
Co-clustering based exploratory
analysis of mixed-type data tables
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Abstract Co-clustering is a class of unsupervised data analysis techniques that
extract the existing underlying dependency structure between the instances
and variables of a data table as homogeneous blocks. Most of those techniques
are limited to variables of the same type. In this paper, we propose a mixed
data co-clustering method based on a two-step methodology. In the first step,
all the variables are binarized according to a number of bins chosen by the
analyst, by equal frequency discretization in the numerical case, or keeping
the most frequent values in the categorical case. The second step applies a
co-clustering to the instances and the binary variables, leading to groups of
instances and groups of variable parts. We apply this methodology on several
data sets and compare with the results of a Multiple Correspondence Analysis
applied to the same data.

1 Introduction

Data analysis techniques can be divided into two main categories: supervised
analysis, where the goal is to predict a mapping between a set of input variables
and a target output variable, and unsupervised analysis where the objective
is to describe the set of all variables by uncovering the underlying structure
of the data. This is often achieved by identifying dense and homogeneous
clusters of instances, using a family of techniques called clustering.
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SAMM EA 4534 - University of Paris 1 Panthéon-Sorbonne, 90 rue Tolbiac 75013 Paris -
France, e-mail: firstname.lastname@univ-paris1.fr

1

firstname.lastname@orange.com
firstname.lastname@orange.com
firstname.lastname@univ-paris1.fr


2 Aichetou Bouchareb, Marc Boullé, Fabrice Clérot and Fabrice Rossi

Co-clustering ([Good, 1965, Hartigan, 1975]), also called cross-classification,
is an extension of the standard clustering approach. It is a class of unsuper-
vised data analysis techniques that aim at simultaneously clustering the set
of instances and the set of variables of a data table.

Over the past years, numerous co-clustering methods have been pro-
posed (for example, [Bock, 1979], [Govaert, 1983], [Dhillon et al., 2003], and
[Govaert and Nadif, 2013]). These methods differ on several axes including:
data types, clustering assumptions, clustering techniques, expected results,
etc. In particular, two main families of methods have been extensively stud-
ied: matrix reconstruction based methods where the co-clustering is viewed
as a matrix approximation problem, and mixture model based methods
where the co-clusters are defined by latent variables that need to be esti-
mated (for a full review of co-clustering techniques, readers are referred to
[Brault and Lomet, 2015]). The typical models used in mixture based ap-
proaches are Gaussian for numerical data, multinomial for categorical data
and Bernoulli for binary data.

Fig. 1: An illustration of a co-clustering where the original binary data table
is on the left and the co-clustered binary table is on the right.

Figure 1 shows an example of a binary data table representing n = 10
instances and m = 7 variables ([Govaert and Nadif, 2008]) and the binary
table of co-clusters resulting from a co-clustering into 3× 3 = 9 co-clusters.
The table of co-clusters provides a summary of the original data and allows
to view the main associations between the set of instances and the set of
variables.

Co-clustering methods are naturally limited to homogeneous data where
all variables are of the same nature: binary, numerical or categorical. In the
present paper, we propose to extend these exploratory analysis methods to
the case of mixed-type data using a two-step methodology. The first step
consists in binarizing the data using a number of parts, given by the analyst,
using equal frequency discretization in the case of numerical variables and
keeping the most frequent values in the case of categorical variables. The
second step consists of using a co-clustering method between the instances
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and variable parts, leading to a partition of the instances on one hand and a
partition of the variable parts on the other hand.

Given a number of parts, our objective is to require no further parameters
such as the number of instance clusters and the number of variable part
clusters. Therefore, in the co-clustering step, we use the MODL approach
([Boullé, 2011]) for its non parametric nature, its efficiency for extracting
correlation structures from the data, its scalability and its robustness to
overfitting induced by the embedded regularization.

Since we are in the context of exploratory analysis of a mixed-type data
table, we compared our methodology to the most widely used factor analysis
method in case of the presence of categorical variables: Multiple Correspon-
dence Analysis (MCA). Indeed, MCA is factor analysis technique that enables
one to extract and analyze the correlations between categorical variables
while performing a typology of instances. It enables the instances and the
variables to be handled in a complementary manner by duality where groups
of instances can be interpreted using variables and vice-versa. These aims of
MCA are thus consistent with the goals of co-clustering, hence the usefulness
of such comparison.

The remainder of this paper is organized as follows. In section 2 we give
an outline of the MODL approach for co-clustering, then in section 3 we
illustrate our proposed methodology for co-clustering mixed-type data tables.
In section 4, we present a summary of the MCA basics. Section 5 presents the
experimental results along with a comparative analysis. Finally, conclusions
and future work are presented in section 6.

2 MODL based co-clustering of two categorical variables

This section presents a summary of the MODL approach ([Boullé, 2011]) that
clusters simultaneously the values of two categorical variables X and Y . In
definition 1, we introduce a family of models for estimating the joint density
of two categorical variables, based on partitioning the values of each variable
into groups of values (hence MODL performs value oriented co-clustering).
We then present the evaluation criterion for these models in theorem 1.

Definition 1. A co-clustering model of two categorical variables is defined
by:

• a number of groups for each variable,
• the partition of the values of each variable into groups of values,
• the distribution of the instances of the data over the cells of the resulting

data grid,
• for each variable and each group, the distribution of the instances of the

group on the values of the group.
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Notations:

• N : number of instances
• V,W : number of values for each variable (assumed known)
• I, J : number of groups for each variable (unknown)
• G = IJ : number of cells in the resulting data grid
• mi.,m.j : number of values in group i (resp. j)
• nv., n.w: number of instances for value v (resp. w)
• nvw: number of instances for the pair of values (v, w)
• Ni., N.j : number of instances in the group i (resp. j)
• Nij : number of instances in the cell (i, j) of the data grid

Every model from the set of models in definition 1 is completely defined
by the choice of I, J , Nij , nv., n.w, and the partition of the values of each
variable to groups (clusters). In the co-clustering context, these parameters
correspond to the number of clusters per variable, the multinomial distribution
of the instances on the co-clusters, and the parameters of the multinomial
distributions of the instances of each variable cluster on the values of the
cluster. Notice that these parameters are optimized by the algorithm and not
fixed the analyst: by using MODL we will not add any additional user chosen
parameter to the data pre-processing parameter.

The number of values in each cluster mi. and m.j result from the partition
of the values of each variable into the defined number of clusters. Similarly, the
number of instances per cluster Ni. and N.j are derived by summation from
the number of instances per co-cluster (Ni. =

∑
j Nij and N.j =

∑
iNij).

In order to select the best model, a MAP based criterion is chosen: we

maximize the probability of the model given the data P (M |D) = P (M)P (D|M)
P (D) .

We use a prior distribution on the model parameters that exploits the natural
hierarchical nature of the parameters. The distribution is uniform at each level
of the hierarchy. In practice, it serves as a regularization term which prevents
the optimization from selecting systematically a high number of groups, for
instance.

Using the formal definition of the joint density estimation models and its
prior hierarchical distribution, the Bayes formula enables us to compute the
exact probability of a model given the data, which leads to theorem 1.

Theorem 1. Among the set of models, a co-clustering model distributed
according to a uniform hierarchical prior is Bayes optimal if its evaluation
according to the following criteria is minimal ([Boullé, 2011]):

c(M) = log V + logW + logB(V, I) + logB(W,J)

+ log
(N +G− 1

G− 1

)
+

I∑
i=1

log
(Ni. +mi. − 1

Ni. − 1

)
+

J∑
j=1

log
(N.j +m.j − 1

N.j − 1

)

+ logN !−
I∑

i=1

J∑
j=1

logNij ! +
I∑

i=1

logNi.! +
J∑

j=1

logN.j !−
V∑

v=1

lognv.!−
W∑

w=1

logn.w!

(1)
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where B(V, I) is the number of ways of partitioning a set of V elements into
I nonempty groups which can be written as a sum of the Stirling number of

the second kind: B(V, I) =
I∑
i=1

S(V, i).

The first line of this criterion corresponds to the prior distribution of
choosing the numbers of groups and to the partition of the values of each
variable to the chosen number of groups. The second line represents the
specification of the parameters of the multinomial distribution of the N
instances on theG cells of the data grid and the specification of the multinomial
distribution of the instances of each group on the values of the group. The
third line corresponds to the likelihood of the distribution of the instances on
the data grid cells and the likelihood of the distribution of the instances per
group over the values in the group, by the mean of a multinomial term.

The estimation of the joint density of two categorical variables distributed
according to hierarchical parameter priors is implemented in the software
Khiops1. We use this software for our experiments presented in section 5. The
detailed formulation of the approach as well as optimization algorithms and
asymptotic properties can be found in [Boullé, 2011].

3 Mixed-type data co-clustering

In this section we present our two-step approach. The first step is described in
Sections 3.1 and 3.2 and consists in binarizing the numerical and categorical
variables. The second step leverages the MODL approach to perform a co-
clustering of the instances × binarized variables data, see Section 3.3.

3.1 Data pre-processing

The first step of our methodology consists of binarizing all variables using
a user parameter k, which represents the maximal number of parts per
variable. In the case of a numerical variable, these parts are the result of an
unsupervised discretization of the range of the variable into k intervals with
equal frequencies. In the case of a categorical variable, the k−1 most frequent
values define the first k − 1 parts while the kth part receives all the other
values. An alternative discretization is with equal bins. However, frequency
based discretization reinforces the robustness of the approach and minimizes
the effect of outliers if present in the data (both outlier instances and variable
values).

1 The Khiops tool is available as a shareware at www.khiops.com/.

www.khiops.com/
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The parameter k defines the maximal granularity at which the analysis can
be performed. A good choice of k is related to a trade off between the fineness
of the analysis, the time required to compute the co-clustering of the second
step, and the interpretability of the co-clustering results. The computational
cost of the MODL co-clustering in the worst case is in O(N

√
N logN) where

N is the total number of instances (in our case, N = n × m, see Section
3.2), but the observed computation time tends to decrease with smaller k,
when data is far from the worse case. Also the size of the data set and its
complexity can be taken as an indicator, small values are probably sufficient
for small and simple data sets while for larger ones, it would be wise to choose
a larger parameter k. Nevertheless, we recommend to start with high values
of k since it gives a detailed description of the data. Starting from a detailed
description, the MODL approach will group the variable parts that needed
not to be separated in the same cluster which can only enhance the level of
correspondence of the resulting co-clustering to the original data, without
much loss of information.

One should note, however, that the granularity parameter k is far less
restrictive than other common parameters such as the number of instance
clusters and the number of variable clusters, commonly used in the vast
majority of co-clustering methods. In our experiments, we used k = 5 for a
small data set and k = 10 for a relatively large one.

If we take the Iris database for example, the output of the binarization
step, for k = 5, is illustrated in table 1.

SepalLength SepalWidth PetalLength PetalWidth Class

]−∞; 5.05] ]−∞; 2.75] ]−∞; 1.55] ]−∞; 0.25] Iris-setosa

]5.05; 5.65] ]2.75; 3.05] ]1.55; 3.95] ]0.25; 1.15] Iris-versicolor
]5.65; 6.15] ]3.05; 3.15] ]3.95; 4.65] ]1.15; 1.55] Iris-virginica

]6.15; 6.55] ]3.15; 3.45] ]4.65; 5.35] ]1.55; 1.95]

]6.55; +∞[ ]3.45; +∞[ ]5.35; +∞[ ]1.95; +∞[

Table 1: The output of the discretization step for k = 5

3.2 Data transformation

The MODL approach ([Boullé, 2011]), summarized in Section 2, has been
chosen because it is non parametric, effective, efficient, and scalable. Although
designed for joint density estimation, MODL has also been applied to the
case of instances×binary-variables. An example of such application is that of
a large corpus of documents, where each document is characterized by tens of
thousands of binary variables representing the usage of words. In this case,
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the corpus of documents is transformed beforehand into a representation in
the form of two variables IdText and IdWord.

IdInstance IdVarPart

I1 SepalLength]5.05; 5.65]

I1 SepalWidth]3.45; +∞[

I1 PetalLength]−∞; 1.55]
I1 PetalWidth]−∞; 0.25]

I1 Class{Iris-setosa}
I2 SepalLength ]−∞; 5.05]
I2 SepalWidth]2.75; 3.05]

I2 PetalLength]−∞; 1.55]

I2 PetalWidth]−∞; 0.25]
I2 Class{Iris-setosa}

Table 2: The first 10 instances of the binarized Iris database

In the same manner, we transform the binarized database into two variables
IdInstance and IdVarPart by creating, for each instance, a record per variable
that logs the link between the instance and its variable part. The set of n initial
instances characterized by m variables is thus transformed into a new data
set of N = n×m instances and two categorical variables, the first of which
contains V = n values and the second containing, at most, W = m× k values.
For instance, in the Iris database, this transformation results in two columns
of 750 instances. Table 2 shows the first ten instances. Notice that after the
transformation, the algorithm cannot leverage two aspects of the data: the
actual value taken by a variable inside a variable part and the original links
between variable parts. In other words, the fact that SepalLength]5.05; 5.65]
and SepalLength ]−∞; 5.05] both refer to the same original variable is not
leveraged by MODL.

3.3 Co-clustering and co-cluster interpretation

Now that our data is represented in the form of two categorical variables,
we can apply MODL to find a model estimating the joint density between
these two variables. This results in two partitions of the values of the newly
introduced categorical variables. Clusters of values of IdInstance are in fact
clusters of instances while clusters of values of IdVarPart are clusters of
variable parts. Thus the results is a form of co-clustering in which variables
are clustered at the level of parts rather than globally. In the resulting
co-clustering, the instances of the original database (values of the variable
IdInstance) are grouped if they are distributed similarly over the groups of
variables parts (values of the variable IdVarPart), and vice-versa.
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When the optimal co-clustering is too detailed, coarsening of the partitions
can be implemented by merging clusters (of objects or variable parts) in
order to obtain a simplified structure. While this model coarsening approach
can degrade the co-clustering quality, the induced simplification enables the
analyst to gain insight on complex data at a coarser level, in a way similar
to exploration strategies based on hierarchical clustering. The dimension on
which the merging is performed and the best merging are chosen optimally
at each coarsening step with regards to the minimum divergence from the
optimal co-clustering, measured by the difference between the optimal value
of the criterion and the valued obtained after merging to clusters.

4 Multiple Correspondence Analysis

Factor analysis is a set of statistical methods, the purpose of which is to
analyze the relationships or associations that exist in a data table, where rows
represent instances and columns represent variables (of any type).

The main purpose of factor analysis is to determine the level of similarity
(or dissimilarity) between groups of instances (problem classically treated by
clustering) and the level of associations (correlations) between the observed
variables. Multiple correspondence analysis is a factor analysis technique
that enables one to analyze the correlations between multiple categorical
variables while performing a typology (grouping) of instances and variables in
a complementary manner.

4.1 MCA in practice

Let x = (xij , i ∈ I, j ∈ J) be the instance×variables data table, where I is
the set of n studied objects and J is the set of p categorical variables (with
mj categories each) characterizing the objects. Since mathematical operations
would not make sense in categorical variables, MCA uses an indicator matrix
called complete disjunctive table (CDT) which is a juxtaposition of p indicator
matrices of all variables where rows represent the instances and columns
represent the categories of the variable. This CDT can be considered as a
contingency table between instances and the set of all categories in the data
table.

For a given CDT, T , the sum of all elements of each row is equal to the
number p of variables, the sum of all elements of a column s is equal to the
marginal frequency ns of the corresponding category, the sum of all columns
in each indicator matrix is equal to 1, the sum of all elements in T is equal to
np, the matrix of row weights is given by r = 1

nI, and the column weights are
given by the diagonal matrix D = diag(D1, D2, . . . , Dp) where each Dj is the
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diagonal matrix containing the marginal frequencies of all categories of the
jth variable.

4.2 Main mathematical results for MCA

The principal coordinates of categories are given by the eigenvectors of
1
pD−1TtT, which are the solutions of the equation:

1

p
D−1TtTa = µa

The principal coordinates of instances are given by the eigenvectors of
1
pTD−1Tt, which are the solutions of the equation:

1

p
TD−1Ttz = µz

We deduce ([Saporta, 2006]) the transition formulas given by z = 1√
µ

1
pTa

and a = 1√
µD−1Ttz, which describes how to pass between the coordinates.

Note that:

• the total inertia is equal to (mp − 1), where m is the total number of
categories.

• the inertia of all the mj categories in the jth variable is equal to 1
p (mj−1).

Since the contribution of a variable to the total inertia is proportional
to the number of categories in the variable, it is preferable to require all
variables to have the same number of categories, hence the utility of the
pre-processing step (section 3.1).

• the contributions of an instance i and of a category s to a principal axis
are given by:

Ctrh(i) =
1

n

z2ih
µh

et Ctrh(s) =
ns
np

a2ih
µh

• the contribution of a variable to the inertia of a factor is equal to the sum
of contributions of all categories in the variable to that same axis. This
contribution measures the level of correlation between the variable and
the principal axis.

MCA can be used to simultaneously analyze categorical and numerical
variable. To do so, we follow the classic approach of decomposing the range
of each numerical variable into intervals.
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5 Experiments

We start the experiments by comparing our methodology (Section 3) with
MCA (Section 4) using the Iris database for didactic reasons, then we evaluate
our approach using the Adult database ([Lichman, 2013]) to evaluate its
scalability.

5.1 The case study: Iris database

The Iris database consists of n = 150 instances and m = 5 variables, four
numerical and one categorical.

5.1.1 Co-clustering

Fig. 2: Coclustering pour la base Iris

After binarizing the Iris data using a granularity of k = 5 parts and
applying the MODL co-clustering method, we found that the optimal grid
consists of 3 clusters of instances and 8 clusters of variable parts. Figure 2
illustrates this grid where rows represent the instance clusters and columns
represent the variable part clusters. The mutual information between the two
dimensions can be visualized in each cell, where the red color represents an over-
representation of the instances compared to the case where the two dimensions
are independent and the blue color represents an under representation.

The three instance clusters, shown in figure 2, can be characterized by the
types of flowers of which they are composed and by the most represented
variable parts per cluster (the red cell of each row of the grid):
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• in the first row: a cluster of 50 flowers, all of the class Iris-setosa and
characterized by the variable parts: Class{Iris-setosa}, PetalLength] −
inf ; 1.55] and PetalWidth]− inf ; 0.25],

• in the second row: a cluster of 54 flowers, 50 of which are of the
class Iris-virginica, and characterized by the following variable parts:
Class{Iris-virginica}, PetalLength]5.35; +inf [, PetalWidth]1.95; +inf [ and
PetalWidth]1.55; 1.95],
• the third row: a cluster of 46 flowers, all of the class Iris-versicolor, and

caracterized by the variable parts:
Class{Iris-versicolor}, PetalLength]3.95; 4.65] and PetalWidth]1.15; 1.55].

Notice first that, as expected, the methodology enables us to group variable
(parts) of different nature in the same cluster.

The three instance clusters are easily understandable as they represent
the small, large and medium flowers respectively. These clusters are mainly
explained by three clusters of variable parts containing the variables Class,
PetalLength and PetalWidth. In fact it is well known that in the Iris data set,
the three classes are well separated by the Petal variables. This is reflected
here by the grouping of the variables as well as by the instance clusters.

Conversely, looking at the clusters of variable parts, one can distinguish
two non informative clusters (the fourth and eighth columns which are the two
columns with the least contrast), which are based essentially on the variable
SepalWidth:

• the fourth column contains the parts:
SepalWidth]−∞; 2.75], SepalWidth]2.75; 3.05], and SepalLength]5.65; 6.15],
• the eighth column contains the parts:

SepalWidth]3.05; 3.15] and SepalWidth]3.15; 3.45].

The small values of SepalWidth (fourth column) are slightly over-represented
by the cluster of instances associated to the classes Iris-versicolor and Iris-
virginica while the intermediate values (eighth column) are slightly over-
represented for the cluster of instances associated to Iris-versicolor.

5.1.2 MCA analysis

MCA analysis is performed based on the same data binarization as previously.
The distribution of eigenvalues (Figure 3) indicates that the first two

principal axes do capture enough information with a cumulative variance of
38.30%. Therefore, we will limit our analysis to the first factorial plan.

The comparison between the projection of variables (figure 4 on the right)
and the projection of instances (figure 4 on the left), over the first factorial
plan, reveals some clear correlations:

• in the top left, Iris-virginica is correlated with high values of PetalLength
(greater than 4.65), high values of PetalWidth (greater than 1.55) and
high values of SepalLength (greater than 6.15),
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Fig. 3: Histogram of eigenvalues (on the left) and the percentage of variance
captured by the axes in the MCA analysis of Iris

Fig. 4: Projection of the set of instances and variable parts on the first factorial
plan

• on the right, Iris-setosa is strongly correlated with low values of Petal-
Length (less than 3.95), low values of PetalWidth (less than 1.15) and low
values of SepalLength (less than 5.05),
• in the bottom left, Iris-versicolor is correlated with intermediate values

of PetalLength, PetalWidth and SepalWidth.

The projection of instances (on the left of figure 4) shows a mixture between
Iris-virginica and Iris-versicolor. These results are identical to those found
using the co-clustering analysis.

The variable parts issued from SepalWidth are weakly correlated with
the others and contribute less the first factorial plan: the small values (less
than 3.05) are associated with the mixture zone between Iris-virginica and
Iris-versicolor, the intermediate values (between 3.05 and 3.45) have their
projections in between Iris-virginica and Iris-setosa (they are therefore present
in both flowers).
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These results are also in agreement with the results deduced from the
co-clustering (see the above interpretation of the fourth and eighth columns
in the co-clustering).

Finally, on this didactic example where the results of MCA are easily
interpretable, a good agreement emerges between the MCA and the proposed
co-clustering approach.

5.2 The case study: Adult database

The Adult database is composed of n = 48842 instances represented by
m = 15 variables, 6 numerical and 9 categorical.

5.2.1 Co-clustering

Fig. 5: Co-clustering of the Adult database, with 100% of information (on the
left) and 70% of information (on the right).

When the Adult data is binarized, using k = 10, and the transformation
into two variables is performed as presented in Section 3, we obtain a data
set of N ≈ 750, 000 rows and two columns: the IdInstance variable containing
around n ≈ 50, 000 values (corresponding to the initial instances) and the
IdVarPart variable containing m × k ≈ 150 values (corresponding to the
variable parts). The co-clustering algorithm is an anytime, regularly issuing
its quality index (the achieved level of compression). For the Adult database,
the co-clustering takes about 4 mn for a first quality result (a time beyond
which the level of compression does not improve significantly). However, we
proceed with the optimization for about an hour which results in around 5%
of improvement in the log-likelihood of the model. The obtained result is very
detailed, with 34 clusters of instances and 62 clusters of variable parts. In an
exploratory analysis context, this level of detail hinders the interpretability.
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In our case, the results can be simplified by iteratively merging the rows and
columns of the finest clusters until reaching a reasonable percentage of the
initial amount of information. Figure 5 presents the co-clustering results with
34× 62 clusters (on the left), which represents 100% of the initial information,
and a simplified version with 10× 14 clusters preserving 70% of the initial
information in the data.

The first level of retrieved patterns appears clearly when we consider
dividing the clusters of instances into two parts, visible on the top half
and the bottom half of the co-clustering cells presented in figure 5. The
instance clusters in the top half are mainly men with a good salary, with
an over-representation of the variable part clusters containing sex{Male},
relationship{Husband}, relationship{Married...}, class{More}, age]45.5; 51.5],
age]51.5; 58.5], hoursPerWeek]48.5; 55.5], hoursPerWeek]55.5; +∞[. The in-
stance clusters in the bottom half are mainly for women or rather poor un-
married men, with an over-representation of the variable part clusters contain-
ing class{Less}, sex{Female}, maritalStatus{Never-married}, maritalStatus-
{Divorced}, relationship{Own-child}, relationship{Not-in-family}, relationship-
{Unmarried}.

In the left side figure, the instance cluster with the most contrast (hence
the most informative) is on the first row and it can easily be interpreted by
the over-represented variable part clusters in the same row:

• relationship{Husband}, relationship{Married...},
• educationNum]13.5; +∞[, education{Masters},
• education{Prof-school},
• sex{Male},
• class{more},
• occupation{Prof-specialty},
• age]45.5; 51.5], age]51.5; 58.5],
• hoursPerWeek]48.5; 55.5], hoursPerWeek]55.5; +∞[.

It is therefore a cluster of around 2000 instances, with mainly married men
with rather long studies, working in the field of education, at the end of their
careers, working extra-time with good salary.

In the right side figure, the most contrasted clusters of variable parts, hence
the most informative, are those presented by the columns 4 to 9. These contain
only variable parts issued from the variables education and educationNum
which are the most structuring variables for this data set.

• educationNum]11.5; 13.5], education{Assoc-acdm}, education{Bachelors}
(the 4th column),
• educationNum]−∞; 7.5], education{10th}, education{11th}, education{7th-

8th}(the 5th column),
• educationNum]13.5; +∞[, education{Masters}(the 6th column),
• educationNum]10.5; 11.5], education{Assoc-voc}, education{Prof-school}

(the 7th column),
• educationNum]7.5; 9.5], education{HS-grad}(the 8th column),
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• educationNum]9.5; 10.5], education{Some-college}(the 9th column).

The variables education and educationNum are, respectively, categorical
and numerical, very correlated as their variable part clusters seem particularly
consistent.

5.2.2 MCA analysis

Figure 6 shows the distribution of the variability captured by the axes along
with the cumulative level on information.

Fig. 6: Barplots of the variability (on the left) and the cumulative information
captured by the axes (on the right) in the MCA analysis of Adult.

On the contrary to the smaller Iris database, the distribution of the variance
(Figure 6) indicates that the first two principal axes only capture a cumulative
variance of 7.5%. Figure 7 shows the projections of the instances and variable
parts on the first factorial plan where in the left side figure, the black circles are
the instances that gain less than 50K and the red triangles are the instances
that gain more than 50K. Without the prior knowledge about the class of
each instance, which is the case in exploratory analysis, the projection of
instances appears as a single dense cluster.

The projection on the first factorial plan does not allow to distinguish any
clusters, which is not surprising given the low level of variability captured
by this plan. However, in order to capture 20%, 25% or 30% of the variance,
one needs to choose 7, 10 or 13 axes, respectively. Choosing a high number of
axes, say 13, means that some post analysis of the projections is required.
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Fig. 7: Projection of the set of instances and variable parts, of the Adult
database, on the first factorial plan

K-means of the MCA projections

In order to extract potentially meaningful cluster from the MCA results, we
performed a k-means on the projections of the instances and the variable
parts on the factor space formed by the first 13 axes. Figure 8 shows the
projection of the k-means centers with k = 10 (on the left) and k = 100 (on
the right to illustrates how complex the data is).

Fig. 8: Projection of the k-means centers with k=10 and k=100 clusters, on
the first factorial plan.

The k-means clustering of the projections with k = 2 gives two clusters
containing 26178 instances associated to 50 variable parts, and 22664 instances
associated with 46 variable parts, respectively. The first cluster of instances
associates the variable part class{more} with being married, white, a men,
having more than 10.5 years of education, being more than 30.5 years old,
working more than 40.5 hours per week, or originating from Canada, Cuba,
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India or Philippines. The second cluster of instances associates the variable
part class{less} with being young (age] − ∞; 30.5]), having less than 10.5
years of education, being never married, divorced or widowed, being Amer-
Indian-Eskimo, black or an other non white race (race{Other}), working for
less than 40.5 hours per week, being a women or originated from countries
like El-Salvador, England, Germany, Mexico, Puerto-Rico, and United-States.
These clusters are consistent with the two main clusters found by the co-
clustering, particularly in combining being a men, married, middle aged and
working extra hours with earning more than 50K and associating being a
women, never married, divorced, or having a child with earning less than 50k.

Table 3 shows a summary of the k-means clustering with k = 10 indicating
the contribution of each cluster to the intra-cluster variance. To avoid confusion
with the clusters resulting from co-clustering, we name the k-means clusters
using letters: {a, b, c, d, e, f, g, h, i, j}.

cluster a b c d e f g h i j

size 4297 1572 9325 4033 2061 7686 1581 4075 7163 7049

withinss 4484.7 1849.6 8185.9 3919.8 1738.8 5156.8 1720.7 2490.5 5447.2 3701.6

withinss% 11.58 4.77 21.15 10.12 4.49 13.32 4.44 6.43 14.07 9.56

Table 3: Summary of the clusters of instances using k-means

cluster a b c d e f g h i j

1 1679 444 141 2289 886 12 7 0 48 111

2 0 20 4096 0 0 0 0 0 0 0

3 0 96 0 0 0 18 5 0 0 6377

4 0 31 0 0 0 0 0 13 3588 0

5 114 88 576 247 129 331 54 28 455 434

6 0 59 0 0 0 0 252 3314 3072 0

7 1 183 0 1 0 7318 776 609 0 127

8 0 27 4512 0 0 3 150 93 0 0

9 2503 617 0 0 0 2 299 16 0 0

10 0 7 0 1496 1046 2 38 2 0 0

Table 4: The confusion matrix between the co-clustering and k-means parti-
tions.

Table 4 shows the confusion matrix between the clusters issued from the
co-clustering method and the clusters issued from the k-means of projections.

The problem of comparing the two clusterings can be seen as a maximum
weight matching problem in a weighted bipartite graph, also known as the
assignment problem. It consists of finding the one-to-one matching between
the nodes that provides a maximum total weight. This assignment problem can
be solved using the Hungarian method [Kuhn and Yaw, 1955]. Applied on the
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matrix of mutual information, the Hungarian algorithm results in the following
cluster associations: (1, d), (2, g), (3, j), (4, i), (5, b), (6, h), (7, f), (8, c), (9, a),
(10, e) as highlighted in table 4. These same associations are also obtained
when applying the algorithm to the chi2 table. This one-to-one matching
carries 76.3% of the total mutual information. The highest contributions to
the conserved mutual information associate the k-means cluster a with the
co-clustering cluster 9, the k-means cluster c with the co-clustering cluster 8,
the k-means cluster f with the co-clustering cluster 7, the k-means cluster h
with the co-clustering cluster 6, the k-means cluster i with the co-clustering
cluster 4, the k-means cluster j with the co-clustering cluster 3. In terms of
variable parts, these clusters are as follows:

• the cluster a contains individuals who never-worked or work as handlers-
cleaners, have less than 7.5 years of education, or have a level of education
from the 7th to the 11th grade.

• the cluster c contains instances characterized by: workclass{Self-emp-
inc}, education{Assoc-acdm, Bachelors}, education num]11.5; 13.5], occu-
pation {Exec-managerial, Sales}, race{Asian-Pac-Islander}, capital loss
]77.5; +∞[, hours per week]40.5; 48.5], hours per week]48.5; 55.5], native-
country{Germany, Philippines}.
• the cluster f contains instances characterized by: earning less than 50K

(class{less}), being relatively young (age]26.5; 33.5]), having relatively low
level of education (education{HS-grad} and education num]7.5; 9.5]), being
unmarried, divorced or separated, being an Amer-Indian-Eskimo, Black
or Female.

• the cluster h contains instances that work less than 35.5 hours per week,
are under 26.5 years old, never married and have a child.

• the cluster i contains middle-aged individuals (between 41.5 and 45.5
years old), with moderate education (9.5 to 10.5 years of education) and
working in farming or fishing.
• the cluster j contains instances characterized by the variable parts:

age]33.5; 37.5], age]37.5; 41.5], age]45.5; 51.5], age]51.5; 58.5], workclass
{Self-emp-not-inc}, fnlwgt]65739; 178144.5], hours per week]55.5; +∞[, re-
lationship{Husband}, marital status {Married-AF-spouse}, marital status
{Married-civ-spouse}, occupation{Craft-repair, Transport-moving}, race-
{White}, sex{Male}.

To summarize, the clusters obtained using a k-means on the projections of the
MCA, are somewhat consistent with those obtained using the co-clustering.
However, the process of extracting these clusters, through MCA analysis, is
rather tedious while with co-clustering, the clusters could be extracted and
explained simply by looking at the matrix of co-clusters.
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5.3 Discussion

An important contribution of our methodology, compared to MCA, is its ease
of application and the direct interpretability of its results. When MCA is
applied to a database of a significant size, such as Adult, the projections of
instances and variables on the first factorial plan (and even on the second plan)
do not enable us to distinguish any particularly dense clusters. Therefore,
it is necessary to choose a high number of axes in order to capture enough
information. On the database Adult, we found that 13 axes explain only
30% of the information. Choosing this high number of axes meant that some
post analysis of the projections (such as k-means) is necessary to extract any
possible clusters. Applying this long process for cluster extraction, the results
obtained using k-means, although only explaining 30% of the information,
are somewhat consistent with those obtained using the co-clustering and
our two-step methodology. However, with our methodology, the hierarchy of
clusters enables us to choose the desired level of detail and the percentage
of information, then one can distinguish, and eventually explain, the most
informative clusters, recognized by their contribution to the total information.

6 Conclusion

In this article, we have proposed a methodology for using co-clustering in
exploratory analysis of mixed-type data. Given a number of parts, chosen
by the analyst, the numerical variables are discretized into intervals with
equal frequencies and the most frequent values in the categorical variables
are kept. A co-clustering between the instances and the binarized variables is
then performed while letting the algorithm infer, automatically, the size of
the summarizing matrix.

We have shown that on a small database, exploratory analysis reveals a good
agreement between MCA and co-clustering, despite the differences between
the models and the methodologies. We have also shown that exploratory
analysis is feasible even on large and complex databases. The proposed
methods is a steps toward understanding a data set via a joint analysis of
the clusters of instances and the clusters of variable parts. The results of
these experiments are particularly promising and show the usefulness of the
proposed methodology for real situations of exploratory analysis.

However, this methodology is limited by the need for the analyst to chose
a parameter, the number of parts per variable, used for data binarization.
Furthermore, the co-clustering method does not follow the origins of the parts
which would be useful to consider the intrinsic correlation structure that exist
between the parts originated from the same variable, which form a partition.
In future work, we will handle these limitations by defining co-clustering
models that integrate the granularity parameter and track the clusters of
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variable parts that form a partition of the same variable. By defining an
evaluation criterion for such co-clustering as well as dedicated algorithms, we
hope to automate the choice of the granularity and improve the quality of
the co-clustering results.
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