Bernoulli process with θfair = 1

2
. For a biased coin,

the heads and tails are not equally likely to occurs, and the related Bernoulli parameter is
θbias 6= 1

2
.

The problem is to determine whether a coin is biased given a limited sample of Bernoulli
trials. Given a sample xn of trials, we compute the coding length of this sample using either
the NML or the enumerative code and decide that the coin is biased if its coding length is
shorter than that of the random code (n log 2). For a given size n and a code (e.g. enumerative
or NML), we compute the probability of detecting the biased coin by averaging the detection
over all the possible samples of size n. Formally, for each code, we thus compute:

probD(θbias, n) = EB(θbias)

(
1{

L
(
θ̂(xn),xn

)
<n log 2

}) (25)

=

n∑
k=0

(
n

k

)
θkbias(1− θbias)n−k1{

L
(
θ̂(xn),xn

)
<n log 2

}. (26)
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Figure 5: Probability of detection of of a biased coin where θbias = 0.40.

The issue is to be able to detect the biased coin with the minimum number of trials.
Using Formula 25, we then determine the first value of n where the probability of detecting
the biased coin is beyond 50%. For example, Figure 5 shows the probability of detection of a
biased coin (θbias = 0.40) for sample size rangin from 1 to 1000, using the enumerative and
NML codes. The horizontal gray line represents a probability of 50% of detecting the bias.
As Formula 25 is not strictly increasing with n and unstable for tiny n (for reasons similar as
in Section 4.6), we collect the two following lower and upper thresholds of sample sizes:

n D(θbias) = min
n≥10
{probD(θbias, n) ≥ 50%}, (27)

n D(θbias) = max
n≥10
{probD(θbias, n) ≤ 50%}. (28)
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In Figure 5 for example, we have n D(θbias) = 96 and n D(θbias) = 115 for the enumerative
code and n D(θbias) = 126 and n D(θbias) = 145 for the NML code, that thus needs around
10% more trials to detect the biased coin.
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lower n [NML (exact)]

upper n [enum]
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Figure 6: Minimum sample size to detect a biased coin with probability greater than 50%.

Figure 6 shows the detection thresholds computed using the NML or enumerative codes for
θbias ∈ [0.35; 0.5]. As expected, the min sample size necessary to detect a biased coin increases
quickly when θbias becomes close to 1

2
. For θbias ≈ 0.46, around 1,000 trials are necessary to

detect the bias, and for θbias ≈ 0.495, around 100,000 trials are necessary. Although all the
thresholds are quite close, the enumerative code always needs smaller sample sizes to detect
the biased coin.
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Figure 7: Minimum sample size to detect a biased coin with probability greater than 50%.

To better compare the threshold without being hampered by the logarithmic scale of the
sample size, Figure 7 shows all the detection thresholds normalized by the enumerative upper
threshold. The lower and upper thresholds converge both for the enumerative and NML
codes. However, the difference between code does not vanish with the sample size. At least
withing the range explored in this experiment, up to 100,000 trials, the enumerative code
always needs around 10% less samples on average than the NML code to detect a biased coin.

False versus true positive rate. The probability of detecting a bias when a coin is
actually biased can be interpreted as a true positive rate, and when the coin is fair as a false
positive rate. Given this, the enumerative code needs less samples than the NML code to
detect a bias with a true positive rate greater than 50%. In the case of a fair coin, the false
positive rate of both codes decreases at a rate of O(1/

√
n), as shown in the experiment related

to the percentage of compressible strings (cf. Section 4.6: formula 22 is the same as formula 27

11



for θbias = 1
2
). Still, the false positive rate is about 60% higher for the enumerative code than

for the NML code.
Overall, the enumerative code compresses most binary strings slightly better than the NML

code, resulting in a better sensitivity to biased coins at the expense of more false detections
in case of fair coins.

4.9 Biased versus fair coin classification

To further investigate on the comparison between the NML and enumerative codes, we suggest
a classification experiment where the objective is to predict whether a coin if fair or biased.
Let θbias ∈ [0; 1] and n ∈ N∗ be fixed parameters. The instances to classify are sequences xn

of n trials generated with equal probability (pF = pB = 1
2
) either from a fair coin (θ = 1

2
) or

from a biased coin (θ = θbias). The objective is to predict whether the coin that produced each
sequence was fair or biased. As in Section 4.8, we evaluate both the NML and enumerative
codes as classifiers by predicting a bias if they can encode a sequence with a coding length
shorter than that of the random code (n log 2), and predicting fair otherwise.

Table 2: Coin classification results.
Real ↓ Predicted → Bias Fair

Bias TP FN
Fair FP TN

The result can be analyzed in terms of a contingency table, as illustrated in Table 2:

• true positive (TP): detecting bias correctly,

• false positive (FP): detecting bias when there is none,

• true negative (TN): detecting fair correctly,

• false negative (FN): detecting fair when the the coin is biased.

In this experiment, we focus on the correct detections:

• sensitivity or true positive rate TPR = TP/(TP +FN) for the correct detection of bias,

• specificity or true negative rate TNR = TN/(TN + FP ) for the correct detection of
fair,

• accuracy ACC = (TP + TN)/(TP + FP + FN + TN) for the global rate of correct
detection.

For given θbias and n parameters and for each code, we compute the expectation of the
indicators by integrating other the distribution of all the sequences issued from the generation
process.

E(TPR) = EB(θbias)

(
1{

L
(
θ̂(xn),xn

)
<n log 2

}) , (29)

=

n∑
k=0

(
n

k

)
θkbias(1− θbias)n−k1{

L
(
θ̂(xn),xn

)
<n log 2

}, (30)

E(TNR) = EB(1/2)

(
1{

L
(
θ̂(xn),xn

)
≥n log 2

}) , (31)

=
1

2n

n∑
k=0

(
n

k

)
1{

L
(
θ̂(xn),xn

)
≥n log 2

}, (32)

E(ACC) = pBE(ETR) + pFE(TNR), (33)

=
E(ETR) + E(TNR)

2
. (34)

We perform the coin classification experiment for θbias ∈ {0.501, 0.51, 0.55, 0.75, 0.60, 0.90}
and n ranging from 1 to 10, 000 using the enumerative and the NML codes (n up to 10, 000, 000
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Figure 8: Classification of coins using the NML and Enum codes for different biases. Accuracy
(left) and difference (Enum−NML) for the true positive, false negative and accuracy (right).
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for θbias = 0.501). Figure 8 reports the accuracy results (left) as well as the difference
(Enum−NML) of the three indicators.

Overall, both codes exhibit a similar behavior w.r.t. the coin classification problem, with
accuracy increasing from 0.5 for small n to 1 for large n, and a slow increase rate for small
bias and a fast one for large bias. Except in the tiny samples with n ≤ 20, the difference
between any of the three indicators never exceeds around 15%. However, there are some
interesting differences. As noticed in Section 4.8, the enumerative code has a better sensitivity
at the expense to a worse specificity, and the aggregated accuracy result exhibits a variety
of behaviors. When the bias is small (θbias close from 1

2
), the enumerative code is far more

sensitive while being a little less specific, resulting in more accurate predictions in the non-
asymptotic case. When the bias is large (θbias far from 1

2
), both codes get almost the same

sensitivity while the enumerative code remains less specific, resulting in slightly less accurate
predictions. In all cases, the differences between both codes get tiny for large n, in the
asymptotic case.

5 The case of multinomial distribution

Let us consider the multinomial model with parameter θ = (θ1, . . . , θm),
∑m

j=1
θj = 1, ∀j, θj >

0, such that Pθ(X = j) = θj , in the case of m-ary sequences xn ∈ Xn of size n. For a given
sequence xn, Pθ(xn) =

∏m

j=1
θ
nj

j , where nj is the number of occurrences of outcome j in
sequence xn.

5.1 Standard NML approach

As pointed out in (De Rooij and Grünwald, 2009),

“The NML distribution has a number of significant practical problems. First,
it is often undefined, because for many models the denominator in (2) is infinite,
even for such simple models as the Poisson or geometric distributions. Second,
Xn is exponentially large in n, so calculating the NML probability exactly is only
possible in special cases such as the Bernoulli model above, where the number
of terms is reduced using some trick. Something similar is possible for the more
general multinomial model (...), but in most cases [it] has to be approximated,
which introduces errors that are hard to quantify.”

The parametric complexity of the NML universal model with respect to a k-parameter
exponential family model is usually approximated by k

2
log n

2π
(Grünwald, 2007). In the case

of the multinomial distribution with (m− 1) free parameters, this gives m−1
2

log n
2π

. A better
approximation based on Rissanen’s asymptotic expansion (Rissanen, 1996) is presented in
(Kontkanen, 2009):

COMP
(n)
nml(θ) =

m− 1

2
log

n

2π
+ log

πm/2

Γ(m/2)
+ o(1), (35)

where Γ(.) is the Euler gamma function. Still in (Kontkanen, 2009), a sharper approximation
based on Szpankowski’s approximation is presented. This last approximation, far more com-
plex is very accurate w.r.t. n, with o( 1

n3/2 ) precision. We present below its first terms until

o( 1√
n

), which actually are the same that in Rissanen’s approximation:

COMP
(n)
nml(θ) =

m− 1

2
log

n

2
+ log

√
π

Γ(m/2)
+ o(

1√
n

), (36)

Finally, (Kontkanen and Myllymäki, 2007) propose an exact computation of the multi-
nomial stochastic complexity, at the expense of sophisticated algorithms with quasilinear
computation time.

5.2 Enumerative two-part crude MDL

We apply the same approach as in the case of the Bernoulli model (Sections 3.1 and 3.2).
Given a sample size n, the number of tuples (n1, n2, . . . , nm) such that

∑m

j=1
nj = n is
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(
n+m−1
m−1

)
. We then encode the multinomial model parameter using a uniform prior

P
(
θ =

(
n1

n
,
n2

n
, . . . ,

nm
n

))
= 1/

(
n+m− 1

m− 1

)
,

leading to L(θ) = log
(
n+m−1
m−1

)
. Second, we have to encode the data xn at best given the θ

parameter.
We suggest using a probability distribution for encoding the finite size data sample xn,

with the following likelihood.

For θ 6=
(
n1(x

n)
n

, n2(x
n)

n
, . . . , nm(xn)

n

)
, we cannot encode the data and P (xn|θ) = 0.

For θ = θ̂(xn) =
(
n1(x

n)
n

, n2(x
n)

n
, . . . , nm(xn)

n

)
, the observed data is consistent with the

model parameter and we assume that all the possible observable data are uniformly dis-
tributed. The number of m-ary strings where the number of occurrences of outcome j is nj
is given by the multinomial coefficient n!

n1!n2!...nm!
. Thus the probability of observing one

particular m-ary string is P (xn|θ̂(xn)) = 1/ n!
n1!n2!...nm!

. This gives a total code length of

L(θ̂(xn), xn) = log

(
n+m− 1

m− 1

)
+ log

n!

n1!n2! . . . nm!
, (37)

defined only when θ = θ̂(xn).

5.3 NML interpretation

Let us compute the NML parametric complexity of this enumerative code on the basis of the
discrete likelihood. We have

COMP (n)(θ) = log
∑

yn∈Xn

P
θ̂(yn)

(yn), (38)

= log
∑

{n1+...+nm=n}

n!

n1!n2! . . . nm!

(
1/

n!

n1!n2! . . . nm!

)
, (39)

= log

(
n+m− 1

m− 1

)
. (40)

Interestingly, we find exactly the same complexity term as the coding length of the best
hypothesis in the enumerative approach, that simply relies on counting the possibilities for
the model parameters. Like in the Bernoulli case, this shows that the enumerative code is
both a two-part and a one-part code, optimal w.r.t. the NML approach and parametrization
invariant. We have an exact formula for the complexity term, very simple to compute. Us-
ing Stirling’s approximation logn! = n logn − n + 1

2
log 2πn + O(1/n), we get the following

asymptotic approximation:

COMP (n)(θ) = (m− 1)(logn− log(m− 1) + 1)− 1

2
log 2π(m− 1) + o(

1

n
). (41)

Once again, this asymptotic model complexity is twice that of the alternative classical
NML code or the standard BIC regularization term (m− 1) logn.

6 Code comparison for the multinomial distributions

In this section, we compare the NML code (Section 5.1) and enumerative two-part crude MDL
codes (Section 5.2) for the multinomial distribution.

6.1 Notation

Let us use the names NML and enumerative for the specific MDL codes presented in Sections
5.1 and 5.2. We also consider the random code as a baseline: it corresponds to a direct
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encoding of each binary string xn with a coding length of n logm. The likelihood of each string
xn is 1/mn, and as

∑
{n1+...+nm=n}

n!
n1!n2!...nm!

1/mn = 1, we have COMP
(n)
random(∅) = 0 and

Lrandom (xn|∅) = n logm.
Table 3 reminds the parametric and stochastic complexity of each considered code for the

multinomial distribution.

Table 3: Parametric and stochastic complexity per code.

Code name COMP
(n)
name Lname

(
xn|θ̂(xn)

)
enumerative log

(
n+m−1
m−1

)
log n!

n1!...nm!

NML m−1
2 log n

2 + log
√
π

Γ(m/2) + o( 1√
n

) log nn

n
n1
1 ...nnm

m

random 0 n logm

6.2 Stochastic complexity term

The stochastic complexity term of the enumerative code is always smaller than that of the
NML code for non-degenerated m-ary strings:

∀n,∀xn ∈ Xn such that ( max
1≤j≤m

nj) < n then Lenum

(
xn|θ̂(xn)

)
< Lnml

(
xn|θ̂(xn)

)
. (42)

An intuitive proof relies on the fact that the enumerative MDL likelihood assigns the same
probability to all m-ary strings having the same number of occurrence per outcome j, with a
null probability for all the other strings. The NML likelihood also assigns the same probability
to these m-ary strings, but with a non-null probability for the other strings. Then they have
to share a smaller probability mass, resulting in a smaller probability per string and a strictly
greater coding length.

To gain further insights, let us approximate the difference of coding length for the stochas-
tic complexity term:

δLSC

(
xn|θ̂(xn)

)
= Lnml

(
xn|θ̂(xn)

)
− Lenum

(
xn|θ̂(xn)

)
.

We assume that ∀j, nj > 0 and nj ≈ nθ̂j . Using Stirling’s approximation logn! = n logn−
n+ 1

2
log 2πn+O(1/n), we get

Lenum

(
xn|θ̂(xn)

)
= log

n!

n1!n2! . . . nm!

= n logn− n+
1

2
log 2πn+O(1/n)

−
m∑
j=1

(
nj lognj − nj +

1

2
log 2πnj +O(1/nj)

)
= log

nn

nn1
1 . . . nnm

m
− m− 1

2
log 2πn− 1

2
log

m∏
j=1

θ̂j +O(1/n)

We get

δLSC

(
xn|θ̂(xn)

)
=
m− 1

2
log 2πn+

1

2
log

m∏
j=1

θ̂j +O(1/n). (43)

It is noteworthy that the var(θ̂) term in the Bernoulli case (see Formula 17) generalizes to

a
∏m

j=1
θ̂j term in the multinomial case.
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These results demonstrate that the enumerative code provides a better encoding of the
data with the help of the model for any m-ary strings. The gain in coding length compared to
the NML code is always positive and grows asymptotically as (m− 1)/2 times the logarithm
of the sample size.

6.3 Parametric complexity term

Using inequality 42 and as the parametric complexity of code is the sum of the stochastic
complexity over all possible strings, we get:

∀n > 1, COMP (n)
enum > COMP

(n)
NML. (44)

Both terms are equal for n = 1 and asymptotically, the parametric complexity of the
enumerative code is twice that of the NML code (see Formulas 36 and 41).
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Figure 9: Parametric complexity for the multinomial model with 10 or 100 categories.

We now focus on the non-asymptotic behavior of the parametric complexity terms and
their approximations. Figure 9 shows the value of the parametric complexity of the multino-
mial model, using the enumerative code, the NML code (exact numerical computation and
Rissanen or Szpankowski based approximations: see Section 5.1), as well as the related BIC
penalization term.

The BIC approximation is very bad, all the more as m increases. The Rissanen approx-
imation of the NML parametric complexity is very good as soon as n is about 100 times
the number m of categories, but less accurate for small sample sizes. As expected, the Sz-
pankowski based approximation if much sharper, being accurate as soon as n is beyond m,
but with bad accuracy for n << m.

Let us now compute an asymptotic approximation of the difference of parametric com-
plexity between the two codes:

δLPCCOMP (n)(θ) = COMP
(n)
nml(θ)− COMP (n)

enum(θ).
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Using previous approximations presented in Formulas 36, 41 and the Stirling’s approxi-
mation of the Gamma function, we get:

δLPCCOMP (n)(θ) =
m− 1

2
log

n

2
+ log

√
π − (

m

2
log

m

2
− m

2
− 1

2
log

m

4π
) (45)

−((m− 1)(logn− log(m− 1) + 1)− 1

2
log 2π(m− 1)) (46)

+o(
1√
n

), (47)

= −m− 1

2
logn− m− 1

2
log 2 +

1

2
log π (48)

−m
2

logm+
m

2
log 2 +

m

2
+

1

2
logm− 1

2
log π − log 2 (49)

+(m− 1) log(m− 1)− (m− 1) (50)

+
1

2
log 2 +

1

2
log π +

1

2
log(m− 1) + o(

1√
n

), (51)

= −m− 1

2
lognme+ (m− 1

2
) log(m− 1) +

1

2
log πe+ o(

1√
n

).(52)

We obtain

δLPCCOMP (n)(θ) = −m− 1

2
logn+

m

2
log

m

e
(53)

+ log
e√
π

+ (m− 1

2
) log(1− 1

m
) + o(

1√
n

)

and for n >> m

δLPCCOMP (n)(θ) = −m− 1

2
logn+

m

2
log

m

e
− log

√
π + o(

1

m
) + o(

1√
n

). (54)

This result demonstrates that the difference of parametric complexity increases as the
logarithm of the sample size. The speed of increase is with a factor (m− 1)/2, but for small
sample sizes (typically n ≤ m), the difference remains small.
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Figure 10: Ratio of enumerative to the NML parametric complexities for the multinomial model
with up to 100,000 outcomes.

We illustrate this behavior in the non-asymptotic case. Figure 10 focuses on the ratio
of the exact parametric complexity terms for the enumerative and NML codes. This ratio
always increases from 1 for n = 1 to 2 when n goes to infinity, with the speed of convergence
decreasing as the number m of outcomes increases.
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6.4 Overall code length

Both the enumerative and NML codes exploit universal distributions on all m-ary strings
xn ∈ Xn. The compression of the data with the help of the model is better for the enumerative
distribution, at the expense of a worse parametric complexity. The overall code length is the
sum of the parametric and stochastic complexities. Using previous approximations presented
in Formulas 43, 53, we obtain the following approximation of the difference of overall code
lengths between the two codes:

∆L
(
θ̂(xn), xn

)
= δLPCCOMP (n)(θ) + δLSC

(
xn|θ̂(xn)

)
, (55)

= −m− 1

2
logn+

m

2
log

m

e
+ log

e√
π

+ (m− 1

2
) log(1− 1

m
) (56)

+
m− 1

2
log 2πn+

1

2
log

m∏
j=1

θ̂j + o(
1√
n

). (57)

We obtain

∆L
(
θ̂(xn), xn

)
=

m

2
log

m2π

e
+

1

2
log

m∏
j=1

θj + log
e
√

2
+ (m−

1

2
) log(1−

1

m
) + o(

1
√
n

), (58)

and for n >> m

∆L
(
θ̂(xn), xn

)
=

m

2
log

m2π

e
+

1

2
log

m∏
j=1

θj − log
√

2 + o(
1

m
) + o(

1√
n

). (59)

Asymptotically, the difference in overall code length does not depend on the size n of the
string. Both codes differ by a margin that depends essentially on the number m of outcomes
and of the multinomial parameter θ.

Case of balanced multinomial distributions. The term log
∏m

j=1
θj is minimal for

equidistributed multinomial distribution (θj = 1/m). For such distributions, we get

∆L
(
θ̂(xn), xn

)
=

m

2
log

2π

e
+ log

e√
2

+ o(
1

m
) + o(

1√
n

), (60)

which means that the enumerative code compresses the strings better than the NML code
with a margin that increases linearly with m.

Case of degenerated multinomial distributions. In case of multinomial distribu-

tions with one single observed outcome (e.g. θ̂ = (1, 0, . . . , 0)), both the NML and enumerative
codes have a null stochastic complexity and the difference between the coding lengths reduces
to the difference between the parametric complexity terms (see Formula 53). In this extreme
case, the NML code compresses the string better with a margin that grows as m−1

2
times the

logarithm of the sample size.

Case of unbalanced multinomial distributions. Let us study the boundary be-
tween balanced distributions and degenerated distributions, where the enumerative code dom-
inates the NML code and conversely. We are seeking for distributions where both codes achieve
approximately the same compression. For that purpose, let us consider peaked multinomial
distributions, with most of the probability mass for the first outcome (θ1 = θmax) and the
rest of the probability mass equistributed for the other outcomes (θj = θmin, 2 ≤ j ≤ m,
with θmin = 1−θmax

m−1
). Using Formula 59, we thus try to find the peaked distribution

θ = (θmax, θmin, . . . , θmin) such that ∆L
(
θ̂(xn), xn

)
= o(1). The solution is obtained for

θmax = 1− m− 1

m+ logm

e

2π
> 0.56, (61)
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θmin =
e

2π(m+ logm)
< 0.44

1

m
, (62)

leading to

∆L
(
θ̂(xn), xn

)
= α+ o(

1

m
) + o(

1√
n

) (63)

with α ≈ 0.37. This peaked distribution is at the limit where the NML code compresses the
data better than the enumerative code. Numerical experiments, not reported here, confirm
the accuracy of Formulas 61 and 62 and show that the asymptotic value of the peak probability
θmax behaves as a lower bound of the obtained probability in the non asymptotic case.

For Bernoulli distributions, we had θmax ≈ 0.886 (see Formula 24), and not surprisingly,
θmax decreases with m (see Formula 61). Interestingly, θmax is always greater than 0.56
whatever m. This means that when m increases, the ratio θmax/θmin grows linearly with m
and the fraction of multinomial distributions where the NML code dominates the enumerative
code becomes negligible.

Synthesis. The overall difference of coding length is in favor of the enumerative code for
balanced strings with a margin that increases linearly with m. The NML code is better only
for heavily unbalanced strings, where the most frequent outcome occurs more that half of
the times, whatever be m. Under the uniform distribution, such unbalanced strings are far
less frequent than balanced strings, and the enumerative code compresses most strings better
than the NML code.

6.5 Expectation of the coding length of all m-ary strings
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Figure 11: Expected overhead of coding length w.r.t. random model for m = 5 (left) and m = 10
(right).

Let us estimate the expectation of the coding length for all m-ary strings under the uniform
distribution, where ∀xn ∈ Xn, p(xn) = 1/mn.

E
(
L
(
θ̂(xn), xn

))
=

1

mn

∑
xn∈Xn

L
(
θ̂(xn), xn

)
, (64)

=
1

mn

∑
{n1+...+nm=n}

n!

n1!n2! . . . nm!
L
(
θ̂(xn), xn

)
.

We perform an exact numerical calculation using the exact value of the NML parametric
complexity term, for m = 5 (1 ≤ n ≤ 100) and m = 10 (1 ≤ n ≤ 50). Let us notice
that the sum in Formula 64 involves more than ten billions terms for m = 10 and n = 50.
Figure 11 reports the expected coding length for the enumerative and NML codes minus that
of the random code (n logm). The results show that both codes have an asymptotic overhead
that grows as (m− 1)/2 logn, compared to the direct encoding of the binary strings. Under
the uniform distribution, the enumerative code always compresses the data better than the
NML code, especially in the non-asymptotic case. As for the Bernoulli codes, most possible
m-ary strings are almost equidistributed and their shorter coding lengths obtained with the
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enumerative provide the main contribution in the expectation of the coding length. Following
Formula 59, the enumerative code compresses the m-ary strings better than the NML code
with a margin that grows linearly with m.

6.6 Percentage of compressible m-ary strings

We now focus on the percentage pcompressible of compressible m-ary strings using both the
enumerative and NML codes, that is the percentage of m-ary strings with coding length
shorter than n logm:

pcompressible =
1

mn

∑
xn∈Xn

1{
L
(
θ̂(xn),xn

)
≤n logm

}, (65)

=
1

mn

∑
{n1+...+nm=n}

n!

n1!n2! . . . nm!
1{

L
(
θ̂(xn),xn

)
≤n logm

}.
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Figure 12: Percentage of compressible m-ary strings (left: m = 3; right: m = 5).

As previously, we perform an exact numerical calculation for all n, 1 ≤ n ≤ nmax, with
nmax = 5000 for m = 3 and nmax = 500 for m = 5. Figure 12 shows that empirically,
beyond the non-asymptotic case, the percentage of compressible strings decreases at a rate
of O(1/n(m−1)/2) for both codes. However, the enumerative code always compresses more
binary strings than the NML code.
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Figure 13: Ratio of compressible binary strings using the enumerative rather than the NML code
(left: m = 2; center: m = 3; right: m = 5).

To better characterize the behavior of each code, especially in the non-asymptotic case, we
report in Figure 13 the ratio of the number of compressible strings of the enumerative to the
NML code, for m = 2 (Bernoulli), m = 3 and m = 5. Empirically, beyond the non-asymptotic
case, this ratio converges to a constant that increases with m: around 1.6 for m = 2, 2.5 for
m = 3 and above 5 for m = 5. We expect that this empirical behavior generalizes for larger
m, but empirical evaluation is not feasible for large m, even for small n. On the other hand,
studying the asymptotic behavior of this ratio is a non trivial task, beyond the scope of this
paper.
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6.7 Detection of a biased dice

We apply the previous multinomial codes to the problem of detection of a biased dice. A fair
dice is a randomizing device with m outcomes that are equally likely to occur, which can be
modeled using a multinomial process with equidistributed θj = 1

m
. Among all the possibilities

of bias, we choose a simple family of peaked multinomial distributions, like those presented in
Section 6.4. A peak biased dice is then determined by one single parameter θbias >

1
m

, with

θ1 = θbias and θj = 1−θbias
m−1

, ∀j, 1 ≤ j ≤ m.
The problem is to determine whether a dice is biased given a limited sample of multinomial

trials. Given a sample xn, we compute the coding length of this sample using either the NML
or the enumerative code and decide that the dice is biased if its coding length is shorter than
that of the random code (n logm). For a given size n and a code (e.g. enumerative or NML),
we compute the probability of detecting the biased dice by averaging the detection over all
the possible samples of size n. Formally, we thus compute:

probD(θbias, n) = EM(θbias)

(
1{

L
(
θ̂(xn),xn

)
<n logm

}) (66)

=
∑

{n1+...+nm=n}

n!

n1!n2! . . . nm!
θn1
bias(

1− θbias
m− 1

)n−n11{
L
(
θ̂(xn),xn

)
<n logm

}.
The issue is to be able to detect a biased dice with the minimum sample size. Using

Formula 66, we then determine the first value of n where the probability of detecting the
biased dice is beyond 50%:

n D(θbias) = min
n≥10
{probD(θbias, n) ≥ 50%}. (67)
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Figure 14: Minimum sample size to detect a biased dice (left: m = 3; right: m = 5) with
probability greater than 50%.

Figure 14 shows the detection thresholds computed using the NML or enumerative codes
for dices with m = 3 and m = 5. As expected, the minimum number of trials necessary to
detect a biased dice increases when θbias decreases. Although all the thresholds are quite
close, the enumerative code always needs smaller sample sizes to detect the biased dice. For
example, for m=5, the enumerative code needs around 40% less samples than the NML code
to detect a biased dice with θbias ≈ 0.3. According to the experiment, the relative difference
decreases as the detection threshold increases, but this could not be studied further for heavy
computational reasons.

6.8 Biased versus fair dice classification

Like in the case of Bernoulli distributions, the enumerative code compresses most m-ary
strings slightly better than the NML code, resulting in a better sensitivity to biased dices
at the expense of more false detections in case of fair dices. Interestingly, the difference of
behavior between the two codes increases for larger m.
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We do not extend the coin classification experiment (see Section 4.9) to dices, because
there are multiple free parameters to define biased dice and because the calculation of the
expectation of accuracy is too computationally intensive. Still, we expect that the results
might be similar, with overall a similar behavior w.r.t. the detection of biased dice, but
better detection for the enumerative code in the non asymptotic case for small bias.

7 Conclusion

In this paper, we have revisited the enumerative two-part crude MDL code for the Bernoulli
model, which compares favorably with the alternative standard NML code. We have suggested
a Bayesian interpretation of the enumerative code, that relies on models for finite size samples
and results in a discrete definition of the likelihood of the data given the model parameter. We
have shown that the coding length of the model parameter is exactly the same as the model
complexity computed by applying the NML formula using the definition of the enumerative
maximum likelihood. This means that the enumerative code is both a one-part and two part
code, which brings parametrization independence, optimality and simplicity. Surprisingly,
the obtained parametric complexity is twice that of the alternative classical NML code or
the standard BIC regularization term. The enumerative code has a direct interpretation in
terms of two part codes for finite sample data. The model parameter is encoded using a
uniform prior w.r.t. the sample size and the data are also encoded using a uniform prior
among all the binary strings of given size that can be generated using the model parameter.
This explains why the enumerative code provides a more parsimonious encoding of the data
given the parameter, which compensates the larger model complexity term. Experimental
comparisons between the enumerative and NML codes show that they are very similar, with
small differences only. Under the uniform distribution, the enumerative code compresses the
data slightly better on average than the NML code. An application to the detection of biased
coins demonstrates that the enumerative code has a better sensitivity to biased coins at the
expense of more false detections in case of fair coins, but the differences are small and vanish
asymptotically.

Extension to the multinomial model is also presented. Using the same approach, we obtain
a very simple and interpretable analytic formula for the parametric complexity term, that
once again is approximately twice that of the alternative classical NML code or the standard
BIC regularization term. The resulting code, both one-part and two-part, is optimal w.r.t.
NML approach and parameterization invariant, with a much simpler parametric complexity
term that is surprisingly twice that of the alternative NML code. It compresses most strings
better than the “standard” NML code with a constant margin and extremely few heavily
unbalanced strings with a margin logarithmic in the sample size. Experimental comparisons
extend the results obtained with Bernoulli distributions. Both codes are very similar, with
small differences that roughly increase linearly with the number of model parameters.

Altogether, the theoretical and experimental results suggest that one might use the enu-
merative code rather than NML in practice, for Bernoulli and multinomial distributions.
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Boullé, M. (2011). Data grid models for preparation and modeling in supervised learning. In
Guyon, I., Cawley, G., Dror, G., and Saffari, A., editors, Hands-On Pattern Recognition:
Challenges in Machine Learning, volume 1, pages 99–130. Microtome Publishing.

De Rooij, S. and Grünwald, P. (2009). Luckiness and regret in minimum description length
inference.

Grünwald, P. (2007). The minimum description length principle. Adaptive computation and
machine learning. MIT Press.

23
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