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Abstract— In France, the currently emerging “smart grid”
and more particularly the 35 millions of “smart meters” will
produce a large amount of daily updated metering data. The
main french provider of electricity (EDF) is interested by
compact and generic representations of time series which allow
to accelerate the processing of data. This article proposes a
new data-driven symbolic representation of time series named
SAXO, where each symbol represents a typical distribution
of data points.Furthermore, the time dimension is optimally
discretized into intervals by using a parameter free Bayesian
coclustering approach (MODL). SAXO is favorably compared
with the SAX representation by evaluating a classifier trained
from recoded datasets. Our experiments highlight a significant
gap in performance between both approaches.

I. INTRODUCTION

The french electrical grid is on the point of being mod-
ernized by exploiting information and communications tech-
nologies. The emerging “smart grid” has multiple objectives
: i) the control of the grid and the quality of the electricity
supply have to be optimized, despite the fact that power
stations are highly distributed; ii) the production of electricity
has to be scheduled by taking into account the uncertainty
related to renewable energy (ex: wind, sun exposure); iii)
the electrical demand need to be coordinated to flatten
the consumption peaks and to limit their impact on the
environment.

The “smart meters” constitute the bottom of the smart
grid hierarchy. These new digital meters will be set up in
all french households, within a few years. Smart meters are
able to record the individual power consumptions in real
time, and to send this information to a data center through
a communication network. Currently, all technical choices
are not yet finalized, but we can reasonably assume that the
recorded time series will be sampled every 30 minutes for
the 35 millions of smart meters.

The needs of EDF1 in supervised and unsupervised analy-
sis are increasingly important. For instance, a clustering algo-
rithm may reveal unexpected behaviors from the consump-
tions of our customers [1, 2]. Supervised approaches (i.e.
classification, regression and forecasting) can be exploited
in many application areas. The most obvious example is the
forecasting of the electricity demand which allows EDF to
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schedule the production of the power stations for the next
day [3].

In practice, this kind of data is difficult to analyze
efficiently because of : i) the large size of datasets; ii)
the inherently high dimensionality of time series; iii) the
volatility of individual electrical consumptions. Therefore,
the question of the representation of time series becomes
crucial.

Our objective is to find a generic, compact, informative
and adaptive representation of time series. In the ideal case, a
generic representation should be exploited by a large range of
Data Mining and Machine Learning algorithms. A compact
and informative representation should reduce the dimension-
ality of time series, while limiting the loss of information.
More precisely, the processing of the recoded datasets could
be drastically accelerated and the quality of our analysis
could be improved at the same time. Furthermore, the storage
of this kind of data could be facilitated by compressing the
initial datasets. An adaptive representation should be driven
by the data in order to maximize the preserved information,
it should be theoretically grounded and parameter-free.

This article proposes a new data driven symbolic represen-
tation of time series. Section II deals with related work. More
particularly, the SAX approach [4] which is a commonly
used symbolic representation is presented in details. Section
III presents the new SAXO approach which is based on a
Bayesian co-clustering method. The SAXO representation is
first learned from a sampled dataset, and then deployed on
the entire dataset. These two steps allow to process massive
datasets by using algorithms with appropriated time com-
plexity. In Section IV, our approach is favorably compared
with the SAX approach. These comparative experiments are
carried out on public supervised datasets, by applying a
classifier on several versions of the recoded time series. At
last, perspective and future works are discussed in Section V

II. RELATED WORK

In comparison with the other types of data, time series
are particularly difficult to treat due to their inherently high
dimensionality [5, 6]. The curse of dimensionality [7] states
that, for a given statistical analysis and for a fixed accuracy,
the number of training examples must increase exponentially
with the dimension of the data. Virtually all data mining
algorithms scale poorly with the dimensionality. During the
two last decades, numerous high level representations of
time series have been proposed to overcome this issue. The
most commonly used approaches are : the Discrete Fourier
Transform [8], the Discrete Wavelet Transform [9, 10], the



Discrete Cosine Transform [11], the Piecewise Aggregate
Approximation [12].

Such approaches can be exploited, as a preprocessing,
to recode a collection of time series. Then, a data mining
algorithm can be applied on the recoded dataset. The main
challenge is to improve the scalability of the data mining
algorithms, while maximizing the quality of the performed
analysis. A good trade-off must be reached between the com-
pression of the input dataset and the preserved information.
A data driven representation of time series could be helpful
to reach this objective.

Notations for time series :
In this article, the input dataset D is considered to
be a collection of N time series Si (with i ∈ [1, N ]).
Each time series consists of mi data points, which
are couples of values X and timestamps T . The
total number of data points is denoted by m =∑N
i=1mi. As presented below, a symbolic represen-

tation discretizes the series into w time intervals and
symbolizes it by using an alphabet of α symbols.

A. Overview of SAX

The symbolic representations consist in discretizing the
original time series into symbolic strings [4]. A large amount
of algorithms and data structures coming from text mining
can be applied on such recoded data [13, 14]. Numerous
papers deal with the symbolic representation of times series
[15], the SAX (Symbolic Aggregate approXimation) approach
has the particularity of providing a distance measure that
lower bounds the euclidian distance defined in the original
space of the time series.

The SAX representation aggregates values within time in-
tervals, which reduces the dimension of the recoded dataset.
SAX also provides a “numerosity reduction" by discretizing
the average values of each time interval by symbols. The
number of distinct forms of symbolic time series is dras-
tically reduced. Actually, the SAX representation allows to
highly compress the time series and drastically accelerates
the applied data mining algorithms.

The SAX representation has become an essential tool for
time series data mining. This approach has been exploited to
implement various tasks on large time series datasets, includ-
ing similarity clustering [16], anomaly detection [17, 18], dis-
covery of motifs [19], visualization [20], stream processing
[4]. Originally, the SAX approach was designed for indexing
very large sets of signals [21], and is still a reference in this
field.

B. General principle of SAX

The SAX representation has been introduced by J. Lin
and al [4]. This approach consists in two successive steps :
i) transform the original time series into Piecewise Aggre-
gate Approximation (PAA) [22, 23]; ii) symbolize the PAA
representation into a discrete string. In the particular case of
the SAX representation, we consider that all time series have
the same length, denoted by m∗.

PAA transform :
An original time series S = {x1, ..., xm∗} is represented by
a vector S̄ = {x̄1, ..., x̄w} of w mean values calculated on
regular time intervals. More precisely, the ith element of s̄
is defined as follows :

x̄i =
w

m∗

m∗
w i∑

j=m∗
w (i−1)+1

xj

The time series is divided into w equal size time intervals,
that allows to represent a time series S in a w-dimensional
space. The parameter w is arbitrarily fixed. Figure 1 is
extracted from [4] and plots an example of time series
associated with its PAA representation.

S

S

Fig. 1. Example of PAA representation.

Before being converted into the PAA representation, each
time series is independently normalized (the mean equals to
zero, the standard deviation equals to one). This preprocess-
ing aims at encoding the “shape” of times series, and then
compare time series with different offsets and magnitudes
[24].

From PAA to symbolic representation :
The SAX transform aims at discretizing the mean values
{x̄i} obtained from the PAA transform, into a set of α
equiprobable symbols. The interval of values corresponding
to each symbol can be analytically calculated under the
assumption that the time series have a Gaussian distribution
[4]. An alternative method consists in empirically calculating
the quantiles of values in the dataset.

Figure 2 plots an example of SAX transform based on
a set of three symbols (i.e. {a, b, c}). The left part of this
figure illustrates that the distribution of values is supposed
to be known, and is divided into equiprobable intervals
corresponding to each symbol. Then, these intervals are
exploited to discretize the mean values into symbols within
each time interval. The concatenation of symbols baabccbc
constitutes the SAX representation of the original time series,
also called a SAX word.

C. Limitations of SAX

The SAX representation appears to be really helpful for
processing large datasets of time series, owing to dimen-
sionality and numerosity reduction. However, this approach
suffers from several significant limitations.



Fig. 2. Example of SAX representation.

A lossy compression approach :
SAX is a surjective transform : there is an infinity of time
series matching with a fixed SAX word. The set of time
series compatible with an arbitrary chosen SAX word gathers
a large variety of time series, including extremely noisy and
smooth time series. Figure 3 illustrates this point by plotting
two time series represented by the same SAX word.

Fig. 3. Example of two time series represented by the same SAX word :
one of these is smooth, and the other one is very noisy.

In practice this phenomenon can be problematic, since
most of the information carried by the dataset may be lost.
For instance, a clustering algorithm applied on a SAX re-
encoded dataset may not find interesting groups due to this
loss of information. The SAX representation can be viewed
as a lossy compression approach. The lost information cannot
be quantified in the general case (i.e. without prior hypothesis
on data). The fact that each symbol represents an interval of
average values calculated within a time interval appears to be
low informative. We claim that the loss of information could
be reduced and regularized by the dataset. In this paper, the
proposed approach associates a typical distribution of data
points to each symbol.

The discretization is not driven by the data :
The SAX transform involves : i) a discretization of “time”
into equal size intervals; ii) a discretization of “values” into
equiprobable symbols. As shown on Figure 3, these two
partitions constitute a two-dimensional grid that is exploited
to re-encode the time series. The SAX approach carries
out this discretization independently of the dataset, and
both dimensions (“time” and “values”) are considered to
be independent. We claim that an efficient discretization
approach may improve the SAX representation, especially

by catching the joint density of “time” and “values”. In that
way, we aim at reducing the lost information due to the
compression of data.

The alphabet has the same meaning over time :
In the SAX representation, each symbol has the same mean-
ing over time whatever its rank in the SAX words. This
lack is common to all existing symbolic representations,
which assume that the distribution of data points is constant
over time. For instance, the input dataset may represent the
daily electricity consumptions of households. The variety of
the consumer’s behavior is not the same during the night
than during daytime, and cannot be optimally encoded by
the same alphabet. We claim that the dependency between
data points and time may be caught by providing a different
meaning to the symbols over time.

Two parameters need to be adjusted :
The SAX transform involves two user parameters (i.e. the
number of time intervals w and size of the alphabet α). The
impact of these parameters on the quality of subsequently
analysis is difficult to evaluate in practice.

III. SAXO : A NEW DATA DRIVEN APPROACH

This paper proposes a free parameter approach, which
optimizes the following modeling choices in a fully data
driven way : i) the number of time intervals; ii) the bounds
of time intervals; iii) the typical distributions of data points
associated with each symbol, into each time interval.

A. Overview

The SAXO approach (Symbolic Aggregate approXimation
by data-driven Optimization) is designed to overcome the
limitations of existing symbolic representations (see Section
II-C). This approach optimizes the discretization of time and
values. Each symbol matches with a typical distribution of
data points, which depends on the rank of the symbol.

The SAXO approach widely exploits the unsupervised
discretization method MODL [25], our choice is motivated
by the good statistical properties of this approach :

• MODL is theoretically grounded and exploits an
objective Bayesian approach [26] which turns the dis-
cretization problem into a task of model selection. The
Bayes formula is applied by using a low-informative
prior distribution and leads to an analytical criterion
which represents the probability of a model given the
data. Then, this criterion is optimized in order to find
the most probable model given the data. The number
of intervals and their bounds are automatically chosen.

• The best discretization model estimates the joint
density of explicative variables by a multidimensional
data grid.

• MODL is a nonparametric approach in the meaning
of C. Robert [26] : the number of modeling parameters
increases continuously with the number of training



examples. Any joint distribution can be estimated,
provided that enough examples are available.

The SAXO approach aims at processing very large datasets
of time series, and exploits two successive algorithms. First,
the learning phase consists in defining the representation
from a sampled dataset with a O(m

√
m logm) time com-

plexity (Algorithm 1, Section III-C) . Then, the SAXO
representation is efficiently deployed on the entire dataset
with a O(m) time complexity (Algorithm 2, Section III-C).

Fig. 4. Main steps of the learning step

Figure 4 gives the intuition of the SAXO approach by
illustrating the main steps of the learning algorithm. The joint
density P (C, T,X) of the IDs of time series C, the values
X , and the time T is estimated by a trivariate coclustering
model. The outcome time discretization is retained, and the
joint density P (C,X) is estimated within each time interval
by using a bivariate coclustering model. The resulting clus-
ters of time series are characterized by piecewise constant
distributions of values, and corresponds to the symbols.

Section III-B presents in details the MODL coclustering
approach and explains how this approach has been adapted to
the particular case of time series. Section III-C is dedicated
to the SAXO algorithms which learn the representation from
data and deploy it on the entire dataset.

B. MODL : Clustering approach for times series

This section summarizes the MODL (Minimum Optimized
Description Length) coclustering approach and its application
to the clustering of time series detailed in [27].

Data Grid Models :
The MODL coclustering approach allows to automatically
estimate the joint density of several (numerical or categorial)
variables, by using a data grid model [25]. A data grid
model consists in partitioning each numerical variable into
intervals, and each categorical variable into groups. The
cross-product of the univariate partitions constitutes a data
grid model, which can be interpreted as a nonparametric
piecewise constant estimator of the joint density. A Bayesian
approach selects the most probable model given the dataset,
within a family of data grid models.

Application to time series :

Each time series consists of mi data points, which are
characterized by two variables : T represents the timestamps
and X is the values of the data points. The ith time series is
denoted by Si = (tij , xij)

mi
j=1. The MODL approach handles

a re-encoded dataset P which contains the m data points of
D in a tabular format. Each data point is characterized by
three variables : C represents the “id” of the original time
series, T and X .

Then, the coclustering approach is applied to estimate
the joint density P (C, T,X) by a trivariate coclustering
model. As P (T,X|C) = P (C,T,X)

P (C) , this model can also be
interpreted as an estimator of the joint density between T
and X , which is constant within each cluster of time series.
In others words, this clustering approach gathers time series
with respect to the joint density of their data points. This
property is particularly interesting when the handled time
series are noisy.

A clustering model M is defined by :

• a number of clusters of time series;
• a number of intervals for each data point dimension

(time and values);
• the partition of the time series into the clusters;
• the distribution of the data points on the cells of the

data grid;
• for each cluster, the distribution of the data points on

the time series belonging to the same cluster.

Notations for trivariate coclustering :
• kC : number of clusters of time series;
• kT , kX : number of intervals of time and values;
• k = kCkT kX : number of cells of the data grid;
• kC(i) : index of the cluster that contains the series Si;
• {niC} : number of time series within each cluster iC ;
• {mi} : number of data points of each time series Si;
• {miC} : number of data points within each cluster iC ;
• {mjT } : number of data points in the time intervals
jT ;

• {mjX} : number of data points in the intervals jX ;
• {miCjT jX} : number of data points belonging to each

cell (iC , jT , jX).

The MAP model (maximum a posteriori) is selected
by a Bayesian approach within M, the set of all possible
coclustering models. The MAP maximizes the product of
the prior distribution P (M) and the likelihood of data given
the model P (D|M). The exploited prior distribution P (M)
is derived from the minimum length description principle.
The prior for the parameters of clustering model are chosen
hierarchically and uniformly at each level :

• the numbers of clusters kC and of intervals kT , kX are
independent from each other, and uniformly distributed
between 1 and N for time series, and between 1 and m
for the point dimensions;



• for a given number kC of clusters, every partition of the
N time series into kC clusters are equiprobable;

• for a given model size (kC , kT , kX), every distribution
of the m data points on the k cells are equiprobable;

• within a given cluster of time series, every distribution
of the points on the time series belonging to the same
cluster are equiprobable;

• for a given interval of T [resp. X], every distribution
of the ranks of the T [resp. X] values of points are
equiprobable.

Taking the negative logarithm of P (M)P (D|M), a clus-
tering model M is Bayes optimal if the value of the following
criteria is minimal :

c(M) = logN + 2 logm+ logB(N, kC) (1)

+ log

(
m+ k − 1

k − 1

)
+

kC∑
iC=1

log

(
miC + niC − 1

niC − 1

)

+ logm!−
kC∑
iC=1

kT∑
jT=1

kX∑
jX=1

logmiCjT jX !

+

kC∑
iC=1

logmiC !−
N∑
i=1

logmi!+

kT∑
jT=1

logmjT !+

kX∑
jX=1

logmjX !

The two first lines of Equation 1 correspond to the prior
distribution P (M). The terms “logN” and “2 logm” relate
to the prior distribution of the numbers of clusters and
intervals. This means that the probability of observing a
particular value of kC [resp. kT and kX] is supposed to
be 1/N [resp. 1/m]. The probability of a given partition of
the time series into clusters is given by 1/B(N, k), where
B(N, k) is the number of possible ways of partitioning a set
of N elements into k subsets, eventually empty 2. The prior
probability of observing a given multinomial distributions of
the m data points on the k cells of the data grid is given
by 1/

(
m+k−1
k−1

)
. At last, the prior term 1/

(miC
+niC

−1
niC

−1

)
rep-

resents the probability of observing a particular multinomial
distribution of the data points of the cluster iC , on the time
series belonging to the same cluster. The two last lines of
Equation 1 correspond to the likelihood of data P (D|M).
The third line stands for the likelihood of the distribution of
the data points on the cells. The last line corresponds to the
likelihood of the distribution of the points of each cluster on
the time series of the cluster, followed by the likelihood of
the distribution of the ranks of the T values [resp. X values]
in each interval.

An efficient algorithm based on a greedy heuristic and
a neighborhood exploration has been implemented to op-
timize the evaluation criterion [25]. This algorithm is su-
per linear and finds a good discretization model within a

2More precisely, B(N, k) =
∑k

i=1 S(N, i) where S(N, i) is the Stirling
number of the second kind [28]

O(m
√
m logm) time complexity. This algorithm can be

constrained by specifying a maximum number of clusters
of time series, or a maximum number of intervals. This
feature is exploited in Section IV for a better interpretability
of extracted patterns.

Similarity between time series and clusters :

A similarity criterion has been defined to assess the
proximity between a new time series and the clusters of a
coclustering model [29]. This criterion evaluates the decrease
of the evaluation criterion (Equation 1) when a time series
is merged within a particular cluster. Let us consider a
coclustering model denoted by M , and MSi,iC the same
model where the time series Si is merged within the cluster
iC . This criterion evaluates the difference ∆(Si, iC) =
c(MSi,iC )−c(M). Intuitively, if the curve Si and the cluster
iC have a similar joint density P (T,X), the total code length
of the data (see criterion c(M)) is not much different when
the curve is merged within its most similar cluster.

The computation of ∆(Si, iC) only implies the non-empty
cells of the ith cluster of time series. The minimum value of
∆ over all clusters is found by considering all non-empty
cells of M . The number of non-empty cells is bounded by
m. Consequently, the closest cluster of a time series is found
with a O(m) time complexity. As explained in the next
section, the criterion ∆ is exploited by our approach in order
to map sub-series with typical distributions.

C. Learning and deployment SAXO algorithms

SAXO includes two successive processes : i) the learning
step consists in learning the symbolic representation from a
sampled dataset; ii) the deployment step consists in convert-
ing the original large dataset into symbolic time series.

/*Computation of time intervals*/

(1) D1 = Sample(D, δ)
(2) P1 = Encode(D1, {C, T,X})
(3) {t} ← Coclustering(P1, {C, T,X})

/*Computation of typical distributions within each interval*/

For j from 1 to |{t}| do

(A) D2 = T imeFilter(D1, tj)
(B) P2 = Encode(D2, {C,X})
(C) {ic}j ← Coclustering(P2, {C,X})

end For

Algorithm 1: SAXO learning algorithm

Algorithm 1 describes the learning step. First of all, the
dataset D is uniformly sampled according to a sampling
rate δ (Algorithm 1, line 1). The objective is to control
the computing time of the algorithm. The times series of
the resulting subset D1 are recoded by a set of data points



denoted by P1 (line 2). As explained in Section III-B, each
data point is characterized by three variables : C, T and
X . A first trivariate coclustering model is trained on P1 by
exploiting the MODL approach. Only the time discretization
is retained (line 3). The associated set of time intervals is
denoted by {t}, and |{t}| corresponds to the length of the
SAXO words.

Notation for bivariate coclustering
• j : index of the current time interval;
• Sj

n : sub-series computed from Sn within interval j;
• {ic}j : set of clusters of sub-series within interval j ;
• kCj : number of cluster of sub-series;
• kXj : number of intervals of values;

For each time interval, the sampled dataset is filtered on
the time period corresponding to the current interval (line
A). As previously, the outcome sub-series {Sjn} of D2 are
recoded by a set of data points P2 (line B). In this case,
the data points are described by only two variables : C and
X . Then, a bivariate coclustering model is trained on P2

(line C). The clusters {ic}j correspond to a set of typical
distributions P (X|C) approximated by a piecewise constant
estimator. More precisely, {ic}j denotes a set of distributions
associated with the jth symbol of the SAXO representation.

The meaning of the symbols changes according to their
rank because P (X,C) is independently estimated over the
time intervals. In addition, the size of the alphabet is not
constant over intervals, because kC is not necessary the same
for all optimal bivariate coclustering models.

/*Scan of the dataset D*/

For n from 1 to |D| do

/*Initialization of the nth re-encoded time series*/
(A) SAXOn = ∅

/*For each time interval*/
For j from 1 to |t| do

(B) Sj
n = T imeFilter(Sn, tj)

(C) Min∆ = +∞
(D) id = 0

/*For each typical distribution*/
For i from 1 to |{ic}j | do

If ∆(Sj
n, icj ) < Min∆ then

(E) id = i
(F) Min∆ = ∆(Sj

n, icj )

end If
end For
(G) SAXOn = Concat(SAXOn, Alphaid)

end For
end For

Algorithm 2: SAXO deployment algorithm

Algorithm 2 describes the deployment step of the SAXO
approach. All time series Sn ∈ D are recoded by exploiting
the results of Algorithm 1. The SAXO words are initialized
as empty strings (Algorithm 2, line A). Then a loop on the
time intervals {t} computes each symbol independently. The
sub-series Sjn belonging to the current time interval is filtered
from Sn (line B). Then, all clusters {ic}j are evaluated in
order to find the closest typical distribution which minimizes
∆(Sjn, icj ) (defined in Section III-B). The minimal value of
the similarity ∆ is stored in the variable “Min∆” (line C)
and the identifier of the closest cluster is stored in “id” (line
D). At last, the current SAXO word is updated : the id-th
symbol of the alphabet {Alpha} is concatenated at the end
of the current word (line G).

Fig. 5. Example of a SAXO representation.

Figure 5 plots an example of recoded time series. The
original time series (represented by the blue curve) is recoded
by the “abba” SAXO word. The time is discretized into
four intervals (the vertical red lines) corresponding to each
symbol. Within time intervals, the values are discretized (the
horizontal green lines) : the number of intervals of values
and their locations are not necessary the same. The symbols
correspond to typical distributions of values : conditional
probabilities of X are associated with each cell of the grid
(represented by the gray levels);

Fig. 6. Example of the alphabet of the second time interval.



Figure 6 gives an example of the alphabet associated
with the second time interval. The four available symbols
correspond to typical distributions which are both represented
by gray levels and by histograms. By considering Figures 5
and 6, b appears to be the closest typical distribution of the
second sub-series.

In Algorithms 1 and 2, the steps which require the largest
computing time are respectively the coclustering and the
similarity ∆. Based on this statement, the Algorithm 1 has a
O(m

√
m logm) time complexity and the Algorithm 2 has a

O(m) complexity per serie to deploy (see Section III-B). The
learning phase is conducted by exploiting a sampled dataset,
that allows us to process large datasets.

IV. COMPARATIVE EXPERIMENTS ON SUPERVISED
LEARNING TASKS

A. Experimental protocol

In this section, several symbolic representations of time
series are evaluated conditionally to a supervised learning
task. Our evaluation protocol is inspired by previous works
which combine supervised and unsupervised approaches in
order to evaluate the quality of the unsupervised task. For
instance, the cascade evaluation [30] consists in enriching a
supervised dataset with the cluster id of each example. Then,
the cluster id is exploited by a classifier as an additional
explicative variable. The cascade evaluation estimates the
quality of the unsupervised task by measuring the improve-
ment of the classifier when the cluster id is used.

In our experiments, the input dataset describes a collection
of N labeled time series. The m∗ numerical explicative
variables correspond to the data points of time series3. The
target variable encodes one of the Y possible class values, as-
sociated with each time series. Our comparative experiments
aim to estimate the ability of symbolic representations to
preserve the information of the original time series.

The input dataset is sequentially recoded into multiple
symbolic versions (the class value is ignored). The SAXO
approach is first applied (Section III). Using a trivariate
coclustering (Step 3 of Algorithm 1), the numbers of intervals
kT , kX and the number of clusters kC are automatically
adjusted4. Then, the number of intervals kXj

and the number
of clusters kCj are also automatically adjusted by a bivariate
coclustering, within each time interval5 (Step C of Algorithm
1). The SAX approach is applied (Section II-B) by exploiting
the trivariate coclustering results to set its parameters (w =
kT and α = kX ). At last, the Hybrid approach exploits
the time and value discretization resulting from the trivariate
coclustering (i.e. the numbers of intervals kT , kX , and the
bounds location given by {mjT } and {mjX}). Similarly to
SAX, the Hybrid approach splits the input time series into kT
intervals while keeping the optimized bounds of the trivariate

3The N time series of the input dataset have the same length m∗.
4For a better interpretability of symbolic representations, we use at most

26 symbols in the alphabet, which corresponds to a maximum value of kX .
5For comparison purpose, we impose our method to have an alphabet

with no more than kX symbols (kCj
≤ kX ∀j ∈ [1, kT ]).

coclustering, and symbolizes the sub-series by recoding the
mean values by the index of the X interval where it falls.

A naive Bayes classifier is trained on each version of the
recoded dataset. In all cases, the symbols are exploited as
categorical explicative variables without taking advantage of
the meaning of symbols. Such a weak classifier allows us to
evaluate the quality of the representations by reducing the
bias due to an efficient learning algorithm. As a baseline
approach, two naive Bayes classifiers are also trained on the
original dataset : the m∗ continuous explicative variables are
discretized into 10 equal-frequency intervals and 10 equal-
length intervals. In all cases, the classifiers are evaluated by
using the multi-class AUC (Area Under the ROC Curve) [31].

The processed datasets come from the UCR Time Series
Classification and Clustering repository [32]. Some datasets
are relatively small, we have selected the ones which include
at least 800 learning examples. Each dataset is split into
a training set (70%) and a test set (30%) : these subsets
are disjoint and randomly constituted. In our experiments,
the relatively small size of the datasets does not require a
sampling to learn the SAXO representation in an efficient
way (δ = 1 in Algorithm 1).

B. Comparative results

Table I shows the AUC reached by the naive Bayes classi-
fier, considering the various representations of the time series.
A color code gives the rank of each symbolic representations.
Table I provides additional information related to the datasets
such as the number of time series N , the number of target
values Y , the length of the time series m∗. The parameters
w and α of the SAX representation are also provided.

In all datasets except three (AllFace, Faces UCR,
TwoLeadECG), the naive Bayes classifier reaches higher
performance by exploiting symbolic representations rather
than the original time series. This result must be interpreted
in light of the curse of dimensionality [7] which recommends
few informative explicative variables. Table I can be inter-
preted in terms of compression by comparing the values of
m∗ and w, while keeping in mind that a float is coded by
32 bits and a character by 8 bits. The average compression
rate equals to 95%.

According to J. Demšar, the Wilcoxon signed-ranks test
must be exploited to reliably compare two classifiers over
multiple datasets [33]. If the output value (denoted by z)
is smaller than −1.96, the two classifiers have significantly
different performance. The SAX and the hybrid representa-
tions can not be distinguished : in this case the Wilcoxon
test gives z = −0.365. This surprising result reveals that
the optimization of the time and values discretization
is not enought to improve the symbolic representation.
The SAXO approach reaches the best AUC in 83% of
cases. The Wilcoxon test gives z = −2.71 when SAXO
is compared with the SAX representation. The gap in per-
formance between both representations is highly significant,
which demonstrates the interest of representing typical
distributions by symbols in addition to optimizing the time
discretization.



Type of Naive Bayes Naive Grouping 10 Eq Freq 10 Eq Width Additional Information
Data representation SAXO SAX Hybrid Baseline: Original time series N Y m∗ w α

Starlightcurves 0.971 0.963 0.947 0.872 0.872 9 240 3 1024 46 26
AllFace 0.975 0.970 0.970 0.967 0.978 2 250 9 131 58 12
Mallat 0.998 0.999 0.997 0.996 0.997 2 400 8 1024 271 26

MoteStrain 0.982 0.960 0.959 0.951 0.947 1 270 2 84 15 16
Wafer 0.981 0.977 0.662 0.860 0.873 7 160 2 150 7 26
Yoga 0.875 0.834 0.840 0.786 0.781 3 300 2 426 69 21

uWaveGestureLib X 0.930 0.909 0.911 0.863 0.873 4 470 8 315 22 23
uWaveGestureLib Y 0.920 0.906 0.500 0.820 0.823 4 470 8 315 4 26
uWaveGestureLib Z 0.921 0.904 0.907 0.831 0.833 4 470 8 315 22 23

Cricket X 0.900 0.784 0.801 0.682 0.692 780 9 300 14 20
Cricket Y 0.915 0.797 0.836 0.748 0.771 780 9 300 14 26
Cricket Z 0.864 0.769 0.806 0.698 0.709 780 9 300 15 19

ECG Five Days 0.972 0.937 0.965 0.955 0.956 880 2 136 26 14
Faces UCR 0.979 0.975 0.975 0.969 0.981 2 250 9 131 63 13

Symbols 0.999 0.990 0.993 0.963 0.966 1 020 6 398 37 24
TwoLeadECG 0.888 0.915 0.906 0.929 0.955 1 160 2 82 30 19

50 Words 0.859 0.816 0.817 0.714 0.749 905 50 270 30 14
CBF 0.998 0.999 0.998 0.971 0.973 930 3 128 14 13

Chlorine Concentration 0.569 0.710 0.720 0.648 0.668 4 307 3 166 155 26
CinC EGC torso 0.999 0.994 0.998 0.980 0.988 1 420 4 1 639 47 26
Medical Images 0.837 0.796 0.824 0.766 0.824 1 041 10 99 15 20

SwedishLeaf 0.984 0.969 0.969 0.502 0.502 1 125 15 128 44 16
WordSynonyms 0.804 0.789 0.792 0.765 0.795 905 25 270 27 14

TABLE I
COMPARATIVE RESULTS (N IS THE NUMBER OF TIME SERIES IN THE DATASETS, Y IS THE NUMBER OF TARGET VALUES, m∗ IS THE LENGTH OF THE ORIGINAL TIME

SERIES , w IS THE NUMBER OF TIME INTERVALS, AND α IS THE MAX SIZE OF THE ALPHABET).

V. CONCLUSION AND PERSPECTIVES

This article introduces SAXO which is a new data-driven
symbolic representation of time series. The main innovation
of our approach is to represent typical distributions of data
points by symbols, instead of average values. The definition
of these typical distributions and the time discretization
are optimized by a nonparametric Bayesian coclustering
approach named MODL.

Our approach is divided into two successive steps : i) a
learning algorithm defines the SAXO representation from
a sampled dataset; ii) a deployment algorithm applies the
SAXO representation on the overall dataset. The time com-
plexities of both algorithms are consistent with the processing
of large datasets.

Our approach is favorably compared with the SAX repre-
sentation, by evaluating a classifier which is trained from
recoded datasets. Our experiments highlight a significant
gap in performance between both approaches, by using the
Wilcoxon signed-ranks test applied on a collection of real
datasets.

The SAXO approach has been successfully applied on
large proprietary datasets, such as individual electricity con-
sumptions. Ultimatelty, this approach may allow EDF to
efficiently store, query and process large datasets of time
series.

A similarity between two SAXO words could be defined
and tested in future works. This way, SAXO would be
exploited by similarity based learning algorithms (ex : k-
means, knn) while keeping the advantage of considering

distributions instead of numerical values. For instance, the
possible application areas of such a similarity could be :
i) the detection of atypical time series; ii) the query of a
database by similarity; iii) the clustering of time series ...
etc.

At last, an online version of the SAXO representation
could be implemented in order to process data streams. In the
near future, EDF will need to manage a large amount of daily
updated metering data. In this context, an incremental update
of the SAXO representation could be helpful to manage large
and evolving datasets.
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