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Abstract In the data preparation phase of data mining, supervised discretization
and value grouping methods have numerous applications: interpretation, conditional
density estimation, filter selection of input variables, variable recoding for classifi-
cation methods. These methods usually assume a small number of classes, typically
less than ten, and reach their limit in case of too many classes. In this paper, we
extend discretization and value grouping methods, based on the partitioning of both
the input and class variables. The best joint partitioning is searched by maximiz-
ing a Bayesian model selection criterion. We show how to exploit this preprocess-
ing method as a preparation for the naive Bayes classifier. Extensive experiments
demonstrate the benefits of the approach in the case of hundreds of classes.

1 Introduction

Supervised classification aims at predicting a class (the value of a target categorical
variable) given a set of input numerical or categorical values. Most existing tech-
niques usually consider binary classification or target variables with few classes,
typically less than ten. Some applications involve target variables with greater num-
ber of classes, such as hand-digit recognition, character recognition or text classi-
fication. Recent web-advertising applications have to optimize the choice of a web
banner among hundreds in order to maximize the click-through rate given web log
data. In case of many classes, the number of instances per class gets smaller, and the
reliability of the estimation of class conditional probabilities becomes a problem.
In practice, data analysts acknowledge this by restricting to problems with small
numbers of classes. Existing methods also assume a small number of classes and
are potentially less effective in case of many classes.
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In this paper, we consider the classification problem in its most general setting,
without any explicit or implicit assumption related to the number of classes. We
focus on univariate data preparation, on the basis of discretization for numerical
input variables and value grouping for categorical input variables. These methods
have been studied for a long time in the literature [18, 9, 13, 16], as a preprocessing
step for decision trees [8, 22, 26] or for naive Bayes classifier [11, 20, 25]. The goal
of this paper is to extend data preparation in case of many classes.

Discretization methods split the numerical domain into a set of intervals and
grouping methods partition the input categories into groups, in order to estimate the
class conditional probabilities. Fine grained partitions allow an accurate discrim-
ination of the classes, whereas coarse grained partitions tend to be more reliable.
In case of few classes, these methods provide a robust estimation. In case of many
classes, they are either prone to over-fitting or are constrained to under-partition the
input variable in order to keep a robust estimation. One way to tackle this prob-
lem is to consider the joint partitioning of both the input and class variables. The
method introduced in [24] deals with the problem of simultaneously partitioning
the row and columns of a contingency table. This method maximizes an association
criterion such as Cramer’V , Tschuprow’T or Pearson’φ . The heuristic algorithm has
a O(V 5) time complexity where V is the maximum number of values (potentially
up to the number N of instances), which does not scale in case of variables with
many values. In [21], the problem is formalized as that of a block-clustering mix-
ture model and solved using the EM (expectation-maximisation) algorithm. This
approach is suitable for exploratory analysis , especially in the case of coclustering
of the instances and the variables of a dataset [4]. However, given the computation
time requirements, it is not appropriate for data preparation with potentially numer-
ous input variables to preprocess. Among related methods, ECOC (Error-Correcting
Output Codes) approaches [10] deal with multi-class classification problems based
on the embedding of binary classifiers. The basis of the ECOC approach consists
of designing a codeword for each of the classes, which encodes the membership in-
formation of each class for a given binary problem. Using multiple codewords, the
multi-class problem reduces to a set of binary problems, each based on a bi-partition
of the classes. At the decoding step, the set of binary predictions allows to retrieve
each individual class. Many coding schemes have been investigated in the litera-
ture (one-versus-one, one-versus-all [23], dense random [2],...), as well as decoding
designs (Hamming, Euclidean, inverse Hamming, Laplacian,... [12]). Whereas the
ECOC approach exploits binary classifiers in case of multi-class problems using
predefined bi-partitions of the classes, the purpose of our approach is to improve the
accuracy and the reliability of univariate conditional density estimators by search-
ing the most effective partition of the classes for each input variable, which might
involve different partitions per input variable.

In this paper, we extend the MODL approach introduced for supervised dis-
cretization [6] and value grouping [5]. In this approach, the univariate preprocess-
ing of each input variable is treated as a model selection problem, where a model
is defined by a partition of the input values into intervals or group of values, and a
multinomial distribution of the classes into each part. The preprocessing model is
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extended by simultaneously partitioning the input and class variables and restricting
to a multinomial distribution of the groups of classes in each input part. The issue is
to optimally balance between accurate models, exploiting many target groups with
few classes, and reliable models, based on few groups containing many classes. This
problem is tackled and solved using a Bayesian model selection approach to obtain
the MAP (maximum a posteriori) model, that is the most probable model given the
data.

The paper is organized as follows. Section 2 summarizes the MODL method in
the univariate case. Section 3 introduces the extension of the approach with a par-
titioning of the class variable to tackle the case of many classes. Section 4 presents
the impact of this extended preprocessing on the naive Bayes classifier. Section 5
demonstrates the benefits of the approach, both for the data preparation and data
modeling phases of data mining. Finally, Section 6 gives a summary.

2 The MODL Supervised Preprocessing Method

This section summarizes the MODL1 approach in the univariate case, detailed in [6]
for supervised discretization, and in [5] for supervised value grouping.

2.1 Discretization

The objective of supervised discretization is to induce a list of intervals which parti-
tions the numerical domain of a continuous input variable, while keeping the infor-
mation relative to the class variable. A trade-off must be found between information
quality (homogeneous intervals in regard to the class variable) and statistical quality
(sufficient sample size in every interval to ensure generalization).

Figure 1 illustrates the discretization problem on the Iris dataset [3]. The class
variable has three values: Versicolor, Virginica and Setosa. The values of the sepal
with input variable are reported on the left, with their frequency per class value. On
the right part of figure 1, the input values are discretized into three intervals, which
summarize the class conditional density of the input variable.

In the MODL approach, the discretization is turned into a model selection prob-
lem. First, a space of discretization models is defined. The parameters of a spe-
cific discretization model are the number of intervals, the bounds of the intervals
and the frequencies of the classes in each interval. Then, a prior distribution is
proposed on this model space. This prior exploits the hierarchy of the parame-
ters: the number of intervals is first chosen, then the bounds of the intervals and
finally the frequencies of the classes. The prior is uniform at each stage of the hier-
archy. Finally, we assume that the multinomial distributions of the classes in each

1 Tool available as a shareware at http://perso.rd.francetelecom.fr/boulle/
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Fig. 1 Discretization of the sepal width variable for the classification of the Iris dataset in three
classes.

interval are independent from each other. A Bayesian approach is applied to se-
lect the best discretization model, which is found by maximizing the probability
p(Model|Data) of the model given the data. Using the Bayes rule and since the
probability p(Data) is constant under varying the model, this is equivalent to maxi-
mizing p(Model)p(Data|Model).

Let N be the number of instances, J the number of classes, I the number
of input intervals. Ni. denotes the number of instances in the interval i and Ni j
the number of instances of class j in the interval i. In the context of supervised
classification, the number of instances N and the number of classes J are sup-
posed to be known. A discretization model M is then defined by the parameter set{

I,{Ni.}1≤i≤I ,
{

Ni j
}

1≤i≤I,1≤ j≤J

}
.

Using the definition of the model space and its prior distribution, Bayes formula
can be used to calculate the exact prior probabilities of the models and the prob-
ability of the data given a model. Taking the negative log of the probabilities, this
provides the evaluation criterion given in Formula 1.

logN + log
(

N + I−1
I−1

)
+

I

∑
i=1

log
(

Ni. + J−1
J−1

)
+

I

∑
i=1

log
Ni.!

Ni1!Ni2! . . .NiJ!
(1)

The first term of the criterion stands for the choice of the number of intervals
and the second term for the choice of the bounds of the intervals. The third term
corresponds to the parameters of the multinomial distribution of the classes in each
interval and the last term represents the conditional likelihood of the data given the
model, using a multinomial term. Therefore “complex” models with large numbers
of intervals are penalized by the first three terms whereas coarse models are penal-
ized by the last one.

Once the evaluation criterion is established, the problem is to design a search
algorithm in order to find a discretization model that minimizes the criterion. In [6],
a standard greedy bottom-up heuristic is used to find a good discretization. In order
to further improve the quality of the solution, the MODL algorithm performs post-
optimizations based on hill-climbing search in the neighborhood of a discretization.
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The neighbors of a discretization are defined with combinations of interval splits
and interval merges. Overall, the time complexity of the algorithm is O(JN logN).

The MODL discretization method for supervised classification provides the most
probable discretization given the data. Extensive comparative experiments report
high performance [6].

2.2 Value Grouping

Categorical variables are analyzed in a similar way, using a partitioning model of the
input values. In the numerical case, the input values are constrained to be adjacent
and the only considered partitions are the partitions into intervals. In the categorical
case, there are no such constraints between the values and any partition into groups
of values is possible. The problem is to improve the reliability of the estimation of
the class conditional probabilities owing to a reduced number of groups of values,
while keeping the groups as informative as possible. Producing a good grouping
is harder with large numbers of input values since the risk of overfitting the data
increases. In the extreme situation where the number of values is the same as the
number of instances, overfitting is obviously so important that efficient grouping
methods should produce one single group, leading to the elimination of the variable.

Figure 2 illustrates the value grouping problem on the Mushroom dataset [3]. The
class variable has two values: edible and poisonous. The 10 categorical values of the
cap color input variable are reported by decreasing frequency, with their proportion
per class value. On the right part of figure 2, the input values are partitioned into 5
groups. For example, the RED and WHITE colors, which have similar proportions
of class values, are grouped together.

Value edible poisonous Frequency
BROWN 55.2% 44.8% 1610
GRAY 61.2% 38.8% 1458
RED 40.2% 59.8% 1066
YELLOW 38.4% 61.6% 743
WHITE 69.9% 30.1% 711
BUFF 30.3% 69.7% 122
PINK 39.6% 60.4% 101
CINNAMON 71.0% 29.0% 31
GREEN 100.0% 0.0% 13
PURPLE 100.0% 0.0% 10

RED
YELLOW
BUFF
PINK

BROWN

GRAY

GREEN
PURPLEWHITE

CINNAMON

G_RED G_BROWN

G_GRAY

G_GREEN
G_WHITE

Group edible poisonous Frequency
G RED 38.9% 61.1% 2032
G BROWN 55.2% 44.8% 1610
G GRAY 61.2% 38.8% 1458
G WHITE 69.9% 30.1% 742
G GREEN 100.0% 0.0% 23

Fig. 2 Value grouping of the categorical values of the cap color variable for the classification of
the Mushroom dataset in two classes.
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Again, let N be the number of instances, V the number of input values, J the
number of classes and I the number of input groups. Ni. denotes the number of
instances in the group i, and Ni j the number of instances of class j in the group
i. The Bayesian model selection approach is applied like in the discretization case
and provides the evaluation criterion given in Formula 2. This formula has a similar
structure as that of Formula 1. The two first terms correspond to the prior distribution
of the partitions of the input values, into groups of values in Formula 2 and into
intervals in Formula 1. The two last terms are the same in both formula.

logV + logB(V, I)+
I

∑
i=1

log
(

Ni. + J−1
J−1

)
+

I

∑
i=1

log
Ni.!

Ni1!Ni2! . . .NiJ!
(2)

B(V, I) is the number of divisions of V values into I groups (with eventually
empty groups). When I = V , B(V, I) is the Bell number. In the general case, B(V, I)
can be written as B(V, I) = ∑

I
i=1 S(V, i), where S(V, i) is the Stirling number of the

second kind [1], which stands for the number of ways of partitioning a set of V
elements into i nonempty sets. In [5], a standard greedy bottom-up heuristic is pro-
posed to find a good partition of the input values. Several pre-optimization and post-
optimization steps are incorporated, in order to both ensure an algorithmic time
complexity of O(JN log(N)) and obtain accurate value groupings.

3 Extension with Grouping the Class Values

In case of many classes with few instances per class, a reliable estimation of the
distribution of the class values is difficult to obtain. We propose to partition the
classes into groups of classes, in order to reduce to a more classical supervised
classification problem dealing with a small number of groups of classes (kind of
“super-classes”), then to describe the true class of each instance given its super-
class.

Let Y be a class variable with W classes. The principle of the extended method
is to introduce a partition of the W classes into J super-classes. The standard case
can be seen as a special case in the extending settings, where J = W . W is assumed
to be known whereas the number J of super-classes is a parameter that has to be
estimated.

Notations:

• N : number of instances
• Y : class variable
• W : number of classes (known)
• J : number of super-classes (unknown)
• j(w) : index of the super-class containing class w
• N. j : number of instances for super-class j
• m j : number of classes for super-class j
• nw : number of instances for class w
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For a given number of super-classes J, the goal is to define a partition of the W
classes into J super-classes, which amounts to specifying { j(w)}1≤w≤W . Similarly
to the case of grouping the values of an input variable reminded in Section 2.2,
we use a hierarchical prior for the parameters related to grouping the classes into
super-classes:

1. the number of super-classes J is uniformly distributed between 1 and W ,
2. for a given number of super-classes W , every division of the W classes into J

super-classes is equi-probable.

This corresponds to a prior probability of 1
W for the choice of the number of super-

classes J. Computing the prior probability for the partition given the number of
super-classes is a combinatorial problem similar to that of the grouping problem
in Section 2.2, which solution is 1

B(W,J) . Taking the negative log of these two prior
probabilities comes down to introducing the new following prior terms:

logW + logB(W,J). (3)

It is noteworthy that once such a partition is defined, the numbers m j of classes
per super-class can be derived and thus do not belong to the model parameters.

Once the classes are grouped into super-classes, the problem reduces to the stan-
dard univariate preprocessing method presented in Section 2. The partitioning mod-
els of the input variable are exploited to defined in each input part the local multi-
nomial distribution of the J super-classes. The total number of instances N. j per
super-class is calculated using the sum of the local numbers of instances per super-
class in each of the I input parts, according to N. j = ∑

I
i=1 Ni j.

In each super-class, it remains to specify how the instances of the super-class are
distributed on the classes. This is done by introducing new modeling parameters, in
order to describe locally to each super-class j the multinomial distribution of the N. j
instance of the super-class on its m j classes. As before, a uniform prior is assumed
for the parameters of this multinomial model, which comes down to adding the new
following prior term:

log
(

N. j +m j−1
m j−1

)
(4)

The likelihood of the multinomial distribution of the instances of each input part
on the super-classes is the same as in Section 2 (cf. multinomial term in Formula (1)
and (2)). It remains to evaluate the likelihood of the distribution of the instances of
each super-class on its classes, using a multinomial term:

logN. j!− ∑
{w; j(w)= j}

lognw! (5)

Summing these terms on all the super-classes, we obtain:

logW + logB(W,J)+
J

∑
j=1

log
(

N. j +m j−1
m j−1

)
(6)
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for the prior terms, and
J

∑
j=1

logN. j!−
W

∑
w=1

lognw! (7)

for the likelihood terms.
To finish, these new prior and likelihood terms are added to the criterions pre-

sented in Section 2. In the case of supervised discretization, Formula (1) is extended
to:

logN + log
(

N + I−1
I−1

)
+

I

∑
i=1

log
(

Ni. + J +1
J−1

)
+

I

∑
i=1

Ni.!
Ni1!Ni2!...NiJ!

+ logW + logB(W,J)+
J

∑
j=1

log
(

N. j +m j−1
m j−1

)
+

J

∑
j=1

logN. j!−
W

∑
w=1

lognw!

(8)

Similarly, in the case of supervised value grouping, we obtain:

logV + logB(V, I)+
I

∑
i=1

log
(

Ni. + J−1
J−1

)
+

I

∑
i=1

log
Ni.!

Ni1!Ni2! . . .NiJ!

+ logW + logB(W,J)+
J

∑
j=1

log
(

N. j +m j−1
m j−1

)
+

J

∑
j=1

logN. j!−
W

∑
w=1

lognw!

(9)

Optimization Algorithm

The classification problem of simultaneously partitioning one input variable and
grouping the values of the class variable is related to parent techniques in the case of
regression or bivariate preparation for classification problems. In the case of regres-
sion [17], the problem is to simultaneously partition one input variable and discretize
the target variable. The case of bivariate preparation for classification involves three
variables: two input variables are jointly partitioned in order to discriminate the
class variable (the partition of which is not considered). Each problem is specific,
leading to significantly different criterions. However, these criterions share a similar
additive structure, with terms related to each variable, part, or cell resulting from the
cross-product of the univariate partitions. This similar structure allows to reuse the
optimization heuristic described in [7].

The main algorithm is a greedy bottom-up merge heuristic, summarized in Al-
gorithm 1. It starts from a random fine-grained bipartition, evaluates each merge
between parts of each variable, and performs the best merge while the crite-
rion improves. This main heuristic is enhanced using pre-optimization and post-
optimization heuristics, consisting in small perturbations around a current partition
(moves of boundaries in case of discretization and moves of values across groups in
case of value grouping). Finally, this enhanced greedy heuristic is embedded into the
VNS (Variable Neighborhood Search) meta-heuristic [15], which mainly consists of
starting from different random partitions (around ten in our experiments).
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Algorithm 1 Greedy Bottom-Up Merge heuristic
Require: M {Initial bipartition}
Ensure: M∗,c(M∗)≤ c(M) {Final bipartition with improved cost}
1: M∗←M
2: while improved solution do
3: c∗← ∞,m∗← /0
4: {Evaluate all the merges between adjacent parts of the input variable}
5: for all Merge m between two adjacent parts (intervals or groups) of the input variable do
6: M′←M∗+m {Evaluate merge m on bipartition M∗}
7: if c(M′) < c∗ then
8: c∗← c(M′),m∗← m
9: end if

10: end for
11: {Evaluate all the merges between adjacent groups of the class variable}
12: for all Merge m between two adjacent groups of the class variable do
13: M′←M∗+m {Evaluate merge m on bipartition M∗}
14: if c(M′) < c∗ then
15: c∗← c(M′),m∗← m
16: end if
17: end for
18: {Perform best merge}
19: if c∗ < c(M∗) then
20: M∗←M∗+m∗

21: end if
22: end while

A straightforward implementation of Algorithm 1 leads to a time complexity of
O(N5) where N is the number of instances. However, the method can be optimized
in O(N

√
N logN) time, as shown in [7]. The optimized algorithm mainly exploits

the sparseness of the data, the additivity of the criterion and starts from non-maximal
models, refines owing to the pre and post-optimization heuristics. Altogether, this
optimization heuristic has a time complexity of O(N

√
N logN), whatever be the

number of values per variable. The VNS meta-heuristic is exploited to perform any-
time optimization: the more you optimize, the better the solution.

4 Impact on the Naive Bayes Classifier

The section recalls the principles of the naive Bayes classifier and describes how to
exploit the extended preprocessing introduced in Section 3 to calculate the predic-
tion scores.
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4.1 The Naive Bayes Classifier

Let X = (X1,X2, . . . ,XK) be a set of K numerical or categorical input variables and
Y a class variable, with W classes λ1,λ2, . . .λW . Let x = (x1,x2, . . . ,xK) be the input
values of a test instance.

The Bayes classifier predicts for each test instance the class with the maximum
posterior conditional probability, according to:

P(Y = λw|X = x) =
P(Y = λw)P(X = x|Y = λw)

P(X = x)
.

The Bayes classifier is optimal, but it cannot be calculated in practice, since it
assumes that the joint class conditional probability is perfectly known. The naive
Bayes classifier [19] simplifies the task of estimating the multivariate class condi-
tional probability, using the naive assumption that the input variables are indepen-
dent given the class variable. Also named idiot’s Bayes in the literature, the naive
Bayes classifier performs well in practice on many real datasets [14]. It is easy to
implement, fast to train and to deploy, and not prone to overfitting, since the space
of models reduces to a singleton. Applying this naive independence assumption, we
obtain:

P(Y = λw|X = x) =
P(Y = λw)∏

K
k=1 P(Xk = xk|Y = λw)
P(X = x)

. (10)

Formula (10) is enough to predict the most probable class given the input values.
In applications where a prediction score is necessary, the class conditional probabil-
ities can be calculated by summing over the class terms in the denominator:

P(Y = λw|X = x) =
P(Y = λw)∏

K
k=1 P(Xk = xk|Y = λw)

∑
W
v=1 P(Y = λv)∏

K
k=1 P(Xk = xk|Y = λv)

. (11)

4.2 Using Extended Preprocessing

After the preprocessing step, each variable Xk is partitioned into Ik input parts (inter-
vals or groups of values) for the estimation of the conditional probability of Y , which
is itself partitioned into Jk super-classes. Let Nk

ik.
be the number of train instances of

part ik of Xk, Nk
. jk

that of part jk of Y and Nk
ik jk

that of cell (ik, jk).
Based on the joint partitioning of Xk and Y , let Pk

ik
(xk) be the part related to

the input value xk and Gk
jk
(λw) the super-class related to class λw. The preprocess-

ing model provides a piecewise-constant estimation of the conditional probabilities,
leading to:
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P(Xk = xk|Y = λw) = P
(

xk ∈ Pk
ik(xk)|λw ∈ Gk

jk(λw)
)

,

P(Xk = xk|Y = λw) =
Nk

ik jk

Nk
. jk

. (12)

The prior probabilities of the classes are estimated using their empirical estima-
tion P(Y = λw) = nw/N based on the number nw of train instances of class λw and
of the size N of the train sample. Exploiting these empirical probability estimations,
Formula (11) turns to:

P(Y = λw|X = x) =
nw ∏

K
k=1

Nk
ik jk

Nk
. jk

∑
W
v=1 nv ∏

K
k=1

Nk
ik jk

Nk
. jk

. (13)

In order to avoid zero probabilities, conditional probabilities are estimated using
a m-estimate (support +mp) = (coverage+m) with m = W/N et p = 1/W .

It is noteworthy that whereas our extended preprocessing method provides an
estimation of the conditional probabilities per group of classes (cf. Section 5.1), the
naive Bayes classifier combines these coarse grain estimations related to potentially
different partitions of the classes, resulting in fine grain estimations per class (cf.
Formula 13).

5 Experiments

This section evaluates the impact of our extended preprocessing method on data
preparation and on modeling using the naive Bayes classifier.

5.1 Illustrative Example

In order to illustrate the behavior of our method, we use the Letter dataset from
the UCI repository [3]. The class value is a capital letter (among 26), that must be
identified from a rectangular black-and-white pixel display. The 16 numerical in-
put variables are measures related to the size of the box containing the letter and
to statistical moments summarizing the position of the black pixels in the rectan-
gular display. For example, the width of the box is one of these measures. Figure
3 presents a bivariate histogram which displays the results of the simultaneous par-
titioning of the input width variable, into 10 intervals of width, and of the class
variable, into 8 groups of letters. The height of the bars stands for the conditional
probability of being in a super-class of letters given that the width of the letter be-
longs to an interval of values. For example, for very small widths (width <= 0.5),
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the conditional probability of getting the letter I is 100%. On the opposite, for the
large widths (width > 10.5), the probability of observing a letter in {M,W} is 60%,
and that of being in {X ,N,K,H} is 40%. The other cases correspond to intermediate
situations. Overall, this preprocessing provides a piecewise-constant estimation of
the conditional probabilities, and this estimation is the most probable given the data,
according to the Bayesian approach exploited for the selection of the preprocessing
model.
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Fig. 3 Estimation of the conditional probability of a letter given its width for the UCI dataset
Letter.

5.2 Experiments on the UCI Datasets

In order to assess the benefit of our extended preprocessing method, we evaluate
the test accuracy of the naive Bayes classifier using three different preprocessing
methods:

• NB(G) simultaneous partitioning of the input and class variables (Section 3),
• NB: partitioning of the input variable only (Section 2),
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• nb: standard preprocessing, with ten equal frequency unsupervised discretization
for numerical input variables and no value grouping for categorical variables.

The experiments are conducted using 18 datasets of the UCI repository [3], sum-
marized in Table 1. These datasets represent a large variety of domains, numbers of
instances (N), numbers of numerical and categorical input variables (K) and have
at least three classes (W ) with in some cases unbalanced class distribution (Maj.
recalls the frequency of the majority class). The test accuracy is evaluated using a
stratified 10-fold cross validation. A two-tailed Student test at the 5% confidence
level is performed in order to evaluate the significant wins or losses of the NB(G)
method versus each other method.

Table 1 Test accuracy on UCI datasets

Dataset N K W Maj. NB(G) NB nb
Abalone 4177 8 28 0.165 0.262 ± 0.022 0.243 ± 0.028 0.225 ± 0.020
Flag 194 29 8 0.309 0.646 ± 0.083 0.636 ± 0.070 0.640 ± 0.088
Glass 214 10 6 0.355 0.953 ± 0.046 0.949 ± 0.048 0.921 ± 0.042
Iris 150 4 3 0.333 0.913 ± 0.085 0.920 ± 0.088 0.947 ± 0.040
Led 1000 7 10 0.114 0.747 ± 0.038 0.743 ± 0.032 0.743 ± 0.032
Led17 10000 24 10 0.107 0.738 ± 0.011 0.732 ± 0.010 0.736 ± 0.013
Letter 20000 16 26 0.041 0.747 ± 0.013 0.747 ± 0.013 0.712 ± 0.012
PenDigits 10992 16 10 0.104 0.885 ± 0.012 0.884 ± 0.010 0.871 ± 0.010
Phoneme 2254 256 5 0.260 0.876 ± 0.023 0.872 ± 0.025 0.875 ± 0.023
Satimage 6435 36 6 0.238 0.822 ± 0.009 0.823 ± 0.010 0.812 ± 0.012
Segmentation 2310 19 7 0.143 0.921 ± 0.013 0.923 ± 0.012 0.899 ± 0.011
Shuttle 58000 9 7 0.786 0.998 ± 0.000 0.999 ± 0.000 0.992 ± 0.001
Soybean 376 35 19 0.138 0.918 ± 0.056 0.926 ± 0.068 0.928 ± 0.060
Thyroid 7200 21 3 0.926 0.994 ± 0.002 0.994 ± 0.001 0.956 ± 0.007
Vehicle 846 18 4 0.258 0.595 ± 0.036 0.618 ± 0.031 0.611 ± 0.035
Waveform 5000 21 3 0.339 0.811 ± 0.022 0.810 ± 0.019 0.808 ± 0.024
Wine 178 13 3 0.399 0.983 ± 0.026 0.983 ± 0.026 0.977 ± 0.028
Yeast 1484 9 10 0.312 0.575 ± 0.050 0.575 ± 0.046 0.344 ± 0.032
Mean 0.799 0.799 0.778
W/D/L 2/14/2 8/10/0

Table 1 reports the mean and standard deviation of the test accuracy per dataset,
as well as the overall mean on all the datasets (Mean) and the number of wins, draws
and losses (W/D/L) of the NB(G) method. The results confirm the significant dom-
ination of supervised preprocessing methods, with 8 significants wins and 0 loss of
the NB(G) method compared to the standard nb method. However, the results of the
NB(G) and NB methods are similar. For UCI datasets with around ten classes, the
extended preprocessing method with grouping of the classes is thus interesting for
understandability (cf. Section 5.1), but it has no significant impact on test accuracy.



14 Marc Boullé

5.3 Experiment with Very Large Number of Classes

In order to study the benefit of our approach in case of very large numbers of classes,
we have used the Letter dataset to build a new artificial dataset with many classes.
The initial Letter dataset consists of 20000 instances with 16 numerical input vari-
ables and 26 classes (alphabet letters). From each pair of instances randomly chosen,
we build a new instance that concatenates the two initial instances. We obtain a new
bigram dataset containing 10000 instances with 32 input variables and a class vari-
ables consisting of 676 bigrams. The average number of instances per class is 15,
and the majority class has only 27 instances.

We compare in Table 2 the test accuracy of the NB(G), NB and nb methods using
the same stratified 10-fold cross validation protocol as in Section 5.2. As previously,
the supervised preprocessing method NB obtains significantly better results than the
standard nb method, with 26.7% accuracy against 23.1% accuracy. The extended
preprocessing method NB(G) dramatically outperforms the other two methods with
38.9% test accuracy. This clearly demonstrates the benefits of our approach in case
of very large numbers of classes.

Table 2 Test accuracy on the bigram dataset.

NB(G) NB nb
0.389 ± 0.016 0.267 ± 0.016 0.231 ± 0.016

6 Conclusion

The univariate supervised preprocessing method introduced in this paper exploits
a simultaneous partitioning of both the input and class variables. This joint parti-
tioning provides a robust estimation of the class conditional probability, whatever
be the number of classes. The best partitioning model is selected using a Bayesian
approach and optimized using efficient heuristics with super-linear time complexity.
Extensive evaluation on UCI datasets containing around ten classes show that the
method obtains test accuracy results with the naive Bayes classifier that are equiva-
lent but not superior to those of the state-of-the-art. On the other hand, for applica-
tions with many classes, typically more than one hundred, the experiments demon-
strate a significant benefit of our method, with a tremendous increase of the test
accuracy. Such dramatic improvements pave the way for a robust, accurate and uni-
fied methodology for classification problems, irrespective of the number of classes.
In future work, we plan to apply this approach to web advertising problems, where
the objective is to choose the banner with the highest predicted click-through rate
given user profile data and web page data. Another research direction is to evalu-
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ate the benefit of our preprocessing method for alternative classification algorithms,
such as decision trees for example.
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