
Universal Approximation
of Edge Density in Large Graphs

Marc Boullé
Orange Labs

22300 Lannion, France
Email: marc.boulle@orange.com

Abstract—In this paper, we present a novel way to summarize
the structure of large graphs, based on non-parametric estimation
of edge density in directed multigraphs. Following coclustering
approach, we use a clustering of the vertices, with a piecewise
constant estimation of the density of the edges across the
clusters, and address the problem of automatically and reliably
inferring the number of clusters, which is the granularity of
the coclustering. We use a model selection technique with data-
dependent prior and obtain an exact evaluation criterion for
the posterior probability of edge density estimation models.
We demonstrate, both theoretically and empirically, that our
data-dependent modeling technique is consistent, resilient to
noise, valid non asymptotically and asymptotically behaves as
an universal approximator of the true edge density in directed
multigraphs. We evaluate our method using artificial graphs and
present its practical interest on real world graphs. The method is
both robust and scalable. It is able to extract insightful patterns
in the unsupervised learning setting and to provide state of the
art accuracy when used as a preparation step for supervised
learning.

I. INTRODUCTION

With the recent availability of much network data, such as
world wide web, social networks, phone call networks, science
collaboration graphs [1], [2], there is a renewed interest for
the graph partitioning problem, especially for the automatic
discovery of community structures in large networks [3], [4],
[5]. Beyond clustering approaches, coclustering approaches
aim at summarizing the relation between two entities in a
many-to-many relationship. Such a relation can be represented
as a graph, where the source and target vertices represent
entities and the edges stand for relations between entities. A
coclustering model provides a summary of a graph by grouping
source vertices and target vertices. For example, in market
analysis, the source vertices of the graph represent customers,
the target vertices represent products and there is one edge
each time a customer has purchased a product. A coclustering
model summarizes the dataset by grouping customers that
have purchased approximately the same products and grouping
products that have been purchased by approximately the same
customers. Coclustering models have been applied to many
other domains, such as information retrieval (the entities are
documents and their words in a text corpus), web log analysis
(cookies and their visited web pages), web structure analysis
(web pages with hyper-links between them) or telecommuni-
cation network (the call detail records stand for the edges in
a call graph between a caller and a called party). All these
real-world graphs are directed multigraphs, meaning that two
entities may be linked by multi-edges. We aim to summarize

and discover insightful patterns in such graphs, using a method
with the desired following properties:

1) Robustness, to avoid detecting spurious patterns in
case of noisy data.

2) Non asymptotic validity, to be able to detect reliable
patterns with as few data as possible.

3) Asymptotic convergence to the true underlying dis-
tribution when it exists.

4) Parameter less 1 , with no user parameters to set.
5) Scalable, to process large graphs.

In this paper, we present a novel way of analyzing and
summarizing the structure of large graphs, based on piecewise
constant edge density estimation. We apply data grid models
[6] to graph data, where each edge is considered as a statistical
unit with two variables, the source and target vertices. The
objective is to find a correlation model between the two
variables by the means of a data grid model, which in this
case turns out to be a coclustering of both the source and
target vertices of the graph. The cells resulting from the cross-
product of the two clusterings summarize the edge density
in the graph. The best correlation model is selected using
the MODL approach [7], and optimized by the means of
combinatorial heuristics with super-linear time complexity. The
MODL approach is an application of the Minimum Description
Length (MDL) principle [8], specialized in the following way:
use of hierarchical prior uniform at each stage of the hierarchy
of the model parameters, use of discrete model parameters
that are data dependent and use of combinatorial optimization
algorithm to find the MAP (Maximum a Posteriori) model.

Compared with our previous work that introduced data
grid models [6], we suggest a new interpretation of these
models as universal density estimators and apply them to
directed multigraphs, with potential loops and multi-edges,
by considering these graphs as distributions of edges with
unknown density. We also show that in our model selection
approach, the finite data sample is modeled directly, with a
data-dependent prior distribution of the model parameters: this
provides a non-asymptotic validity of the method. Further-
more, we demonstrate new fundamental results that prove the
consistency of the approach, with an asymptotic convergence
to the true underlying distribution when it exists. Finally,
we relate our method to existing approaches and present
extensive comparative experiments. Throughout the paper, all

1Parameter-less means that there are no user parameter or hyper-parameter
to set and that the model parameters are automatically inferred during the
training process.

ar
X

iv
:1

50
8.

01
34

0v
1

 [
cs

.S
I]

 6
 A

ug
 2

01
5

the experiments are performed on a Windows PC with Intel
Xeon W3530 2.8 Ghz, using the Khiops 2 software for the
graph coclusterings based on our approach.

The rest of the paper is organized as follows. Section II
explores related work. Section III reformulates the MODL
method for data grid models in terms of finite data sample
modeling and applies it to graphs. Section IV introduces the
problem of edge density estimation, demonstrates the asymp-
totically consistency of the MODL approach, and provides
experimental results regarding the convergence rate. Section V
points out the differences between our approach and three
alternative methods, using artificial datasets in controlled com-
parative experiments. Section VI shows that our method can
be used both for exploratory analysis and as a preparation step
for supervised learning, using three real world datasets. Finally,
Section VII gives a summary and suggests future work.

II. RELATED WORK

Many approaches aiming at summarizing and finding struc-
tures in graphs have been proposed in the literature. In this
section, we discuss several of these approaches and relate them
to our approach.

A. Graph clustering

Many approaches have been studied for the problem of
graph clustering, including hierarchical clustering, divisive
clustering, spectral methods, random walk (for a survey, see
[9], [10]). To evaluate the quality of a clustering [11] regardless
of the cluster number, the modularity criterion [12] is now
widely accepted in the literature and has even been treated as
an objective function in clustering algorithms [13], [3]. This
criterion aims to obtain dense clusters where the within-cluster
edge density is significantly above the expected edge density
in case of random edges following the same vertex degree
distribution. Actually, not all graphs follow a cluster tendency
[14], with a structure consisting of natural clusters. Yet, all
clustering algorithms output a partition into clusters for any
input graph. While the clustering setting is relevant in many
domains, our approach does not rely of such cluster tendency
assumption and may have a wider range of application. This
is illustrated experimentally in Section V-A.

B. Blockmodeling

More expressive graph models aim at searching a partition
of both the source and target vertices into clusters, with
different types of interaction between clusters. The cross-
product of the two partitions of vertices form a partition of
the edges into blocks or coclusters. This modeling approach
is called blockmodeling and has been thoroughly studied
for decades. In early approaches [15], [16], non-stochastic
blocks are considered, with a focus on predefined types of
block patterns. The blockmodel is searched either indirectly
using a (dis)similarity measure between pairs of vertices and
then applying a standard clustering algorithm, or directly by
optimizing an ad hoc function measuring the fit of real blocks
to the corresponding predefined types of blocks. The limit of

2Khiops is a general purpose data preparation and scoring tool available as a
shareware at http://www.khiops.com, which implements the MODL approach
described in Section III.

these approaches is that they do not cope with the stochastic
nature of many real world datasets.

C. Stochastic blockmodeling

Using the framework of the exponential family, stochastic
blockmodels are introduced by Holland et al. [17], with
blocks still specified a priori. The approach is extended by
Wasserman and Anderson [18] to the discovery of block
structure and exploits a statistical criterion, e.g. likelihood
function, optimized using the EM algorithm. The method of
Snijders and Nowicki [19] considers blockmodels where the
edge probabilities depend only on the blocks to which the
vertices belong. The considered models are limited to two
blocks, and searched via maximum likelihood estimation using
the EM algorithm for small graphs and via Bayesian Gibbs
sampling for larger graphs. The blockmodels are broadened to
an arbitrary number of blocks [20], and optimized via Monte
Carlo Markov Chain (MCMC) Bayesian inference. Karrer and
Newman [21] propose to include the degree distribution of
the vertices as a correction to the blockmodels in order to
better fit real world graphs. For a survey on recent work on
stochastical blockmodeling via maximum likelihood methods,
see [22]. In the connected approach named “mixed member-
ship blockmodels” [23], the mixture models are approximated
owing to variational methods, which offer better scalability
at the expense of approximating the objective function. Non-
parametric extensions of the stochastic blockmodeling ap-
proach have also been considered. In [24], a Dirichlet process
is exploited as a prior for partitions of any size, to cluster
both the source and target vertices of a directed simple graph,
where the edges within each block are generated according to
a Bernouilli distribution. Still, hyper-parameters are required
in these approaches, such as the concentration parameter in
the Dirichlet process, which influences the expected number
of clusters in the non-asymptotic regime. Our approach is
closely related to non-parametric 3 stochasticl blockmodeling
approaches. It differs from existing approaches on the main
following points: it is not restricted to simple graphs, the model
selection method exploits a MAP (maximum a posteriori)
approach with an exact analytical criterion, not a Bayesian
approach aiming at approximating the posterior distribution of
the models, it is parameter-less, with no user parameter to set,
and it exploits scalable optimization heuristics. A comparative
experiment with a statistical block modeling method is pre-
sented in Section V-B.

D. Coclustering

A directed multigraph is fully described by its adjacency
matrix, where each entry of the matrix contains the number of
edges between a source vertex (in a row) and a target vertex (in
a target). This is equivalent to the contingency table between
two categorical variables in a dataset. Such contingency tables
can be summarized using coclustering methods. In the applied
mathematics field, the seminal work of [26] treats the problem
of coclustering of a numerical matrix, by looking at a partition
of the rows and columns of the matrix. In the data mining field,
in case of binary variables, this technique has been applied to
the simultaneous partitioning of the instances into clusters and

3Here, we use the term non-parametric like in [25] for models where the
number of parameters is not fixed and may grow with the sample size.

http://www.khiops.com

of the variables into groups of variables [27], with methods like
[28] closely related to the stochastic blockmodeling approach.
Coclustering has also been applied to the domain of gene
expression data [29], [30] by minimizing the sum squared
residue to approximate a numerical matrix. The method of
[31] optimizes a minimum loss of information to summarize a
binary distance, with an application to text mining. While most
approaches require the number of row and column clusters
as user parameters, the method of [32] is parameter-less,
by directly optimizing the Goodman-Kruskal’s τ measure of
association between two categorical variables. Like the method
of [32], our approach focuses on contingency tables containing
frequency data and is parameter-less. However, our method,
being fully regularized, is both resilient to over-fitting and able
to approximate the true joint distribution when it exists.

E. Minimum description length based methods

In the method of [33], the MDL principle [8], [34] is
employed for the inference of the whole set of blockmodel
parameters, including the number of blocks, in case of directed
simple graphs. Using a two-part scheme for encoding for the
model parameters and the data given the model, a parameter-
less regularized criterion is obtained, inheriting from the MDL
method’s resistance to over-fitting. The criterion is optimized
using a greedy top-down heuristic, by adding one cluster at a
time from a single-cluster initial model, and optimizing each
coclustering model by moving values across clusters. In [35],
the MDL method of [33] is extended to the case of spatial data
mining. The method of [36] is dedicated to undirected simple
graph, and the objective function is optimized using simulated
annealing. Following these MDL methods, several encoding
schemes are explored in [37] in the case of undirected simple
graph to study their resistance to over-fitting. A fast multi-
level algorithm is exploited to generate candidate partitions
of the vertices of varying sizes, with a focus on the single
versus multiple cluster question. The study shows that earlier
approaches tend to over-fit the data with more than one cluster
in case of random graphs, especially in case of skewed degree
distribution of the vertices. The early method of [33], which
applies to directed simple graphs, is the closest to our method.
The main differences are that our method (1) can be applied to
directed multigraph, (2) relies on an exact analytical criterion
without any asymptotic approximation (such as using empirical
entropies to encode the data, like in previous MDL-based
methods), (3) is valid both in the non-asymptotic and asymp-
totic case, and (4) exploits a bottom-up greedy optimization
heuristic. The impact of these differences both on artificial
and real-world datasets is assessed in Sections V-C and VI.

F. Alternative binary matrix summarization approaches

Other approaches have been proposed to extract patterns
from binary datasets. For example, a tile [38] is a region of
a database defined by a subset of rows and columns with a
high density of 1, and a collection of tiles constitutes a tiling.
A tile is then closely related to one single dense cocluster,
and a tiling to a coclustering, although the tiling is not a
partition of the database. In [39], [40], the maximum entropy
principle [41] is applied with row and columns marginals as
prior information, leading to an interestingness measure of
tiles and a method for extracting a tiling. In [42], the same

framework is applied for extracting multi-relational patterns:
by representing multi-relational data as a K-partite graph, ex-
tracting complete connected subgraphs reduces to the problem
of extracting tiles. Coclustering has also been extended by
considering a hierarchy of coclustering, where each cocluster
is itself partitioned into a set of sub-coclusterings. In [43],
the MDL method of [33] is extended to find such patterns
automatically, whereas in [44], the problem is treated using
the Mondrian process, a multidimensional generalization of the
Dirichlet process. Tiling has also been extended to hierarchies
of tiling in [45]. In [46], a binary matrix is decomposed
as a product of Boolean factor matrices; extending standard
matrix factorization methods, the proposed approach allows
a better interpretability of the extracted patterns. Compared
with these alternative pattern extraction approaches in binary
matrices, our method focuses on the problem of coclustering
of a contingency matrix (or adjacency matrix of a directed
multigraph), which is a matrix of counts.

III. MODL APPROACH FOR GRAPHS

Data grid models [6] have been introduced for the data
preparation phase of the data mining process [47], which is
a key phase, both time consuming and critical for the quality
of the results. They allow one to automatically, rapidly and
reliably evaluate the class conditional probability of any subset
of variables in supervised learning and the joint probability
in unsupervised learning. Data grid models are based on a
partitioning of the values of each variable into intervals in the
numerical case and into groups of values in the categorical
case. The cross-product of the univariate partitions forms a
multivariate partition of the representation space into a set of
cells. This multivariate partition, called the data grid, can be
interpreted as a piecewise constant non-parametric estimator
of the conditional or joint probability. The best data grid is
searched using a MAP approach and efficient combinatorial
heuristics. The method is non-parametric in the statistical
sense, since it does not rely on the assumption that the data
are drawn from a given probability distribution. It is also
parameter-less, since all the model parameters, which number
grows with the sample size, are automatically inferred without
any user parameter.

A. Basic Notions of Graph Theory

A graph G = (V,E) consists of a set V of vertices and a
set E of pairs of vertices called edges. A graph is undirected
if the edges are unordered pairs of vertices, and is directed if
the edges are ordered. A loop is an edge from one vertex to
itself. A graph is simple in case of at most one edge per pair
of vertices, and is a multigraph otherwise.

Two vertices of an undirected graph are called adjacent if
there is an edge connecting them. An edge is incident to its
two vertices, called extremities. The degree of a vertex is the
number of edges incident to it. In case of directed graph, the
extremities of an edges are called the source and target vertices
of the edge, the in-degree of a vertex v is the number of edges
with target v, and the out-degree of v is the number of edges
with source v.

Graphs can be represented by their adjacency matrix,
where each cell of the matrix contains the number of edges

per pair of vertices. The adjacency matrix of simple graphs
contain only binary values, and that of undirected graphs is
symmetrical. Figure 1 displays an example of directed simple
graph. Figure 2 displays a directed multigraph with self-loops,
as well as it adjacency matrix and the in and out-degrees of
each vertex.

B. MODL Criterion for Graphs

We reformulate the data grid approach in the context of
edge density estimation in directed multigraphs. As shown in
Figure 1, a directed graph can be represented in a tabular
format with two variables, source vertex and target vertex,
and one line per edge described by its two vertices. We can
then apply the data grid models in the unsupervised setting to
estimate the joint density between these two variables, which
is the density of edges in the graph.

In this section, we formulate the approach as a modeling
of a finite data sample, where the model parameters aim to
summarize the edge counts in the sample.

A B

F

D
E

C

G

Source Target
A D
A F
B A
B C
B D
D G
F G
G E

Fig. 1. Directed simple graph and its tabular representation.

Let S and T be a source and target set of vertices, with
nS = |S| source vertices and nT = |T | target vertices, and let
G be a directed multigraph with m edges from S to T . Given
S, T and m, our objective is to provide a joint description of
the source and target vertices of the edges in the graph. One
simple way to describe the edges exploits the tabular format
shown in Figure 1, with the count of edges per pair (Source,
Target) of vertices. We can also summarize the location of
edges at a coarser grain by introducing clusters of source
vertices and clusters of target vertices, and considering the
number of edges per pair of source and target cluster (coclus-
ter). Such a coclustering model provides a summary of the
graph. The coarsest summary is based on one single cluster of
vertices with just the total number of edges, whereas the finest
summary exploits one cluster per vertex, with the number of
edges per pair of vertices. Coarse grained summaries tend to be
reliable, whereas fine grained summaries are more informative.
The issue is to find a trade-off between the informativeness of
the summary and its reliability, on the basis of the granularity
of the coclustering.

For given sets of source and target vertices S, T and a given
number of edges m (sample size), we exploit a family of graph
coclustering models, formalized in Definition 1.

Definition 1: A graph coclustering model is defined by:

• the numbers kS , kT of source and target clusters of
vertices,

• the partition of the nS source vertices into the kS
source clusters, resulting in nSi vertices per cluster,
1 ≤ i ≤ kS ,

• the partition of the nT target vertices into the kT target
clusters, resulting in nTj vertices per cluster, 1 ≤ j ≤
kT ,

• the distribution of the m edges of the graph G
on the kE = kSkT coclusters with edge counts
{mST

ij }1≤i≤kS ,1≤j≤kT per cocluster,

• for each source cluster of vertices i, 1 ≤ i ≤ kS ,
the distribution of the mS

i. edges originating in source
cluster i on the nSi vertices of the cluster, i.e. the out-
degrees {mi.}1≤i≤nS

per source vertex,

• for each target cluster of vertices j, 1 ≤ j ≤ kS ,
the distribution of the mT

.j edges terminating in target
cluster j on the nTj vertices of the cluster, i.e. the
in-degrees {m.j}1≤j≤nT

per target vertex.

TABLE I. NOTATION

S, T source and target vertex sets
nS = |S| number of source vertices
nT = |T | number of target vertices
G directed multigraph with edges from S to T
m number of edges in G
M graph coclustering model for given S, T,m
kS , kT number of clusters of source and target vertices
kE = kSkT number of coclusters of edges
mST

ij number of edges for cocluster (i, j)
mi. number of edges for source vertex i (out-degrees)
m.j number of edges for target vertex j (in-degrees)

nS
i number of vertices in source cluster i
nT
j number of vertices in target cluster j
mS

i. number of edges originating in source cluster i
mT

.j number of edges terminating in target cluster j
mij number of edges for pair (i, j) of vertices

This notation, summarized in Table I, is illustrated in
Figure 2, where a directed multigraph is displayed with its
adjacency matrix. A clustered version of this graph is presented
in Figure 3, which results in a coclustering of its adjacency
matrix.

A
B

F

D
E

C

G

A B C D E F G
∑

A 0 1 0 0 0 0 0 1
B 0 0 1 0 0 0 1 2
C 0 0 1 0 0 0 1 2
D 0 1 0 0 1 0 0 2
E 0 0 1 0 0 0 1 2
F 0 0 0 0 2 0 0 2
G 0 0 1 0 0 0 1 2∑

0 2 4 0 3 0 4 13

Fig. 2. Directed multigraph and its adjacency matrix. The numbers mij in
the adjacency matrix are the numbers of edges for each pair of vertices (for
example, two edges from F to E). The sums mi. on the right column are
the out-degrees of the vertices, and the sums m.j on the bottom line are the
in-degrees of the vertices. The total number of edges is on the bottom right
corner of the adjacency matrix.

We assume that the numbers of edges m and of source and
target vertices nS and nT are known in advance and we aim
to model the m edges of G between these two sets of vertices.
This setting is general enough to account for directed graphs,
bipartite graphs and undirected graph, where each edge comes
twice with the two directions.

The family of models introduced in Definition 1 is com-
pletely defined by the numbers kS and kT of clusters, the
partitions of vertices into clusters, the edge counts in each

A
B

F

D
E

C

G

S1 S2

T1
T2

T3

A D F B E C G
∑

A 0 0 0 1 0 0 0 1
D 0 0 0 1 1 0 0 2
F 0 0 0 0 2 0 0 2

B 0 0 0 0 0 1 1 2
E 0 0 0 0 0 1 1 2
C 0 0 0 0 0 1 1 2
G 0 0 0 0 0 1 1 2∑

0 0 0 2 3 4 4 13

T1 T2 T3
∑

S1 0 5 0 5

S2 0 0 8 8∑
0 5 8 13

Fig. 3. Directed multigraph with two source and three target clusters. The
adjacency matrix of the graph (reorganized by clusters) is presented on the
top-left, and that of the clustered graph at the bottom. The numbers mST

ij in
the clustered adjacency matrix are the numbers of edges for each cocluster
(for example, 5 edges from S1 to T2).

coclusters {mST
ij }1≤i≤kS ,1≤j≤kT , and the out- and in-degree

of each vertex {mi.}1≤i≤nS
, {m.j}1≤j≤nT

.

The numbers of vertices per cluster nSi and nTj are derived
from the specification of the partitions of vertices into clusters:
they do not belong to the model parameters. Similarly, the
numbers of edges originating or terminating in each cluster can
be deduced by adding the frequencies of coclusters, according
to mS

i. =
∑kT
j=1m

ST
ij and mT

.j =
∑kS
i=1m

ST
ij .

In order to select the best model, we apply a MAP
approach. We suggest the prior distribution of the model
parameters described in Definition 2, by applying the following
modeling choices: use of discrete rather than real-valued distri-
butions, of the “natural” hierarchy of the model parameters and
choice of uniform distributions at each level of the hierarchy,
to be as uninformative as possible.

Definition 2: The prior for the parameters of a graph
coclustering model are chosen hierarchically and uniformly at
each level:

• the numbers of clusters kS and kT are independent
from each other, and uniformly distributed between 1
and nS for the source vertices, between 1 and nT for
the target vertices,

• for a given number kS of source clusters, every parti-
tion of the nS vertices into kS clusters is equiprobable,

• for a given number kT of target clusters, every parti-
tion of the nT vertices into kT clusters is equiprobable,

• for a model of size (kS , kT), every distribution of the
m edges on the kE = kSkT coclusters is equiprobable,

• for a given cluster of source (resp. target) vertices,
every distribution of the edges originating (resp. ter-
minating) in the cluster on the vertices of the cluster
is equiprobable.

Finally, we now introduce the notion of consistency of a
graph coclustering model with a graph sample in Definition 3.

Definition 3: For given sets of vertices S, T and number
of edge m, a graph coclustering model M is consistent with
a graph sample G if and only if the edge counts {mST

ij },

{mi.}, {m.j} in the model are exactly the same as the related
empirical edges counts {MST

ij }, {Mi.}, {M.j} in the graph
sample.

A model which is not consistent with the data cannot
generate the data and obtains a null posterior probability. We
now focus on the posterior probability of consistent models to
obtain the evaluation criterion given in Theorem 1 [6].

Theorem 1: The negative log of the posterior probability of
a graph coclustering model M consistent with a graph sample
G, distributed according to a uniform hierarchical prior, is
given by

c(M) = log nS + log nT (1a)
+ logB(nS , kS) + logB(nT , kT) (1b)

+ log

(
m+ kE − 1

kE − 1

)
(1c)

+

kS∑
i=1

log

(
mS
i. + nSi − 1

nSi − 1

)
(1d)

+

kT∑
j=1

log

(
mT
.j + nTj − 1

nTj − 1

)
(1e)

+ logm!−
kS∑
i=1

kT∑
j=1

logmST
ij ! (1f)

+

kS∑
i=1

logmS
i.!−

nS∑
i=1

logmi.! (1g)

+

kT∑
j=1

logmT
.j !−

nT∑
j=1

logm.j ! (1h)

B(n, k) is the number of divisions of n elements into
k subsets (with potentially empty subsets). When n = k,
B(n, k) is the Bell number. In the general case, B(n, k) can
be written as B(n, k) =

∑k
i=1 S(n, i), where S(n, i) is the

Stirling number of the second kind [48], which stands for the
number of ways of partitioning a set of n elements into i
nonempty subsets.

Mainly, the evaluation criterion of Theorem 1 relies on
counting the number of possibilities for the model parameters
and for the data given the model. In Equation 1, line (1a) 4

relates to the prior distribution of the cluster numbers kS and
kT and line (1b) 5 to the specification of the partition of the
source (resp. target) vertices into clusters. These terms are the
same as in the case of the MODL supervised univariate value
grouping method [49]. Line (1c) 6 represents the specification
of the parameters of the distribution of the m edges on the
kE coclusters, followed in line (1d) (resp. line (1e)) by the
specification of the distribution of the edges originating (resp.
terminating) in each cluster on the vertices of the cluster. Line

4 For the choice of an integer parameter k uniformly distributed between 1
and n, we get p(k) = 1

n
, leading to − log k = logn.

5 For a partition of n elements into k subsets chosen unifomly among
B(n, k) possibilities, we get logB(n, k) terms in the criterion.

6 The number of positive integer parameters (n1, . . . , nk) with
∑k

i=1 ni =

n is
(n+k−1

k−1

)
.

(1f) 7 stands for the likelihood of the distribution of the edges
on the coclusters, by the means of a multinomial coefficient.
Finally, line (1g) (resp. line (1h)) corresponds to the likelihood
of the distribution of the edges originating (resp. terminating)
in each cluster on the vertices of the cluster.

As negative log of probabilities are code lengths, our model
selection technique is similar to a practical minimum descrip-
tion length principle [8], [34] with two-part MDL code. Our
method is valid non-asymptotically, since it directly encodes
the edge counts of the data sample. The inferred MAP model is
necessarily consistent with the data sample: it provides a valid
summary of the edge counts in the graph sample, but without
any asymptotic guarantee w.r.t. the underlying edge probability
distribution. In Section IV, we study the asymptotic behavior
of the approach as the number of edges in the data sample
goes to infinity, and demonstrate that it can be interpreted as
an edge density estimator with asymptotic convergence to the
true edge distribution when it exists.

C. Optimization Algorithm

Graph coclustering models are no other than data grid
models [6] applied to the case of joint density estimation
of the source and target vertices of the edges. The space of
data grid models is so large that straightforward algorithms
almost surely fail to obtain good solutions within a practicable
computational time. Sophisticated heuristics are described in
[6] to optimize the criterion c(M). They finely exploit the
sparseness of the adjacency matrix of the graph and the
additivity of the criterion, and allow a deep search in the model
space with O(m) memory complexity and O(m

√
m logm)

time complexity.

In this section, we give an overview of the optimization
algorithms which are fully detailed in [6], and rephrase them
using the graph terminology. The optimization of a data grid
is a combinatorial problem. The number of possible partitions
of n vertices is equal to the Bell number B(n) = 1

e

∑∞
k=1

kn

k! .
Even with very simple models having only two clusters of
source and target vertices, the number of models involves
2nS+nT coclusterings of the vertices. An exhaustive search
through the whole space of models is unrealistic. We describe
in Algorithm 1 a greedy bottom up merge heuristic (GBUM)
which optimizes the model criterion c(M). The method starts
with a fine grained model, with few vertices per source or
target cluster, up to the maximum model MMax with one
vertex per source or target cluster. It considers all the merges
between clusters (independently for the source and target sets
of vertices), and performs the best merge if the criterion
decreases after the merge. The process is reiterated until no
further merge decreases the criterion.

Each evaluation of the criterion for a model requires O(n2)
time, since the initial model contains up to nSnT coclusters
(see Equation (1)) in the case of the maximal model MMax.
Each step of the algorithm relies on O(n2) evaluations of
merges of clusters of vertices, and there are at mostO(n) steps,
since the model becomes equal to the null model M∅ (one sin-
gle cluster) once all the possible merges have been performed.
Overall, the time complexity of the algorithm is O(n5) using

7 The number of ordered partitions of n elements into k subsets of sizes
(n1, . . . , nk) is given by the multionomial coefficient.

Algorithm 1 Greedy Bottom Up Merge heuristic (GBUM)
Require: M {Initial solution}
Ensure: M∗, c(M∗) ≤ c(M) {Final solution with improved

cost}
1: M∗ ←M
2: while improved solution do
3: M ′ ←M∗

4: for all merge between two source or target clusters do
5: {Consider merge for model M∗}
6: M+ ←M∗ +merge
7: if c(M+) < c(M ′) then
8: M ′ ←M+

9: end if
10: end for
11: if c(M ′) < c(M∗) then
12: M∗ ←M ′ {Improved solution}
13: end if
14: end while

a straightforward implementation of the algorithm. However,
the method can be optimized in O(m

√
m logm) time. The

optimized algorithm mainly exploits the sparseness of the data,
the additivity of the criterion and starts from non-maximal
models with pre and post-optimization heuristics.

• Large graph are often sparse, with far less edges than
in complete graphs. Although a model may contain
O(n2) coclusters, at most m coclusters are non empty.
Since the contribution of empty coclusters is null in
the criterion 1, each evaluation of a data grid can be
performed in O(m) time owing to specific algorithmic
data structures (mainly, sparse representation with fast
access to edges via hash-indexes).

• The additivity of the criterion means that it can be
decomposed on the hierarchy of the components of the
models: extremity (sources vs target variable), cluster
of vertices, cocluster. Using this additivity property, all
the merges between adjacent clusters can be evaluated
in O(m) time. Furthermore, when the best merge
is performed, the only impacted merges that need
to be reevaluated for the next optimization step are
the merges that share edges with the best merge.
Since the graph is potentially sparse, the number of
reevaluations of models is small on average.

• Finally, the algorithm starts from initial fine grained
solutions containing at most O(

√
m) clusters. Specific

pre-processing and post-processing heuristics are ex-
ploited to locally improve the initial and final solutions
of Algorithm 1 by moving vertices across clusters. The
post-optimization algorithms are applied alternatively
to the source and target vertex variables, for a frozen
partition of the other variable. This allows one to keep
a O(m) memory complexity and to bound the time
complexity by O(m

√
m logm).

Sophisticated algorithmic data structures are necessary to
exploit these optimization principles and guarantee a time
complexity of O(m

√
m logm) for initial solutions exploiting

at most O(
√
m) clusters of vertices.

The optimized version of the greedy heuristic is time

efficient, but it may fall into a local optimum. This problem is
tackled using the variable neighborhood search (VNS) meta-
heuristic [50], which mainly benefits from multiple runs of
the algorithms with different random initial solutions. The
main heuristic described in Algorithm 1, with its guaranteed
time complexity, is used to find a good solution as quickly
as possible. The VNS meta-heuristic is exploited to perform
anytime optimization: the more you optimize, the better the
solution. To favor quality over speed, the meta-heuristic default
setting is to perform at least 10 rounds of the main optimization
heuristic before stopping.

The optimization algorithms summarized above have been
extensively evaluated [6], using a large variety of artificial
datasets, where the true data distribution is known. Overall, the
method is both resilient to noise and able to detect complex fine
grained patterns. It is able to approximate any data distribution,
provided that there are enough instances in the train data
sample.

IV. CONSISTENCY OF THE APPROACH FOR EDGE
DENSITY ESTIMATION

In this section, we interpret the models presented in Sec-
tion III as edge density estimators, demonstrate that the MODL
approach converges asymptotically to the true edge density
distribution when it exists. We also provide experimental
results regarding the convergence rate of the approach.

A. Edge Density Estimation

In our approach, we consider the graphs as generative
models, where the statistical units are the edges with two
variables per edge, the source and target vertices of the edge.
Whereas most blockmodeling approaches deal with simple
graphs, focusing on their topology with at most one edge per
pair of vertices, we regard graphs as statistical distributions
of directed edges, with potential loops and multi-edges. A
graph edge density model for a set of n vertices is entirely
defined by a set of probability parameters {pij}1≤i≤n,1≤j≤n,
where pij stands for the probability of each independent and
identically distributed (i.i.d) edge having source vertex i and
target vertex j. Given these settings, a graph G containing
m edges is treated as a sample of size m drawn from the
edge distribution. Therefore, large samples tend be produce
complete graphs from a pure topological point of view, but
with varying edge densities taking into account the generative
model.

This edge density model applies to much real world graph
data. In web log analysis, it seems natural to consider a
bipartite graph, with users as source vertices, web pages
as target vertices and edges representing web navigation. A
sample graph corresponds to an extract of web log data, with
the popular pages much more seen than the others. In a phone
call network, each edge represents one phone call from a caller
vertex to a called vertex, so that two vertices can be connected
by multi-edges. Collecting the phone calls during a given
time period corresponds to a sample of a directed multigraph,
where the potential communities correspond to subgraphs with
high multi-edge density. The case of undirected graphs can

be treated with symmetrical edge probabilities and a pair of
directed edges per undirected edge 8 .

Given this random graph generative model, the problem
is to estimate the edge densities in the graph from a finite
data sample. Estimating the n2 edge probability parameters
pij from a sample of size m is not an easy task, especially in
the case of sparse graphs.

B. MODL Approach for Edge Density Estimation

In the following, we propose a new interpretation of our
approach described in Section III and show how it reduces to
a finite sample modeling, which asymptotically converges to
an estimation of the edge density parameters.

Given a graph coclustering model M as defined in Sec-
tion III, let us introduce the following notation for the proba-
bility of the edges in a coclustered random graph:

• {pSTκλ }1≤κ≤kS ,1≤λ≤kT : probability distribution of the
edges falling in each cocluster (κ, λ)

• {pκ,i.}kS(i)=κ: probability distribution of the out-
degrees of the vertices i of the source cluster κ

• {pλ,.j}kT (j)=λ: probability distribution of the in-
degrees of the vertices j of the target cluster λ

Using this notation, the probability parameters of a coclus-
tered random graph can be empirically estimated from the edge
count parameters in a model M according to:

pSTκλ =
mST
κλ

m
, pκ,i. =

mi.

mS
κ.

, pλ,.j =
m.j

mT
.λ

. (2)

This is a piece-wise constant modeling of the edge density
with respect to the coclusters, constrained by the distributions
of the in and out-degrees of the vertices in each cluster.
Assuming the independence between the source and target
vertices of the edges inside each cocluster, we get the following
estimation of the edge densities:

pij = pSTκλ pκ,i.pλ,.j =
mST
κj

m

mi.

mS
κ.

m.j

mT
.λ

, (3)

where (κ, λ) is the cocluster containing the edge (i, j).

For the null model M∅ with one single cluster (κ = λ = 1),
we have

pST11 = 1, p1,i. =
mi.

m
, p1,.j =

m.j

m
, pij =

mi.

m

m.j

m
, (4)

which means that the joint probability distribution pij is the
product of the two independent marginal distributions of the
in and out-degrees of the vertices.

For the maximal model MMax with one cluster per vertex,
we have

pSTij =
mij

m
, pi,i. = 1, pj,.j = 1, pij =

mij

m
, (5)

which means that the joint probability distribution pij of the
edges is directly estimated by the model parameters.

8 Although our approach can deal with undirected graphs using both
directions, such graphs would benefit from a specialized prior (potentially
very different) and from simpler optimization algorithms (no need for alternate
optimization of the partitions, for example).

C. Asymptotic Convergence of the MODL Approach

The family of coclustered random graphs is very expres-
sive and can theoretically approximate any edge distribution
provided that there is sufficient data. The problem is to select
the best model given the data.

The MODL approach aims to model directly the finite
data sample, and exploits a discrete model space of the edge
counts in the sample graph. Working on a set of parameters
of finite size allows one to define a “natural” hierarchical
prior with uniform distribution at each level of the hierarchy,
as in Definition 2, and reduces to counting in this discrete
model space. This data-dependent modeling technique leads
to the criterion of Equation 1, which can be interpreted as
the exact posterior probability of the sample graph given the
model (Bayesian interpretation), or the exact code length of
the model parameters and edges given the model (two-part
MDL interpretation [8], [34]). Therefore, the criterion does not
rely on empirical estimation of continuous-valued parameters
(such as probabilities or entropies), which are valid only
asymptotically. We now study whether for given sets of source
and target vertices, this exact finite data sample modeling
asymptotically converges towards the true edge density when
it exists, as the edge number goes to infinity.

Let us first recall some concepts from information theory.
The Shannon entropy H(X) [51] of a discrete random variable
X with probability distribution function p is defined as:

H(X) = −
∑
x∈X

p(x) log p(x). (6)

The mutual information of two random variables is a quantity
which measures the mutual dependence of the two variables
[51]; it vanishes if and only if they are independent. For two
discrete variables X and Y , the mutual information is defined
as:

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (7)

where p(x, y) is the joint probability distribution function of
X and Y , and p(x) and p(y) are the marginal probability
distribution functions of X and Y respectively.

Let us consider edges as statistical instances, with two
vertex variables VS and VT having nS and nT values, and
two vertex cluster variables VMS and VMT having kS and kT
values for a given coclustering model M .

We present in Theorem 2 an asymptotic approximation of
the evaluation criterion c(M) introduced in Equation 1.

Theorem 2: The MODL evaluation criterion (Equation 1)
for a graph coclustring model M is asymptotically equal to
m times the entropy of the source and target vertex variables
minus the mutual entropy of the variables grouped.

c(M) = m
(
H(VS) +H(VT)− I(VMS ;VMT)

)
+O(logm).

(8)

Proof: See Appendix.

As the criterion has to be minimized, this means that
the method aims to select a coclustering model which maxi-
mizes the mutual information between the two vertex cluster

variables. Since the mutual information of two variables is
not other than the Kullback-Leibler divergence [51] between
the joint probability distribution of two variables and their
independent joint distribution, this means that the best selected
coclustering tends to highlight contrasts between the two
variables, being as far as possible from their independent joint
distribution.

We now present an important result in Theorem 3, which
shows that the MODL approach asymptotically converges
towards the estimation of the true edge distribution, which is
the joint distribution of the source and target vertex variables.
Although the modeling technique is data-dependent (regarding
the model space and the prior on the model parameters)
and aims to model exactly the data sample with a discrete
distribution of the sample edges on the vertices, not the true
edge continuous-valued probability distribution, this theorem
demonstrates the consistency of the approach.

Theorem 3: The MODL approach for selecting a graph
coclustering model M asymptotically converges towards the
true edge distribution, and the criterion for the best model
MBest converges to m times the entropy of the edge variable,
which is the joint entropy of the source and target vertices
variables.

lim
m→∞

c(MBest)

m
= H(VS , VT). (9)

Proof: See Appendix.

As a corollary of Theorem 3, Theorem 4 states that the
MODL approach allows one to estimate the mutual informa-
tion between the source and target vertices variables.

Theorem 4: The MODL approach for selecting a graph
coclustering model M asymptotically converges towards the
true edge distribution, and the criterion for the null model
minus the criterion for the best model MBest converges to
m times the mutual entropy of the source and target vertices
variables.

lim
m→∞

c(M∅)− c(MBest)

m
= I(VS ;VT). (10)

Let us recall that the mutual information I(VS ;VT) is null
in case of independent source and target vertices, such as for
Erdős-Rényi random graphs [52]. Theorem 4 shows that for
such graphs, the best selected model will be asymptotically the
same as the null model (which actually represents the case of
independence). Since the MODL approach is regularized, with
prior terms in criterion c(M) that grows with the granularity
of the clusters, we expect the approach to select the null model
in case of independence, even in the non-asymptotic case. This
expected behavior is confirmed experimentally in Section V.

D. Experimental Convergence Rate of the MODL Approach

We have shown that although the MODL approach aims to
model the data sample directly, it asymptotically converges
towards the true edge density. The assumption behind the
MODL approach is that the non-parametric edge density
estimation will benefit from fine tuned finite data-dependent
model space and prior, so as to converge as fast and reliably
as possible.

60

80

100

Clusters

0

20

40

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Edges

1

1.5

2

Mutual

information
True

Empirical

Laplace

MODL(LH)

MODL

0

0.5

1

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Edges

Fig. 4. Convergence of the MODL approach on the random circular graph
with 100 vertices: number of clusters and difference between the estimated
and true mutual information I(VS ;VT) per edge number in the graph sample.

This convergence rate is hard to analyze theoretically in
the non-parametric setting, without any assumption regarding
the true edge density. For example, in the simple case of a
cluster-based graph, the adjacency matrix is block-diagonal
and most of the edge probabilities are null. In this case, few
parameters need to be estimated and the convergence is fast. In
this section, we chose a more difficult sample graph where the
distribution of the edge probabilities is rather smooth with no
cluster-based structure, unbalanced and never null, and present
an experimental study of the convergence rate of the approach.

Let us introduce circular random graphs as directed
multigraphs, where the n vertices lie equidistant on the unit
circle at positions (xi = cos 2πi

n , yi = sin 2πi
n). The Eu-

clidian distance between two vertices i and j being dij =√
(xi − xj)2 + (yi − yj)2, which we extend by continuity to

d(i, i) = 2
n for self-loops, we define the probability of having

an edge between two vertices in inverse proportion of their
distance, according to:

∀i, j, pij =
1/dij∑
µ,γ 1/dµγ

. (11)

In such a circular random graph, the largest edge probabil-
ities (related to self-loops with d = 2

n) are n times larger than
the smallest ones (related to pairs of vertices on a diameter
of the circle, with d = 2), with a continuous decrease of
edge probabilities in inverse proportion to the distance of their
extremities.

In our experiment, we chose a circular random graph with
n = 100 vertices and randomly generate edges from sample
size varying from 100 to 106. For each sample size, we run the
MODL algorithm and collect both the number of clusters and
the mutual information estimated according to the data grid
edge probability estimator (see Equation 3) and to the MODL
criterion (see Equation 10 from Theorem 4). For comparison
purpose, we also report the true mutual information (known
exactly for this artificial dataset), as well as its empirical
estimation (using pij =

mij

m) and according to the Laplace
estimator (pij =

mij+1
m+n2).

The experiment is repeated 100 times, so as to estimate
both the mean and the standard deviation of the collected
measures, presented in Figure 4. The empirical estimator
tends to over-fit the data (the mutual information is largely
overestimated, especially for small sample sizes), whereas the
Laplace estimator tends to under-fit the data. In accordance
with Theorem 4, the MODL criterion of Equation 10 converges
towards the true mutual information. The MODL(LH) criterion
(likelihood terms only, without prior terms as in Equation 10)

related to the best selected model exhibits a much faster
convergence rate, while not over-fitting the data.

Figure 4 shows three phases in the convergence of the
MODL approach. In the first phase (stability phase), the
number of edges is not sufficient to reliably estimate the
edge probabilities, and the approach evaluates the random
graph with one single cluster as being the most probable.
In the second phase (non-parametric estimation phase), the
method identifies regularities in the graph by building clus-
ters and approximating the true mutual information, with an
increased accuracy as the sample size grows. In the third
phase (classical estimation phase), the method has built one
cluster per vertex and estimates all the n2 edges probabilities
simultaneously according to a classical empirical estimation of
a set of multinomial parameters: the accuracy of the estimation
“classically” increases with the sample size. In this example,
the non-parametric estimation phase starts when the number of
available edges is about 500, about 1

20 of the number of edge
probability parameters, and has converged at about 150,000
edges, fifteen times the number of edge probability parameters.
It is noteworthy that in most large real world graphs, the
method will run in the non-parametric estimation phase.

Overall, this experiment shows that the method is reliable,
quickly discovers true regularities in the graph as soon as there
is sufficient data, and is able to approximate complex edge
density distributions with a fast convergence rate.

V. COMPARATIVE EXPERIMENT ON ARTIFICIAL
DATASETS

In this section, with exploit artificial datasets, where the
true edge distribution is known, to compare our approach to
alternative methods. We first relate our method to a graph
clustering method, then to a statistical blockmodeling method,
and finally to a parameter-less coclustering method based on
MDL.

A. Comparison with Graph Clustering

This section, intended to be of a tutorial nature, points out
the difference between graph clustering and our method, which
exploits a coclustering approach. We first recall the modularity
criterion which is widely used for graph clustering methods,
then illustrate the difference between the approaches using
artificial datasets.

1) Modularity Criterion for Graph Clustering Methods:
The goal of community detection is to partition a network into
clusters of vertices with high edge density, with the vertices
belonging to different clusters being sparsely connected. To
evaluate the quality of a partition, the modularity Q [12] is a
widely used criterion in recent community detection methods.
The modularity measures the density of edges inside clusters
as compared to the one expected in case of independence of
the vertices.

Given a graph G with n vertices and m edges, let mij be
an element of the adjacency matrix of the graph. mij = 1 if
vertices i and j are connected by an edge, mij = 0 otherwise.
The degree of a vertex i is defined by the number of edges
incident upon it. In the case of undirected graphs, the ouput
and input degree of a vertice are equal. Using the notation of
Section III-B, we have

mi. = m.i =
∑
j

mij =
∑
j

mji . (12)

An undirected graph with mU edges corresponds to a
symmetrical directed graph with m = 2mU edges. Assuming
that the vertex degrees are respected, the probability of a
random edge between vertices i and j is mi.m.j/m

2. The
modularity Q is defined as

Q =
1

m

∑
ij

(
mij −

mi.m.j

m

)
δ(kS(i), kT (j)), (13)

where kS(i) = kT (i) is the index of the cluster to which
vertex i is assigned, the δ-function δ(x, y) is 1 if x = y
and 0 otherwise and m =

∑
ijmij is twice the number of

(undirected) edges. The modularity takes its values between
-1 and 1 and has positive values when the clusters have more
internal edges that the expected edge number if connections
where made at random, with the same vertex degrees. The
value of this criterion is 0 in the two extreme cases of
one single cluster and of as many clusters as vertices. The
modularity criterion has two appealing properties: it is well
founded for the discovery of clusters with a density higher
than the expected density when the extremities of the edges
are independent, and it does not require any parameter, such
as the number of clusters.

Modularity has been used to evaluate the quality of par-
titions for a large variety of methods such as hierarchical
clustering, spectral clustering, random walks (see Section I),
but also as an objective function to optimize. In this section,
we compare our approach with the state of the art Louvain
method [3], which is very fast and builds high quality partitions
(measured by the modularity criterion).

2) Artificial Graph Family: We introduce a family of
artificial graphs consisting in four clusters of ten vertices,
named A,B,C,D. For two-dimensional depiction purpose, we
consider the case of undirected simple graphs, with at most
one edge per pair of vertices and no loops, and control the
proportion of potential edges per cocluster, that is per pair
of clusters of vertices. This is illustrated in Figure 5, where
the four clusters of vertices are drawn on circles for better
readability. For example, choosing a proportion p = 20% for
the edges of (A,B) means that 20% of the potential edges
with one extremity in A and the other one in B (among
100 = 10 ∗ 10 edges) are in the graph. In the rest of the
section, we illustrate the difference between graph clustering
and coclustering using two graph patterns: quasi-cliques and
cocliques.

3) Quasi-cliques: Figure 5 presents a classical pattern con-
sisting of four dense clusters, with an intra-cluster density of
80% and an inter-cluster density of 10%. The parameters of the
edges distribution are shown on the left, then an example of a
graph generated according to this distribution, and on the right
the clusters retrieved using our approach and the modularity-
based approach, with a different color per cluster. The cluster
based and coclustering methods (modularity method of [3]
and our approach) obtain the same result, with a correct
identification of the four clusters related to A,B,C,D (with
Q = 0.409). In the case of a graph that can be decomposed into
dense clusters, the two approaches exhibit the same behavior.

Distribution Example Coclustering Graph clustering

Fig. 5. Artificial graph: quasi-cliques.

4) Cocliques: Figure 6 presents a pattern consisting of four
cocliques, which are subgraphs with no inner edge, and an
edge density across cocliques of 50%. In this example, the
intra-cluster density is far below the average density. Actually,
not all graphs have a structure consisting of natural clusters.
Yet, all clustering algorithms output a partition into clusters for
any input graph, and the cluster based algorithm builds dubious
clusters in this case. Our approach correctly retrieves the four
empty cocliques. In this case, the modularity is negative (-
0.251), which reflects the fact that the ratio between observed
and expected edge density is far below 1.

Distribution Example Coclustering Graph clustering

Fig. 6. Artificial graph: cocliques.

B. Comparison with Stochastic Blockmodeling

In this section, we focus on the blockmodeling approach
and report comparative experiments on two kinds of artificial
graphs: blockmodel graphs and random graphs.

1) Blockmodel Graphs: Our method is a piecewise constant
non-parametric edge density estimator in directed multigraphs.
One of the closest existing approach is the statistical block-
modeling one, and we used the StOCNET software for com-
parison purpose. StOCNET [53] is a software system for the
advanced statistical analysis of social networks, which imple-
ments the stochastic blockmodeling method named BLOCKS
of Nowicki and Snijders [20], which applies to simple graphs.
Although StOCNET requires the number of blocks as an input
parameter, the tool can compute the blockmodeling structure
for numbers of blocks between 2 and 8. The fit of the block
structure is evaluated using the clarity of the block structure
[20]. The authors suggest to keep the model with the best fit
(smallest clarity) to select the best number of blocks.

We evaluate the ability of the approach to retrieve the
correct block structure using a graph consisting of 100 vertices
with three clusters: 30 vertices in cluster A, 40 in cluster
B and 30 in cluster C. The distribution of the edges across
the clusters is summarized in Table V-B1, where the source
and target vertices of each edge are uniformly distributed
within each cluster. For each sample size 100, 200, ..., 1,000
edges, we generate one hundred datasets according to this
edge distribution and run both the StOCNET software and our
method with their default settings. The computation time of
StOCNET is on average 210 seconds, while our methods takes
on average 0.2 seconds.

TABLE II. ARTIFICIAL BLOCKMODEL DISTRIBUTION WITH THREE
CLUSTERS.

A B C
∑

A 30% 0% 0% 30%
B 0% 10% 30% 40%
C 0% 30% 0% 30%∑

30% 40% 30% 100.00%

In Figure 7, we report the mean plus/minus the standard
deviation of the selected block number, both for the StOCNET
sofware and our approach. While the clarity criterion of
StOCNET selects on average the correct number of clusters
for sufficiently large sample size, the selection approach is
not resilient to sample variability. Our approach builds one
single cluster for less than 200 edges and exactly three clusters
beyond 600 edges, with a transition between 300 and 500
edges where two clusters (A versus B ∪ C) are sometimes
selected.

1

2

3

4

5

0 200 400 600 800 1000

N
u

m
b

e
r

o
f

cl
u

st
e

rs

Edges

StOCNET

1

2

3

4

5

0 200 400 600 800 1000

N
u

m
b

e
r

o
f

cl
u

st
e

rs

Edges

MODL

Fig. 7. Blockmodel graph: mean number of clusters per sample size,
plus/minus the standard deviation

This first experiment shows that our method behaves as
a blockmodeling approach w.r.t. the retrieved patterns. Being
non-parametric, it benefits from a regularized criterion to
reliably estimate the correct granularity of the blockmodel
pattern.

2) Random Graphs: The Erdős-Rényi [52] random graph
datasets used for tests were introduced by Johnson et al. [54].
These graphs are undirected simples graphs, that we treat as
symmetric directed graphs with twice the number of edges in
the adjacency matrix. The 16 available random graphs have
vertex numbers 124, 250, 500 and 1,000, with average total
degree 2.5, 5, 10 and 20.

As StOCNET is limited to graphs with at most 200 vertices,
we could apply it only on the random graphs with 124 vertices.
StOCNET takes 380 seconds on average on each 124 vertices
graphs, while our method takes 0.4 second on average for these
small graphs and up to 18 seconds for the largest graph with
1,000 vertices and 20,000 edges.

On the 124 vertices graphs, for each average vertex degree,
the clarity criterion of StOCNET significantly decreases with
the number of blocks, leading to the choice of maximum
number of blocks considered (8 in the software). Using this
criterion does not lead to a reliable choice of the block number
in case of noisy data. Conversely, on all the random graphs up
to 1,000 vertices and 20,000 edges, our method builds one
single cluster, which confirms its high resilience to noise.

Overall, our method avoids the problem of parametric ap-
proaches where the number K of clusters is a user parameter: it
neither suffers from under-fitting (K too small) or over-fitting
(K too large).

C. Comparison with MDL Coclustering

In this section, we compare our approach with the Cross-
Association method [33]. As pointed out in Section II, this
method is close to our approach: it performs a coclustering on
(binary) matrices, is parameter-less and based on MDL, and is
scalable, allowing experiments on large datasets.

1) Block-Diagonal Graphs: Let us introduce block-
diagonal graphs as directed multigraphs with a partition of
the source (resp. target) vertices into K clusters (chosen of
equal size in this experiment), with edges lying in the related
diagonal blocks. For each randomly chosen source vertex,
an edge is generated randomly in the target cluster related
to same block. In a noisy version of this pattern, edges are
generated randomly among the whole graph with probability
p, and according to the block-diagonal pattern with probability
(1 − p). The contingency matrix of some samples of noisy
block-diagonal graphs is drawn in Figure 8.

Fig. 8. Sample of Noisy(100, 10), Noisy(1000, 5) and Noisy(1000, 100)
block-diagonal graphs

In the experiments, we use the same number of source
and target vertices and consider the block-diagonal graphs
described in Table V-C1. The Pure and Noisy graphs are block-
diagonal graphs with a variety of number of vertices and
blocks, whereas the Random graphs reduce to Erdős-Rényi
random directed multigraphs. For all power of 2 sizes 1, 2, 4,
8, ... up to one million edges, we generate ten random graph
samples according to the edge distribution of each artificial
graph summarized in Table V-C1. We run both the Cross-
Association software 9 and our method with their default
settings, and collect the mean cluster number and computation
time.

2) Cluster Number: In Figure 9 and 10, we report the mean
cluster number per sample size obtained with the MODL and
Cross-Association methods for each artificial graph summa-
rized in Table V-C1.

For each graph, we observe three phases in Figure 9
for the MODL method, as in the experimental convergence
study in Section IV-D: stability phase, with one single cluster,
non-parametric estimation phase, with a growing number of
clusters, and classical estimation phase, where the true cluster
number is retrieved. The second phase is very sharp for the

9 The Cross-Association software can be downloaded at
http://www.cs.cmu.edu\discretionary{-}{}{}/\simdeepay/mywww/
software/CrossAssociations-01-27-2005.tgz. I am grateful to D. Chakrabarti
for making his method available and providing guidance in its use.

http://www.cs.cmu.edu\discretionary {-}{}{}/$\sim $deepay/mywww/software/CrossAssociations-01-27-2005.tgz
http://www.cs.cmu.edu\discretionary {-}{}{}/$\sim $deepay/mywww/software/CrossAssociations-01-27-2005.tgz

TABLE III. BLOCK-DIAGONAL GRAPHS

Name #Vertices #Blocks Noise rate
Pure(10, 2) 10 2 0%
Pure(100, 10) 100 10 0%
Pure(1000, 5) 1000 5 0%
Pure(1000, 100) 1000 100 0%
Pure(10000, 200) 10000 200 0%
Noisy(10, 2) 10 2 50%
Noisy(100, 10) 100 10 50%
Noisy(1000, 5) 1000 5 50%
Noisy(1000, 100) 1000 100 50%
Noisy(10000, 200) 10000 200 50%
Random(10) 10 1 100%
Random(100) 100 1 100%
Random(1000) 1000 1 100%
Random(10000) 10000 1 100%

100

Cluster nb Pure(10, 2)

Noisy(10,2)

Pure(100, 10)

Noisy(100, 10)

Pure(1000, 5)

10

Noisy(1000, 5)

Pure(1000, 100)

Noisy(1000, 100)

Pure(10000, 200)

Noisy(10000, 200)

1

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Edge nb

Random(10)

Random(100)

Random(1000)

Random(10000)

Fig. 9. Block-diagonal graphs: mean number of clusters per sample size
using the MODL method

block-diagonal graphs: below a threshold, which depends on
the complexity of the pattern (number of vertices and of
blocks), only one cluster is retrieved, and above about four
times this threshold, the correct number of clusters is retrieved.
The recognition threshold mainly increases with the number
of vertices: simpler patterns require less edges to be identified,
from 50 edges for the simplest Pure(10, 2) graph to 250,000
edges for the most complex Noisy(10000, 200) graph. In
case of noisy data (with 50% noise), the shape of the curves
is approximately the same, with a translation towards larger
sample sizes: the noisy patterns require around four times the
edge number necessary to retrieve the related pure patterns.
Finally, the MODL method is highly resilient to noise: it never
produces more cluster than expected, and always outputs one
single cluster in the extreme case of random graphs.

100

Cluster nb Pure(10, 2)

Noisy(10,2)

Pure(100, 10)

Noisy(100, 10)

Pure(1000, 5)

10

Noisy(1000, 5)

Pure(1000, 100)

Noisy(1000, 100)

Pure(10000, 200)

Noisy(10000, 200)

1

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Edge nb

Random(10)

Random(100)

Random(1000)

Random(10000)

Fig. 10. Block-diagonal graphs: mean number of clusters per sample size
using the Cross-Association method

The results obtained by the Cross-Association method in
Figure 10 are quite unclear. Still, this blurred behavior may
be explained by the following reasons. First, in case of pure
patterns, the top-down algorithm can get stuck in local minima,
resulting in an under-fitting behaviour in case of patterns

with many clusters. Second, in case of random patterns, as
acknowledged in [33], the method tends to pick up spurious
patterns and more generally to over-fit the data. Last, the Cross-
Association is designed for binary matrices related to directed
simple graphs, not to directed multigraphs. Therefore, as any
noisy multigraph is asymptotically flattened to a complete
simple graph, the Cross-Association method produces one
single cluster for noisy patterns with many edges.

3) Computation Time: The algorithmic complexity of the
MODL method (main greedy bottom-up heuristic described in
Algorithm 1) is O(m

√
m logm), where m is the number of

edges. According to [33], the algorithmic complexity of the
Cross-Association method is O(m(k∗ + l∗)2), where k∗ and
l∗ are the number of source and target clusters retrieved by
the top-down heuristic. Although this is quadratic w.r.t. the
cluster number, this may be more efficient that our bottom-up
approach in case of patterns with small number of clusters. In
Figure 11 and 12, we report the mean computation time per
sample size obtained with the MODL and Cross-Association
methods.

1000

10000

Time Pure(10, 2)

Noisy(10,2)

Pure(100, 10)

Noisy(100, 10)

Pure(1000, 5)

1

10

100 Noisy(1000, 5)

Pure(1000, 100)

Noisy(1000, 100)

Pure(10000, 200)

Noisy(10000, 200)

0.01

0.1

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Edge nb

Random(10)

Random(100)

Random(1000)

Random(10000)

Fig. 11. Block-diagonal graphs: mean computation time per sample size
using the MODL method

1000

10000

Time Pure(10, 2)

Noisy(10,2)

Pure(100, 10)

Noisy(100, 10)

Pure(1000, 5)

1

10

100 Noisy(1000, 5)

Pure(1000, 100)

Noisy(1000, 100)

Pure(10000, 200)

Noisy(10000, 200)

0.01

0.1

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Edge nb

Random(10)

Random(100)

Random(1000)

Random(10000)

Fig. 12. Block-diagonal graphs: mean computation time per sample size
using the Cross-Association method

Compared to the theoretical computation complexity, the
actual computation time depends on many factors, such as
the numbers of vertices, the size of the true pattern and the
level of noise. In the case of the MODL method (Figure 11),
the shape of the computation time curve in the worse case
is compliant with the theoretical complexity, with up to ten
thousand seconds for the largest noisy graph. In the case of the
Cross-Association method (Figure 12), the shape of the curves
grows quadratically as expected, but is flattened in the end
with no more than one thousand seconds for the largest noisy
graphs. This behavior comes from the bottom-up heuristic
which is stuck in local minima and hardly produces more than
around 20 clusters, which allows the method to be quicker at
the expense of under-fitting the data.

Overall, whereas our method and the Cross-Association

methods are both scalable, parameter-less and based on a
similar MDL-based model selection approach, the modeling
choices are quite different, resulting in contrasting behavior.
Our method is valid both non-asymptotically and asymptoti-
cally and neither suffers from under-fitting nor over-fitting. It
never produces spurious clusters in case of random graphs and
recovers complex patterns with an increased precision as the
amount of available data increases.

VI. EXPERIMENTS ON REAL WORLD DATASETS

This section compares our method with the Cross-
Association method [33] on real world datasets coming from
three different domains: document clustering, webspam detec-
tion and exploratory analysis of a flight trip dataset.

A. Document Dataset

We exploit the CLASSIC3 document dataset 10 introduced
in [31] to evaluate the Information-Theoretic Coclustering
ITC method. This collection of documents comes from three
domains: MEDLINE consists of 1,033 abstracts from medical
journals, CISI consists of 1,460 abstracts from information
retrieval papers and CRANFIELD consists of 1,398 abstracts
from aerodynamic systems. Overall, this dataset can be rep-
resented as a directed multigraph with 3,891 source vertices
(documents), 5657 target vertices (words) and 287,827 edges
(184,772 edges in a flattened binary representation of the
graph).

We build a coclustering of the dataset using the MODL
method described in Section III. The running time is one hour
and 50 minutes. We obtained a very fine-grained summary of
the dataset, with 151 clusters of documents and 293 clusters
of word.

Agglomerative hierarchical clustering method: In
order to explore the coclustering at different granularities, we
suggest to coarsen the obtained coclustering by the mean of
an agglomerative hierarchical clustering. We use the following
similarity between two clusters i and j

δ(i, j) =c(Mi∪j)− c(M),

= log
p(M |G)
p(Mi∪j |G)

.
(14)

where c(M) is the evaluation criterion (1) introduced in
Section III, M is the current coclustering model and Mi∪j
is the coclustering model after the merge of clusters i and j.
Intuitively, if two clusters are similar, the total code length of
the data (see criterion c(M)) is not much different between
the cases where the clusters are coded jointly or separately, so
that δ will be small. Actually, the agglomerative hierarchical
clustering algorithm is the same as that of Algorithm 1, except
that the merges are performed until the required number of
clusters is obtained.

As the CLASSIC3 dataset comes from three domains, we
chose to coarsen our fine-grained 151∗293 coclustering matrix
down to a 3*3 coarse matrix. The fine and coarse grained
matrix are shown in Figure 13.

10 Dataset available at http://www.dataminingresearch.com/index.php/2010/
09/classic3-classic4-datasets/

Fig. 13. Coclustering of the CLASSIC3 dataset: initial fine-grained 151∗293
coclustering matrix and coarse 3 ∗ 3 matrix.

Applying the Cross-Association CA method, we obtain a
20*20 summary of the flattened binary dataset in about six
minutes.

We evaluate the agreement between the coclustering results
and the known documents classes for the MODL and CA
methods:

• MODL: we exploit the coarse 3*3 matrix to correlate
the three obtained clusters of document with the
known documents classes,

• CA: we collect the majority class in each obtained
cluster of document and manually group the clusters
sharing the same majority class, down to three clus-
ters.

The results are reported in Figure 14. In [31], the ITC
method is applied with three clusters as a user parameter,
and obtains a good agreement between the retrieved clusters
and the true classes, with about 60 agreement errors. The CA
methods obtain a better agreement than the ITC method, with
about 20% less errors. The results are better for the MODL
method with twice less agreement errors than for the CA
method.

MODL MED CISI CRAN
∑

C1 1025 2 0 1027
C2 5 1446 0 1451
C3 3 12 1398 1413∑

1033 1460 1398 3891

CA MED CISI CRAN
∑

C1 1014 9 3 1026
C2 17 1450 16 1483
C3 2 1 1379 1382∑

1033 1460 1398 3891

Fig. 14. CLASSIC3: agreement with the true classes for the MODL and CA
methods.

Overall, the MODL method produces a finer coclustering
than the CA method, at the expense of a a higher computation
time. This finer model better fits the data, with a better
agreement with the true classes in the dataset.

B. Web Spam Dataset

In this section, we evaluate the benefit of our method as a
preprocessing step for web spam detection.

1) Web Spam Challenge 2007: Web spam consists in
manipulating the relevance of resources indexed in a manner
inconsistent with the purpose of the indexing system of internet
search providers. The data used in this paper comes from
the Web Spam Challenge (corpus #1, Track II) 11 held in
conjunction with the 2007 ECML/PKDD Graph Labeling

11http://webspam.lip6.fr/, Web Spam Challenge 2007

http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets/
http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets/
http://webspam.lip6.fr/

workshop. The goal of the challenge is to evaluate machine
learning methods to label web hosts to be spam or normal.
The data consists of 9,072 web hosts with both content and
link data. Content data correspond to the TF-IDF vectors over
100 web pages of the host, with almost 5 millions features. The
hosts are the vertices and the link data represent the edges in
the directed host graph, with one edge per hyperlink between
two hosts. Overall, the host graph contains 514,700 edges, all
of them are simple edges. The degrees of the vertices follow
the power-law distribution, as shown in Figure 15. The training
set consists of 907 hosts labelled as normal or spam, with
approximately 20% spam. The objective of the challenge is to
label the test set (8,165 hosts). The result is assessed using the
area under the ROC curve (AUC).

1

10

100

1 000

10 000

1 10 100 1000 10000

co
u
n
t

degree

Fig. 15. Webspam challenge host graph: number of vertices per output degree.

The results of the challenge participants. 12 are reported
on the right of Figure 17. They all used both the content
and link data in a semi-supervised learning setting, on top
of classifiers among which SVM, random forests and naive
Bayes. All the available data is exploited to build a model:
train and test content and link data, plus the train labels. The
link data is exploited either by extracting link-based features,
such as number (or ratio) of links from (or to) to spam or
normal hosts, or by constraining the classifier to account for
the labels of the connected hosts.

2) Evaluation: In a first step, we exploit the link data
only, that is the directed graph consisting of 9,072 hosts
with 514,700 links. All the hosts and links are processed
without any output label, to identify the “natural” clusters
of source and target hosts. We build a coclustering of the
source and target hosts using the MODL method described
in Section III. The running time is 3 hours and 14 minutes.
The coclustering of the host graphs retrieves 167 clusters of
source hosts and 219 clusters of target hosts. The coclustered
matrix is displayed in Figure 16, which shows that the graph of
hosts is highly structured, with most of the information lying
in few hundred of coclusters. The asymmetry in the hyperlinks
of the host graph conforms to the observation of the challenge
participants, that there is usually no link from a normal host
to a spam host.

Applying the alternative Cross-Association method, we ob-
tain a 10*10 coclustering of the dataset in about five minutes.

In a second step, the available labeled train hosts are used
to describe the output distribution in each cluster of hosts. The
label of a test host is then predicted according to the output
distribution of its cluster. However, the MODL coclustering
is fine grained, and about 20% of the clusters do not contain

12 Available at http://airweb.cse.lehigh.edu/2008/web spam challenge/
introduction.pdf. Computation time of the participants is not available.

Fig. 16. Coclustering of the host graph of the web spam challenge.

a single train instance: in this case the test host is labeled
as the majority class (normal). To alleviate this problem, we
chose to coarsen our coclustering at different grain levels with
the agglomerative hierarchical clustering method described in
Section VI-A. We build three new coarsened coclusterings,
starting from the initial 386 = 167 + 219 clusters down to
200, 100 and 50 clusters. Given this preprocessing, each host
is represented by eight variables, source or target cluster at four
grain levels. On the left of Figure 17, we report the test AUC
obtained by each univariate cluster-based classifier for the
MODL coclustering (S. clust(k) and T. clust(k) for classifiers
based on source or target clusters for coclusterings with k
clusters). We also combined these classifiers using a Naive
Bayes (NB) and a Selective Naive Bayes (SNB) classifier
[55]. Using the same protocol, we report the test AUC results
obtained using the 10 times 10 coclustering retrieved by the
Cross-Association method on the center of Figure 17. Finally,
we also report the results of the challenge participants on the
right of Figure 17. The test AUC results are obtained using the
predefined train/test split of the dataset to allow a comparison
with the challenge participants. No cross-validation results are
available for the challenge participants. Given that the size of
the test set is s = 8165, the expected variance of the results
is around 1√

s
≈ 1%.

Test AUC MODL result CA results Challenge results

1
MODL result Challenge results

0.95

0.9

0.95

0.85

0.9

0.85

0.8

0.75

0.7

0.75

0.7

Fig. 17. Webspam 2007, phase II: test AUC results for the MODL and CA
methods, and of the challenge participants.

The Cross-Association method under-fits the data, with an
insufficient number of clusters to correctly identify the spam
class. For both the MODL and CA methods, the results show
that the target clusters are much more informative than the
source clusters, with 5 to 10% better test AUC. The granularity

http://airweb.cse.lehigh.edu/2008/web_spam_challenge/introduction.pdf
http://airweb.cse.lehigh.edu/2008/web_spam_challenge/introduction.pdf

of the coclustering has a medium impact on the MODL test
AUC: the best results is obtained with about 200 clusters. The
combined classifiers manage to exploit all the input variables
to get superior performance. It is noteworthy that the (MODL)
SNB classifier obtains a test AUC comparable to that of the
winner of the challenge, while using the link data only.

Like in the document clustering experiment, the MODL
method produces a finer coclustering than the CA method, at
the expense of a a higher computation time. This finer model
better fits the data, with competitive performance for the task
of web spam prediction.

C. Flight Trip Dataset

In this section, we apply our method on a large passenger
flight trip dataset for the purpose of exploratory analysis, when
no ground truth is available. The dataset 13 comes from the
US Bureau of Transportation Statistics and contains a 10%
sample of all airline tickets for each domestic flight trip. We
collected the origin and destination fields as well as the number
of passengers per trip for the four terms of year 2010, so as
obtain 10% of all US domestic passenger flight trips for one
full year. The resulting data table contains 22,038,685 records,
for a total of 469 airports and 43,092,916 flight trips. The
airports are the vertices and the trips are the oriented multiple
edges from origin to destination airports. The average edge
multiplicity in this graph is 471, with 91,482 different edges.

We apply the MODL coclustering method on this dataset,
with a running time of 16 minutes 40 seconds. We obtain a
quasi symmetric summary of the multigraph with 233 clusters
of origin airports, 234 clusters of destination airports, and
46,325 non empty coclusters.

TABLE IV. US FLIGHT TRIPS AND THEIR COCLUSTERING SUMMARY.

PI WC FL DV CE
∑

PI 1.03% 0.92% 0.03% 0.09% 0.49% 2.56%
WC 0.89% 17.60% 1.79% 3.64% 10.54% 34.46%
FL 0.03% 1.69% 0.30% 2.74% 6.15% 10.91%
DV 0.09% 3.77% 3.13% 0.36% 6.41% 13.76%
CE 0.28% 11.06% 5.60% 6.31% 15.07% 38.32%∑

2.32% 35.04% 10.85% 13.14% 38.66% 100.00%

In order to explore the extracted coclustering with a
broader picture, we chose to coarsen our coclustering with
the agglomerative hierarchical clustering method described in
Section VI-A. For depiction purpose, we keep five clusters: the
coclustering matrix summary is almost symmetric, as shown in
Table VI-C. Figure 18 displays the five clusters of destination
airports. There is a clear geographic correlation in the clusters.
A first cluster consists of the Pacific Islands (PI), with Hawai,
Mariana Islands, Guam and Samoa. A second cluster roughly
corresponds to the Delaware Valley (DV), with counties from
Pennsylvania, New Jersey, Delaware and Maryland. A third
cluster contains the Florida airports (FL), while the two last
clusters correspond the West Coast (WC) and Center and East
(CE) of America.

Interestingly, the Pacific Islands cluster is very dense,
with 17 times more intra-cluster flight trips than expected

13http://www.transtats.bts.gov/DataIndex.asp, Airline Origin and Destina-
tion Survey (DB1B) 2010, RITA: Bureau of Transportation Statistics

Fig. 18. US flight trips: five clusters of airports.

in case of independence of the origin and destination of the
trips (1.03% ≈ 17 ∗ (2.56% ∗ 2.32%)). On the contrary,
the Florida and Delaware Valley clusters are sparse clusters,
with respectively four times and five times less intra-cluster
trips than expected in case of independence. Although these
two sparse clusters are not geographically connected, they are
linked by twice the number of trips than expected. This kind
of exploratory analysis can be performed at any granularity up
to the finest coclustering retrieved by our method.

This illustrates how the MODL coclustering method can
be used for the task of exploratory analysis, when no ground
truth is available.

VII. CONCLUSION

In this paper, we have presented a novel way of discovering
structures in graphs, by considering graphs as generative
models whose statistical units are the edges, with unknown
joint density of the source and target vertices. Our method
applies the MODL approach based on data grid models [6]
to the case of directed multigraphs. By clustering both the
source and target vertices of a graph, the method behaves
as a non-parametric estimator of the unknown edge density.
The modeling approach exploits the MDL principle in a data-
dependent way: it aims to model the finite graph sample
directly. The modeling task is then easier, with finite modeling
space and model prior which essentially reduce to counting.
This modeling approach is both non-asymptotic and consistent,
with an asymptotic convergence towards the true edge density,
without any assumption regarding this density.

Experiments on artificial data demonstrate that our ap-
proach is both robust, building one single cluster in case
of random graphs, and accurate, being able to recover fine
grained patterns. Our method has been applied to a document
classification problem and to a Web spam detection problem
in a graph of hosts. The patterns retrieved by our approach
are highly informative, with a good agreement with the true
classes. An application on a large flight trip dataset shows the
potential interest of our method for exploratory analysis, with
the extraction of insightful and interpretable patterns.

Our method has a O(m
√
m logm) time complexity, where

m is the number of edges, providing practical running times
up to millions of edges. In future work, we plan to work on
faster and more scalable optimization algorithms in order to
deal with very large graphs, up to billions of edges.

http://www.transtats.bts.gov/DataIndex.asp

APPENDIX

APPENDIX

A. Proof of theorems

In this appendix we prove theorems 2 and 3 from Sec-
tion IV-C.

Theorem 2 The MODL evaluation criterion (Equation 1) for
a graph coclustering model M is asymptotically equal to m
times the entropy of the source and target vertex variables
minus the mutual entropy of the variables grouped.

c(M) = m
(
H(VS) +H(VT)− I(VMS ;VMT)

)
+O(logm).

Proof: According to Equation 1, we have:

c(M) = log nS + log nT (15a)
+ logB(nS , kS) + logB(nT , kT) (15b)

+ log

(
m+ kE − 1

kE − 1

)
(15c)

+

kS∑
i=1

log

(
mS
i. + nSi − 1

nSi − 1

)
(15d)

+

kT∑
j=1

log

(
mT
.j + nTj − 1

nTj − 1

)
(15e)

+ logm!−
kS∑
i=1

kT∑
j=1

logmST
ij ! (15f)

+

kS∑
i=1

logmS
i.!−

nS∑
i=1

logmi.! (15g)

+

kT∑
j=1

logmT
.j !−

nT∑
j=1

logm.j ! (15h)

We study the asymptotic behavior of the criterion when
the number of edges grows to infinity, for a fixed set of
vertices. Lines (15a) and (15b) of criterion c(M) are bounded
by constants w.r.t. m. Since the numbers of clusters (kS , kT)
and the numbers of vertices per cluster (nSi , n

T
j) are bounded

by the number of vertices (nS , nT), lines (15c), (15d) and (15e)
of the criterion, corresponding to the encoding of the model
prior parameters, are bounded by O(logm).

We now focus on the likelihood terms of the criterion
(lines (15f), (15g) and (15h). Using the approximation log n! =
n(log n − 1) + O(log n) based on Stirling’s formula and
rearranging the terms with new m logm terms, we get:

c(M) =

m logm−
kS∑
i=1

kT∑
j=1

mST
ij logmST

ij

−

(
m logm−

kS∑
i=1

mS
i. logm

S
i.

)

−

m logm−
kT∑
j=1

mT
.j logm

T
.j

+

(
m logm−

nS∑
i=1

mi. logmi.

)

+

m logm−
nT∑
j=1

m.j logm.j

+O(logm).

(16)

Given that the sum of the edge counts in each partition
(per cocluster, per cluster in and out-degree and per vertex in
and out-degree) is always equal to m, we obtain:

c(M) =−m
kS∑
i=1

kT∑
j=1

mST
ij

m
log

mST
ij

m

+m

kS∑
i=1

mS
i.

m
log

mS
i.

m
+m

kT∑
j=1

mT
.j

m
log

mT
.j

m

−m
nS∑
i=1

mi.

m
log

mi.

m
−m

nT∑
j=1

m.j

m
log

m.j

m

+O(logm).

(17)

As the marginal distributions mS
i. and mT

.j can be decom-
posed by summation on the joint distribution mST

ij , we have:

c(M) =−m
kS∑
i=1

kT∑
j=1

mST
ij

m
log

mST
ij

m

mS
i.

m

mT
.j

m

−m
nS∑
i=1

mi.

m
log

mi.

m
−m

nT∑
j=1

m.j

m
log

m.j

m

+O(logm).

(18)

Considering that the empirical estimation asymptotically
converges towards the related probabilities, the claim follows.

Theorem 3 The MODL approach for selecting a graph co-
clustering model M asymptotically converges towards the true
edge distribution, and the criterion for the best model MBest
converges to m times the entropy of the edge variable, which
is the joint entropy of the source and target vertices variables.

lim
m→∞

c(MBest)

m
= H(VS , VT).

Proof: Using Theorem 2, we have

c(M) = −mI(VMS ;VMT)+mH(VS)+mH(VT)+O(logm).

We apply the Data Processing Inequality (DPI) [51], which
states that post-processing cannot increase information. More
precisely, the DPI applies for three random variables X,Y, Z
that form a Markov chain X → Y → Z. It means that
the conditional distribution of Z depends only on Y and is
conditionally independent of X . More specifically, for three
random variables such that p(Z|X,Y) = P (Z|Y), the DPI
states that I(X;Y) ≥ I(X;Z)

We apply the DPI to the variables VS , VT , VMT . As the
vertex cluster variable VMT can be computed according to a
partition of the vertex variable VT (VMT = f(VT)), we have
p(VMT |VS , VT) = p(VMT |VT) and thus obtain:

I(VS ;VT) ≥ I(VS ;VMT). (19)

We apply again the DPI to the variables VMT , VS , V
M
S . As

the vertex cluster variable VMS is a function of VS , we have
p(VMS |VS , VMT) = p(VMS |VS) and get:

I(VMT ;VS) ≥ I(VMT ;VMS). (20)

By transitivity and since the mutual information is sym-
metrical, we get:

I(VS ;VT) ≥ I(VMS ;VMT). (21)

It is noteworthy that this result applies to compare any
pair of coclustering models, one of the models being a sub-
partition of the other: the finer model brings a higher mutual
information.

The model selection approach corresponds to a minimiza-
tion of the MODL criterion. Let us now show that the best
selected model asymptotically tends to be finer and finer,
until reaching the finest possible model with one cluster per
vertex, which is the maximal model MMax that enables a direct
estimation of the edge probabilities pij :

I(VS ;VT) = I(V
MMax
S ;V

MMax
T) ≥ I(VMS ;VMT). (22)

If ∀ M, I(V
MMax
S ;V

MMax
T) = I(VMS ;VMT), then using

Theorem 2, the MODL approach asymptotically converges
towards the true edge distribution.

If ∃ Mf ,Mc, I(V
MMax
S ;V

MMax
T) = I(V

Mf

S ;V
Mf

T) >
I(VMc

S ;VMc

T), with Mf a fine-grained model having the
same mutual information as the maximal model and Mc a
coarse-grained model, then let us show that the approach
asymptotically selects the fine-grained model Mf rather than
the coarser model Mc.

Let ε = I(V
Mf
S ;V

Mf
T)−I(VMc

S ;VMc
T)

2 .

Using Theorem 2 for the convergence of the criterion for
model Mc,

∃m1,∀m ≥ m1,∣∣∣∣c(Mc)

m
−
(
H(VS) +H(VT)− I(VMc

S ;VMc

T)
)∣∣∣∣ < ε

2
.

Similarly, for model Mf ,

∃m2,∀m ≥ m2,∣∣∣∣c(Mf)

m
−
(
H(VS) +H(VT)− I(V

Mf

S ;V
Mf

T)
)∣∣∣∣ < ε

2
.

Thus,

∀m ≥ max(m1,m2),

c(Mc)

m
> H(VS) +H(VT)− I(VMc

S ;VMc

T)− ε

2
,

c(Mf)

m
< H(VS) +H(VT)− I(V

Mf

S ;V
Mf

T) +
ε

2
.

∀m ≥ max(m1,m2),

c(Mf)

m
− c(Mc)

m
< I(VMc

S ;VMc

T)− I(VMf

S ;V
Mf

T) + ε,

c(Mf)

m
<
c(Mc)

m
− ε.

Since the model selection approach corresponds to a min-
imization of the MODL criterion, this means that the best
selected model MBest asymptotically tends to be a fine-grained
model Mf having the same mutual information as the maximal
model MMax, which allows the estimation of the true edge
distribution. Using Theorem 2 with the maximum model (limit
of the best selected model), we have:

c(MMax) = −mI(VS ;VT)+mH(VS)+mH(VT)+O(logm).

As I(X;Y) = H(X) + H(Y) − H(X,Y), the claim
follows.

REFERENCES

[1] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Rev. Mod. Phys., vol. 74, pp. 47–97, 2002.

[2] C. Aggarwal and H. Wang, Eds., Managing and Mining Graph Data,
ser. Advances in Database Systems. Springer, 2010, vol. 40.

[3] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[4] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters,” Internet Mathematics, vol. 6, no. 1, pp.
29–123, 2009.

[5] R. Jin, L. Liu, and C. Aggarwal, “Discovering highly reliable subgraphs
in uncertain graphs,” in KDD’11, 2011, pp. 992–1000.

[6] M. Boullé, “Data grid models for preparation and modeling in su-
pervised learning,” in Hands-On Pattern Recognition: Challenges in
Machine Learning, volume 1, I. Guyon, G. Cawley, G. Dror, and
A. Saffari, Eds. Microtome Publishing, 2011, pp. 99–130.

[7] ——, “MODL: a Bayes optimal discretization method for continuous
attributes,” Machine Learning, vol. 65, no. 1, pp. 131–165, 2006.

[8] J. Rissanen, “Modeling by shortest data description,” Automatica,
vol. 14, pp. 465–471, 1978.

[9] S. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1,
no. 1, pp. 27–64, 2007.

[10] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[11] H. Almeida, D. Guedes, W. M. Jr., and M. Zaki, “Is there a best quality
metric for graph clusters?” in 15th European Conference on Principles
and Practice of Knowledge Discovery in Databases, vol. 1, 2011, pp.
44–59.

[12] M. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E, vol. 69, 2003, 026113.

[13] A. Clauset, M. Newman, and C. Moore, “Finding community structure
in very large networks,” Physical Review E, vol. 70, no. 6, 2004,
066111.

[14] J. Bezdek and R. Hathaway, “Vat: a tool for visual assessment of (clus-
ter) tendency,” in International Joint Conference of Neural Networks,
2002, pp. 2225–2230.

[15] F. Lorrain and H. White, “Structural equivalence of individuals in social
networks,” Journal of Mathematical Sociology, vol. 1, pp. 49–80, 1971.

[16] P. Arabie, S. Boorman, and P. Levitt, “Constructing blockmodels: How
and why,” Journal of Mathematical Psychology, vol. 17, no. 1, pp. 21–
36, 1978.

[17] P. Holland, K. Laskey, and S. Leinhardt, “Stochastic blockmodels: First
steps,” Social Networks, vol. 5, no. 2, pp. 109–137, 1983.

[18] S. Wasserman and C. Anderson, “Stochastic a posteriori blockmodels:
Construction and assessment,” Social Networks, vol. 9, no. 1, pp. 1–36,
1987.

[19] T. Snijders and K. Nowicki, “Estimation and prediction for stochastic
blockmodels for graphs with latent block structure,” Journal of Classi-
fication, vol. 14, no. 1, pp. 75–100, 1997.

[20] K. Nowicki and T. Snijders, “Estimation and prediction for stochas-
tic blockstructures,” Journal of the American Statistical Association,
vol. 96, no. 455, pp. 1077–1097, 2001.

[21] B. Karrer and M. E. J. Newman, “Stochastic blockmodels and commu-
nity structure in networks,” Physical Review E, vol. 83, no. 1, 2011,
016107.

[22] A. Goldenberg, A. Zheng, S. Fienberg, and E. Airoldi, “A survey of
statistical network models,” Source Foundations and Trends in Machine
Learning, vol. 2, no. 2, pp. 129–233, 2010.

[23] E. Airoldi, D. Blei, S. Fienberg, and E. Xing, “Mixed membership
stochastic blockmodels,” Journal of Machine Learning Research, vol. 9,
pp. 1981–2014, 2008.

[24] C. Kemp, J. Tenenbaum, T. Griffiths, T. Yamada, and N. Ueda,
“Learning systems of concepts with an infinite relational model,” in
Twenty-first National Conference on Artificial Intelligence (AAAI-06),
2006.

[25] C. Robert, The Bayesian choice: A decision-theoretic motivation. New
York: Springer-Verlag, 1997.

[26] J. Hartigan, “Direct clustering of a data matrix,” Journal of the American
Statistical Association, vol. 67, no. 337, pp. 123–129, 1972.

[27] H. Bock, “Simultaneous clustering of objects and variables,” in Analyse
des Données et Informatique, E. Diday, Ed. INRIA, 1979, pp. 187–203.

[28] G. Govaert and M. Nadif, “Clustering with block mixture models,”
Pattern Recognition, vol. 36, no. 2, pp. 463–473, 2003.

[29] Y. Cheng and G. Church, “Biclustering of expression data,” in Proc. of
the 8th ISMB. AAAI Press, 2000, pp. 93–103.

[30] H. Cho, I. Dhillon, Y.G., and S. Sra, “Minimum sum-squared residue
co-clustering of gene expression data,” in In SIAM SDM, 2004.

[31] I. S. Dhillon, S. Mallela, and D. S. Modha, “Information-theoretic co-
clustering,” in Proceedings of The Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining(KDD-2003),
2003, pp. 89–98.

[32] D. Ienco, C. Robardet, R. Pensa, and R. Meo, “Parameter-Less Co-
Clustering for Star-Structured Heterogeneous Data,” Data Mining and
Knowledge Discovery, vol. 26, no. 2, pp. 217–254, 2012.

[33] D. Chakrabarti, S. Papadimitriou, D. Modha, and C. Faloutsos, “Fully
automatic cross-associations,” in In KDD. ACM Press, 2004, pp. 79–
88.

[34] P. Grünwald, The minimum description length principle, ser. Adaptive
computation and machine learning. MIT Press, 2007.

[35] S. Papadimitriou, A. Gionis, P. Tsaparas, R. Väisänen, H. Mannila, and
C. Faloutsos, “Parameter-free spatial data mining using MDL,” in IEEE
International Conference on Data Mining, 2005, pp. 346–353.

[36] M. Rosvall and C. Bergstrom, “An information-theoretic framework for
resolving community structure in complex networks,” Proc Natl Acad
Sci U S A, vol. 104, no. 18, pp. 7327–7331, 2007.

[37] K. Lang, “Information theoretic comparison of stochastic graph models:
Some experiments,” in WAW ’09: Proceedings of the 6th International
Workshop on Algorithms and Models for the Web-Graph. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 1–12.

[38] F. Geerts, B. Goethals, and T. Mielikäinen, “Tiling databases,” in
Discovery Science. Springer, 2004, pp. 278–289.

[39] K.-N. Kontonasios and T. De Bie, “An information-theoretic approach
to finding informative noisy tiles in binary databases,” in SIAM Inter-
national Conference on Data Mining, 2010, pp. 153–164.

[40] T. De Bie, “Maximum entropy models and subjective interestingness:
an application to tiles in binary databases,” Data Min. Knowl. Discov.,
vol. 23, no. 3, pp. 407–446, 2011.

[41] E. Jaynes and G. Bretthorst, Probability Theory The Logic of Science.
Cambridge University Press, 2003.

[42] E. Spyropoulou and T. De Bie, “Interesting multi-relational patterns,”
in IEEE International Conference on Data Mining, 2011, pp. 675–684.

[43] S. Papadimitriou, J. Sun, C. Faloutsos, and P. Yu, “Hierarchical,
parameter-free community discovery,” in ECML/PKDD, 2008, pp. 170–
187.

[44] D. Roy and Y. Teh, “The mondrian process,” in NIPS, 2008, pp. 1377–
1384.

[45] A. Gionis, H. Mannila, and J. Seppänen, “Geometric and combinatorial
tiles in 0-1 data,” in PKDD, 2004, pp. 173–184.

[46] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila, “The
discrete basis problem,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 10,
pp. 1348–1362, 2008.

[47] P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer,
and R. Wirth, “CRISP-DM 1.0 : step-by-step data mining guide,” The
CRISP-DM consortium, Tech. Rep., 2000.

[48] M. Abramowitz and I. Stegun, Handbook of mathematical functions.
New York: Dover Publications Inc., 1970.

[49] M. Boullé, “A Bayes optimal approach for partitioning the values of
categorical attributes,” Journal of Machine Learning Research, vol. 6,
pp. 1431–1452, 2005.

[50] P. Hansen and N. Mladenovic, “Variable neighborhood search: princi-
ples and applications,” European Journal of Operational Research, vol.
130, pp. 449–467, 2001.

[51] T. Cover and J. Thomas, Elements of information theory. New York,
NY, USA: Wiley-Interscience, 1991.

[52] P. Erdős and A. Rényi, “On random graphs I,” Selected Papers of
Alfréd Rényi, vol. 2, pp. 308–315, 1976, first publication in Publ. Math.
Debrecen 1959.

[53] P. Boer, M. Huisman, T. Snijders, C. C. Steglich, L. Wichers, and
E.Zeggelink, “StOCNET: an open software system for the advanced
statistical analysis of social networks, version 1.7,” 2006, groningen:
ICS/SciencePlus.

[54] D. Johnson, C. Aragon, L. McGeoch, and C. Schevon, “Optimization
by simulated annealing: An experimental evaluation, part 1, graph
partitioning,” Operations Research, vol. 37, pp. 865–892, 1989.

[55] M. Boullé, “Compression-based averaging of selective naive Bayes
classifiers,” Journal of Machine Learning Research, vol. 8, pp. 1659–
1685, 2007.

	I Introduction
	II Related Work
	II-A Graph clustering
	II-B Blockmodeling
	II-C Stochastic blockmodeling
	II-D Coclustering
	II-E Minimum description length based methods
	II-F Alternative binary matrix summarization approaches

	III MODL Approach for Graphs
	III-A Basic Notions of Graph Theory
	III-B MODL Criterion for Graphs
	III-C Optimization Algorithm

	IV Consistency of the Approach for Edge Density Estimation
	IV-A Edge Density Estimation
	IV-B MODL Approach for Edge Density Estimation
	IV-C Asymptotic Convergence of the MODL Approach
	IV-D Experimental Convergence Rate of the MODL Approach

	V Comparative Experiment on Artificial Datasets
	V-A Comparison with Graph Clustering
	V-A1 Modularity Criterion for Graph Clustering Methods
	V-A2 Artificial Graph Family
	V-A3 Quasi-cliques
	V-A4 Cocliques

	V-B Comparison with Stochastic Blockmodeling
	V-B1 Blockmodel Graphs
	V-B2 Random Graphs

	V-C Comparison with MDL Coclustering
	V-C1 Block-Diagonal Graphs
	V-C2 Cluster Number
	V-C3 Computation Time

	VI Experiments on Real World Datasets
	VI-A Document Dataset
	VI-B Web Spam Dataset
	VI-B1 Web Spam Challenge 2007
	VI-B2 Evaluation

	VI-C Flight Trip Dataset

	VII Conclusion
	Appendix
	A Proof of theorems

	References

