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Abstract 

In supervised machine learning, some algorithms are restricted to discrete data 
and thus need to discretize continuous attributes. In this paper, we present a new 
discretization method called MODL, based on a Bayesian approach. The MODL 
method relies on a model space of discretizations and on a prior distribution 
defined on this model space. This allows setting up an evaluation criterion of 
discretization, which is minimal for the most probable discretization given the 
data, i.e. the Bayes optimal discretization. We compare this approach with the 
MDL approach and statistical approaches used in other discretization methods, 
from a theoretical and experimental point of view. Extensive experiments show 
that the MODL method builds high quality discretizations. 
Keywords: supervised learning, data preparation, discretization, bayesianism. 

1 Introduction 

While real data often comes in mixed format, discrete and continuous, many 
induction algorithms rely on discrete attributes and need to discretize continuous 
attributes, i.e. to slice their domain into a finite number of intervals. More 
generally, using discretization to preprocess continuous attribute often provides 
many advantages. Discrete values are generally more understandable than 
continuous values both for users and experts. Many classification algorithms are 
more accurate and run faster when discretization is used. 
Discretization of continuous attributes is a problem that has been studied 
extensively in the past [6, 7, 9, 12, 16]. For example, decision tree algorithms 
exploit a discretization method to handle continuous attributes. C4.5 [13] uses 
the information gain based on Shannon entropy. CART [5] applies the Gini 



criterion (a measure of the impurity of the intervals). CHAID [10] relies on a 
discretization method close to ChiMerge [11]. 
Most discretization methods are divided into top-down and bottom-up methods. 
Top-down methods start from the initial interval and recursively split it into 
smaller intervals. Bottom-up methods start from the set of single value intervals 
and iteratively merge neighboring intervals. Some of these methods require user 
parameters to modify the behavior of the discretization criterion or to set up a 
threshold for the stopping rule. In the discretization problem, a compromise must 
be found between information quality (homogeneous intervals in regard to the 
attribute to predict) and statistical quality (sufficient sample size in every interval 
to ensure generalization). The chi-square-based criteria focus on the statistical 
point of view whereas the entropy-based criteria focus on the information point 
of view. Other criteria (such as the Gini criterion used in CART) try to find a 
trade off between information and statistical properties. The Minimum 
Description Length Principle Cut (MDLPC) criterion [8] is an original approach 
that attempts to minimize the total quantity of information both contained in the 
model and in the exceptions to the model. 
In this paper, we present a new discretization method called MODL. This 
method is founded on a Bayesian approach to find the most probable 
discretization model given the data. We first define a general family of 
discretization models, and second propose a prior distribution on this model 
space. This leads to an evaluation criterion of discretizations, whose 
minimization conducts to the optimal discretization. We use a greedy bottom-up 
algorithm to optimize this criterion. The method starts the discretization from the 
elementary single value intervals. It evaluates all merges between adjacent 
intervals and selects the best one according to MODL criterion. As the 
discretization problem has been turned into a minimization problem, the method 
automatically stops merging intervals as soon as the evaluation of the resulting 
discretization does not decrease anymore. Extensive experiments show that the 
MODL method produces high quality discretizations that are both compact and 
accurate. 
The remainder of the paper is organized as follows. Section 2 describes the 
MODL method. Section 3 proceeds with an extensive experimental evaluation. 

2 The MODL discretization method 

In this section, we present the MODL approach which results in a Bayes optimal 
evaluation criterion of discretizations and the greedy heuristic used to find a 
near-optimal discretization. 

2.1 Evaluation of a discretization model 

The objective of the discretization process is to induce a list of intervals that split 
the numerical domain of a continuous explanatory attribute. The data sample 
consists of a set of instances described by pairs of values: the continuous 
explanatory value and the class value. 



Let n be the number of instances in the data sample, and let J be the number of 
classes. If we sort the instances according to the continuous values, we obtain a 
string S of class values. On the basis of these notations, we propose the following 
formal definition of a discretization model. 
 
Definition: A standard discretization model is defined by the following 
properties: 

1. the discretization model relies only on the order of the class values in 
the string S, without using the values of the explanatory attribute, 

2. the discretization model allows to split the string S into a list of 
substrings (the intervals), 

3. in each interval, the distribution of the class values is defined by the 
frequencies of the class values in this interval. 

Such a discretization model is called a SDM model. 
 
Notations: 

I: number of intervals 
ni: number of instances in the interval i 
nij: number of instances of class j in the interval i 

A SDM model is defined by the parameters { { } { }
JjIiijIii nnI
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This definition is very general, and most discretization methods rely on SDM 
models. They first sort the samples according to the attribute to discretize 
(property 1) and try to define a set of intervals by partitioning the string of class 
values (property 2). The evaluation criterion is always based on the frequencies 
of class values (property 3). 
In the Bayesian approach, the best model is found by maximizing the probability 
( DataModelP

 (P
)

)
of the model given the data. Using the Bayes rule and since the 

probability  is constant under varying the model, this is equivalent to 
maximize 

Data
( ) ( )ModelDataPModelP . 

Once a prior distribution of the models is fixed, the Bayesian approach allows to 
find the optimal model of the data, provided that the calculation of the 
probabilities  and (ModelP ) ( )ModelDataP  is feasible. We define below a 
prior which is essentially a uniform prior at each stage of the hierarchy of the 
model parameters. We also introduce a strong hypothesis of independence of the 
distribution of the class values. This hypothesis is often assumed (at least 
implicitly) by many discretization methods, that try to merge similar intervals 
and separate intervals with significantly different distributions of class values. 
This is the case for example with the ChiMerge discretization method [11], 
which merges two adjacent intervals if their distributions of class values are 
statistically similar (using the chi-square test of independence).  
 
Definition: The following distribution prior on SDM models is called the three-
stage prior: 

1. the number of intervals I is uniformly distributed between 1 and n, 



2. for a given number of intervals I, every division of the string to 
discretize into I intervals is equiprobable, 

3. for a given interval, every distribution of class values in the interval is 
equiprobable, 

4. the distributions of the class values in each interval are independent 
from each other. 

 
We proved the following theorem in [4], on the basis of the exact calculation of 
the probabilities in the Bayes formula, using all the hypotheses related to the 
SDM discretization models and the three-stage prior. 
 
Theorem: A SDM model M distributed according to the three-stage prior is 
Bayes optimal for a given set of instances to discretize if the value of the 
following criterion is minimal on the set of all SDM models: 
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The first term of the criterion in eqn 1 stands for the choice of the number of 
intervals and the second term for the choice of the bounds of the intervals. The 
third term corresponds to the choice of the class distribution in each interval and 
the last term encodes the probability of the data given the model. 

2.2 Search algorithm 

Optimized greedy bottom-up merge algorithm: 
- Initialization 

- Sort the explanatory values: O(n.log(n)) 
- Create an initial interval for each value: O(n) 
- Compute the initial discretization value: O(n) 
- Compute the ∆values related to all the possible merges: O(n) 
- Sort the possible merges: O(n.log(n)) 

- Optimization of the discretization 
   Repeat the following steps: at most n steps 

- Search for the best possible merge: O(1) 
- Merge and continue if the best merge decreases the 

discretization value 
- Compute the ∆values of the two intervals adjacent to the 

merge: O(1) 
- Update the sorted list of merges: O(log(n)) 

 
Once the optimality of the evaluation criterion is established, the problem is to 
design an efficient minimization algorithm. The MODL method uses a greedy 
bottom-up merge algorithm to perform this optimization. It starts with initial 
single value intervals and then searches for the best merge between adjacent 
intervals. This merge is performed if the evaluation of the discretization 
decreases after the merge, and the process is reiterated until no further merge can 
decrease the criterion. 



A straightforward implementation of the algorithm runs in O(n3) time. In an 
initialization step, the explanatory attribute values must be sorted: this requires 
O(n.log(n)) time. Then, the merge process is repeated at most n times. At each 
merge step, the MODL criterion is computed for every merge of adjacent 
intervals (at most n intervals), and the best one is used to evaluate the stopping 
rule. The MODL criterion is based on eqn 1 and requires at most n computing 
steps to evaluate all the intervals in the discretization resulting from a merge. All 
in all, the optimization process thus requires O(n3) time. 
However, the method can be optimized in O(n.log(n)) time owing to an 
algorithm similar to that presented in [3]. The MODL criterion can be partly 
decomposed on the intervals. It consists of a partition cost (first two terms in eqn 
1) and of a sum of interval costs (last two terms in eqn 1). Minimizing the value 
of the discretization after one merge is the same as maximizing the related 
variation of value ∆value. Owing to the additivity of the criterion on the 
intervals, each ∆value resulting from the merge between two adjacent intervals 
can be evaluated using the two local intervals, without scanning all the other 
intervals. The intervals costs can be kept into memory during the optimization 
process in order to speed up the evaluation of the merges. The merge ∆values 
can also be kept in memory and sorted in a maintained sorted list (such as an 
AVL binary search tree for example). After a merge is completed, the interval 
costs and the merge ∆values need to be updated only for the new interval and its 
adjacent intervals to prepare the next merge step. All in all, the optimized 
algorithm requires O(n.log(n)) time. 

3 Experiments 

In our experimental study, we compare the MODL method with the following 
supervised and unsupervised discretization algorithms: 

- MDLPC [8] 
- ChiMerge [11] 
- ChiSplit [1] 
- Equal Frequency 
- Equal Width 

The MDLPC discretization method is inspired from the MDL approach [14]. It 
focuses on the selection of a local model restricted to a single interval, 
comparing two hypotheses: to cut or not to cut the interval. The "not cut" 
hypothesis requires the encoding of the distribution of the classes plus the 
effective classes in the interval given their distribution. The "cut" hypothesis 
requires the encoding of the position of the cut point in addition to the encoding 
of the two sub-intervals. The MDL principle is used to select the best hypothesis. 
This optimal split schema is then applied recursively in a greedy top-down 
algorithm in order to produce multi-interval discretizations. 
The main differences between the MODL and the MDLPC methods are the 
approach (Bayesian versus MDL), the locality of the evaluation criterion (global 
to the set of intervals versus local to two intervals) and the optimization heuristic 
(bottom-up versus top-down). For a close examination of the differences 



between the MDL approach and the Bayesian approach in model selection, see 
[15] for example. 
The ChiMerge and ChiSplit methods exploit exactly the same evaluation 
criterion. They just differ in the direction of the algorithm: bottom-up merge 
heuristic versus top-down split heuristic. The criterion is the chi-square test 
applied to two adjacent intervals to decide whether their class distribution is 
statistically similar. The ChiMerge method starts from the set of single value 
intervals and iteratively merges neighboring intervals while they are statistically 
similar. The ChiSplit method starts from the initial interval containing all the 
values and recursively splits it into smaller intervals while the intervals can be 
cut into two statistically different sub-intervals. In the experiment, the 
significance level is set to 0.95 for the chi-square test threshold. 
The Equal Frequency and Equal Width unsupervised discretization methods are 
evaluated for comparison purposes. The number of intervals is set to 10. 
We gathered 15 datasets from U.C. Irvine repository [2], each dataset has at least 
one continuous attribute and at least a few tens of instances for each class value 
in order to perform reliable tenfold cross-validations. Table 1 describes the 
datasets; the last column corresponds to the relative frequency of the majority 
class. 

Table 1:  Datasets. 

Data Set Cont. 
Attr. 

Disc. 
Attr. 

Size Class
Nb. 

Maj.  
Acc. 

Adult 7 8 48842 2 76.07 
Australian 6 8 690 2 55.51 
Breast 10 0 699 2 65.52 
Crx 6 9 690 2 55.51 
German 24 0 1000 2 70.00 
Heart 10 3 270 2 55.56 
Hepatitis 6 13 155 2 79.35 
Hypothyroid 7 18 3163 2 95.23 
Ionosphere 34 0 351 2 64.10 
Iris 4 0 150 3 33.33 
Pima 8 0 768 2 65.10 
SickEuthyroid 7 18 3163 2 90.74 
Vehicle 18 0 846 4 25.77 
Waveform 21 0 5000 3 33.92 
Wine 13 0 178 3 39.89 

 
In order to evaluate the intrinsic performance of the discretization methods and 
eliminate the bias of the choice of a specific induction algorithm, we use the 
protocol presented in [3], where each discretization method is considered as an 
elementary inductive method that predicts the local majority class in each 
learned interval. The discretizations are evaluated for two criteria: accuracy and 
interval number. 



The discretizations are performed on the 181 continuous attributes of the 
datasets, using a stratified tenfold cross-validation. We have re-implemented the 
alternative discretization methods in order to eliminate any variance resulting 
from different cross-validation splits. In order to determine whether the 
performances are significantly different between the MODL method and the 
alternative methods, the t-statistics of the difference of the results is computed. 
Under the null hypothesis, this value has a Student’s distribution with 9 degrees 
of freedom. The confidence level is set to 5% and a two-tailed test is performed 
to reject the null hypothesis. 
The whole result tables are too large to be printed in this paper. The results are 
summarized in table 2, which reports the mean of the accuracy and interval 
number per attribute discretization and the number of significant MODL wins 
and losses. Except for the ChiMerge method, the supervised discretization 
methods perform significantly better than the unsupervised methods. The 
accuracy results allow clustering the methods in three groups. The leading group 
consisting of the MODL and ChiSplit methods is followed by the intermediate 
group restricted to the MDLPC method and then by the last group containing the 
ChiMerge method and the unsupervised methods. The average accuracy 
difference between the leading group and the MDLPC method is larger than the 
difference between the MDLPC method and the unsupervised Equal Frequency 
Method. Although the MODL criterion is Bayes optimal assuming the three-
stage prior, its search algorithm exploits a greedy heuristic that may fall in a 
local optimum. This explains why the ChiSplit method obtains slightly better 
accuracy results than the MODL method. 

Table 2:  Discretization results. 

 Test Accuracy  Interval Number 
 Mean MODL wins  Mean MODL wins 
MODL 68.5   3.8  
MDLPC 68.0 14/6  3.2 9/46 
ChiMerge 67.5 32/9  66.1 160/0 
ChiSplit 68.6 5/11  7.2 148/1 
Equal Frequency 67.7 33/16  7.3 164/7 
Equal Width 67.1 40/12  8.5 173/4 

 
In order to analyze the differences of accuracy for the 181 attributes with more 
details, figure 1 shows the repartition function of the differences of accuracy 
between the MODL methods and the other discretization methods. 
On the left of the figure, the MODL method is dominated by the other methods 
and, on the right, it outperforms the other algorithms. For about 40% of the 
attributes (between x-coordinates 20 and 60), all the discretization methods 
obtain equivalent results. Compared to the MDLPC method, the MODL method 
is between 0 and 3% less accurate in about 10% of the discretizations, but is 
between 3 and 10% more accurate in about 10% of the discretizations. The 
average difference of 0.5% is thus significant and reflects potential large 
differences of accuracy on individual attributes. 
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Figure 1. Differences of accuracy of the discretizations. 

 
In order to analyze both the accuracy and interval number results, we reported 
the mean results on a two-criteria plan in figure 2, with the accuracy on the x-
coordinate and the interval number on the y-coordinate. 
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Figure 2. Bi-criteria evaluation of the discretization methods 

for the test accuracy and the interval number. 
 
In bi-criteria analysis, a solution dominates (or is non-inferior to) another one if 
it is better for both criteria. A solution that cannot be dominated is Pareto 
optimal: any improvement on one of the criteria causes deterioration on another 
criterion. The Pareto curve is the set of all the Pareto optimal solutions. The 
three methods MDLPC, MODL and ChiSplit are Pareto optimal and clearly 
dominate the other methods. The MDLPC method builds discretizations with 
small interval numbers, but is outperformed by the two most accurate MODL 
and ChiSplit methods. The ChiSplit method produces accurate discretizations at 



the expense of twice the number of intervals obtained by the MODL and 
MDLPC methods. The MODL method produces discretizations that are both 
accurate and compact. 
All the supervised discretization methods run in super-linear time. Since the 
interval splits are searched only on the boundary points (far less numerous on 
average than the instance values), the discretization time is dominated by the 
initialization step where the instances are sorted according to the explanatory 
values. Hence, discretization speed was not a discriminating criterion for the 
tested methods. 

Conclusion 

The MODL method is a direct application of Bayesianism for the problem of 
model selection in the discretization field. For a given space of discretization 
models and a given prior distribution on this model space, the MODL evaluation 
criterion allows finding the Bayes optimal discretization. The closest 
discretization method is the MDLPC method. We have pointed out the 
differences between the MODL and the MDLPC methods from a theoretical 
point of view. The main differences come from the model selection approach, the 
locality of the evaluation criterion and the optimization heuristic. Comparative 
experiments with several supervised and unsupervised discretization methods 
show that the MODL method produces accurate and compact discretizations. 
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