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Abstract— In recent years, the amount of data to process
has increased in many application areas such as network
monitoring, web click and sensor data analysis. Data stream
mining answers to the challenge of massive data processing,
this paradigm allows for treating pieces of data on the fly and
overcomes exhaustive data storage. The detection of changes
in a data stream distribution is an important issue which
application area is wide. In this article, change detection
problem is turned into a supervised learning task. We chose
to exploit the supervised discretization method “MODL” given
its interesting properties. Our approach is favorably compared
with an alternative method on artificial data streams, and is
applied on real data streams.

I. INTRODUCTION

The amount of data to process has increased in many
application areas such as network monitoring, web click
and sensor data analysis. Conventional learning approaches
hardly scale on such amounts of data. Data streams analysis
constitutes a possible answer to the processing of massive
data sets. The paradigm of “Data streams” takes into account
several constrains : i) the order of tuples 1 is not controlled ;
ii) the emission rates of data streams are not controlled ; iii)
the available hardware resources are limited (i.e. RAM and
CPU). The tuples cannot be exhaustively stored considering
these constrains : on the fly algorithms are required. A data
stream analysis provides a result that continuously changes
over time. The objective is to maximize the quality of the
result, given the constrains imposed by the input streams, and
considering the available hardware resources. An important
issue in data streams processing is the change detection in
the underlying distribution of tuples. The application area of
change detection is generally related to the monitoring of
systems :

• In the industry field, the observed system can be
a production equipment provided with sensors. In
this case, change detection allows early detection of
dysfunctions, and ultimately the maintenance of the
equipment can be improved.

• In the computer science field, the observed system
can be the whole data transmitted over a network.
Changes in distribution provide a support to the de-
tection of possible attacks.

• In the martketing field, the observed system can be
related to a service used by customers. The detection
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1. A tuple is an elementary piece of data that is emitted in a data stream.

of emerging behaviors gives relevant indications to
improve the service.

The designing of general, scalable and statistically relevant
change detection methods is a great challenge. Change
detection consists in comparing the underlying distribution
of tuples observed at different times. Two temporal windows
are defined : the “reference” and the “current”. An overview
of the main change detection approaches is given by A.
Dries [1] : Change detection in the distribution of tuples can
be considered as a statistical hypothesis test which involves
two samples of multidimensional tuples. Such problems are
studied in the statistical literature. The Wald-Wolfowitz and
Smirnov tests was generalized to multidimensional data sets
in [2]. Later, approaches based on nearest-neighbor analyses
[3] or distance between density estimates [4, 5] have been
developed. Most recently, statistics based on maximum mean
discrepancy for universal kernels have become popular [6].
A range of statistical work on abrupt change detection have
been done [7, 8] .

In this article, Section II presents an original approach
which turns the change detection into a supervised lear-
ning problem. Our approach is favorably compared with
an alternative method on artificial data streams, in a first
experimental validation carried out in Section III. In Section
IV, the proposed approach is applied on a real data stream
emitted from an industrial equipment provided with sensors.
At last, perspectives and future works are discussed in
Section V.

II. A SUPERVISED APPROACH FOR CHANGE DETECTION

Generally, change detection methods handle two temporal
windows 2 defined by an expert (see step 1 of Figure 1) :
i) the reference window represents the normal operation of
the observed system ; ii) the current window characterizes
the present state of the system. Two types of detection
can be distinguished : a) the detection of changes from a
normal operation which involves a fixed reference window ;
b) the detection of ruptures which involves a sliding reference
window. In this article, we aim at detecting changes from
a normal operation. The reference window is fixed and the
current window slides over time. Defining these two windows
is the only one required adjustment from the user.

Then, tuples are labeled according to their window be-
longing (see step 2 of Figure 1). The tuples belonging to
the reference window [ respectively to the current window]

2. A temporal window is defined by a “start date” and a “end date”, and
includes the tuples emitted during this time interval.



are labelled by the class ‘0‘” [ respectively by the class
“+” ]. The quality of the classifier quantifies the change in
distribution. The following situations give the intuition of our
approach :

1) Assuming the distribution of tuples has not changed
between the two windows, classes are completely
“mixed”. In this case, any robust classifier is not able
to discriminate the two classes.

2) Assuming the distribution of tuples has changed, the
tuples of class “0” and “+” do not have the same
distribution in the space RK . In this case, a relevant
classifier is able to discriminate the classes.

The potentially high rate of the input data stream entails
processing tuples as quickly as possible. That is the reason
why we have chosen to simplify the initial learning task into
K univariate classification problems. The tuples are projected
on each variable (see step 3 of Figure 1) and several classi-
fiers are independently trained at the same time. While this
simplification may seem drastic, this methodological choice
provides a pragmatic response to the curse of dimensionality.
In practice, few cases of change in distribution cannot be
detected by examining each variable individually. The “Xor”
problem, that is a textbook case, seems to be the only one
change that cannot be detected.

Fig. 1. Change detection as a supervised learning problems.

The choice of the classification method is critical and must
meet the following criteria :

� the classifier needs to estimate the conditional den-
sity of the classes ;

� the classification method does not require prior
knowledge ;

� the method does not involve user parameters to be
adjusted ;

� the classifier needs to be resilient to outliers ;

� the method must be regularized in order to avoid
over-fitting ;

Given these criteria, we chose to exploit the MODL super-
vised discretization method [9] that has been distinguished
during challenges [10] :

• The assumptions on the distribution of tuples are low
informative. It is a non-parametric approach [11] :
the number of modeling parameters increases with
the number of learning examples. In other words, this
approach is able to estimate any distribution provided
that the number of training examples is large enough.

• There is no user parameter to be adjusted.

• This classification method is based on rank statistics,
that makes it insensitive to monotonic transformations
of data. Difficulties related to data streams normaliza-
tion and outliers [12] are solved elegantly.

• This classification method is regularized through a
Bayesian approach. A compromise is naturally reached
between the complexity of decision rules and their
generalization ability.

A. MODL : a supervised discretization approach

The supervised discretization of a continuous variable
consists in estimating the conditional distribution of classes
owing to a piecewise constant estimator. The MODL ap-
proach [9] turns the discretization into a model selection
problem. First, a family of discretization models is defined.
The parameters of a discretization model are the following :
the number of intervals, the bounds of intervals and the num-
ber of examples belonging to each class into each interval. A
prior distribution P (M) is defined over the family of models.
This prior exploits the hierarchy of the model parameters :
the number of intervals is first defined, then the bounds
location and last, the conditional distribution are described
in each interval. All possible values of model parameters are
considered as equiprobable at each level of the hierarchy.
A Bayesian approach is applied to select the best model,
that is defined by maximizing the probability P (M |D) of
the model M given the data D. Exploiting the Bayes rule,
and since the probability P (D) is constant under varying
the model, this amounts to maximizing P (M)P (D|M). The
number of training examples N and the number of classes



J are given by the classification problem to be solved. A
discretization model is defined by the following parameters :n

I, {Ni}1≤i≤I , {Nij}1≤i≤I,1≤j≤J

o
, with I the number of

intervals, Ni the number of examples located in the interval
i, and Nij the number of examples labelled by the class
j located in the interval i. The prior distribution P (M)
and the likelihood P (D|M) can be analytically calculated
by exploiting the definition of the family of models and
the hierarchical prior distribution : combinatorics technics
are used. By applying the negative logarithm on the term
P (M)P (D|M), we obtain a criterion to minimize :
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The optimization of this criterion defines the most pro-
bable model given the data, also called Map (Maximum A
Posteriori). The first term of the criterion C corresponds to
the choice of the number of intervals, and the second term
corresponds to bounds location. The third term represents
the choice of the conditional distribution in each interval.
These three first terms penalize complex models including a
large number of intervals. The last term corresponds to the
likelihood of data given the model. This term favors complex
models with a good fit of the conditional distribution. This
approach is intrinsically regularized, a compromise is natu-
rally reached between the complexity of the models and their
generalization ability. Numerous comparative experiments
indicate that this classification approach provides very good
results in practice and avoids over-fitting [9].

B. Detection and diagnostic
The criterion Ck(M) = − log[P (M |Dk)] corresponds to

the probability that a discretization model M explains the
type of stream regime (reference or current) given the data
Dk, characterized by the explicative variable k. The negative
logarithm of a probability represents a coding length in
information theory [13]. This criterion can be interpreted
as the ability of a discretization model to encode the type
of stream regime given the data Dk. Let M∅ be the null
model that discretizes the variable k into a single interval.
M∅ represents the length coding of the type of stream regime
without exploiting the variable k. In the case where the
distribution of k does not change between the reference and
the current window, it is impossible to discriminate the type
of stream regime exploiting this variable : the null model
is the best one. By contrast, if the distribution of k has
significantly changed, this variable can be exploited to detect
the type of stream regime : there is at least one discretization
model that is more probable than the null model, which
corresponds to a more compact length coding than M∅. The
compression gain [14] is defined as follows :

Gaink(M) = 1− Ck(M)/Ck(M∅)

Our approach exploits Gaink(Map), the compres-
sion gain of the most probable model given the data.
Gaink(Map) is equal to 0 when the variable k does not
allow to discriminate the type of stream regime. This value
is strictly positive when there is a significant difference in
the distribution of k, depending on the type of stream regime
(detectable by a discretization model). Gaink(Map) is equal
to 1 when the variable k allows to perfectly discriminate
the two types of stream regime. This method is correctly
regularized, which allows us to exploit Gaink(Map) as a
quality indicator of the discretization model. By this way,
we avoid the assessment of Map based on a test set and an
evaluation criterion (such as the AUC, the MSE or the BER
... etc). All tuples belonging to the temporal windows are
used during the learning phase, we hope to obtain a better
discretization model.

quantifying the change in distribution
In this paragraph, the proposed criterion aims at glo-

bally quantifying the change in distribution. The change is
independently characterized on each variable k ∈ K by
Gaink(Map). The following aggregating criterion is then
defined :

Change =
1
K

∑
k∈[1,K]

Gaink(Map) (2)

contribution of each variable
The sum of the contributions Contrib(k) over all variables

corresponds to the change evaluated by the criterion Change.
The contribution of the variable k is defined as follows :

Contrib(k) =
Gaink(Map)

K

III. EXPERIMENTAL VALIDATION ON ARTIFICIAL DATA
STREAMS

This experimental validation involves two artificial data
streams that share the same temporal structure. Every second,
one tuple is drawn from an underlying distribution which
changes over time. Figure 2 shows how the underlying
distribution evolves. The first 2000 tuples are emitted from
the “initial distribution” which represents the normal ope-
ration. The reference window is set up at this moment.
Between 4000 and 6000 seconds, the underlying distribution
progressively 3 moves from the “initial” to the “modified”
distribution. Then 2000 tuples are emitted from the “mo-
dified” distribution. Between 8000 and 10000 seconds, the
underlying distribution progressively returns to its “initial”
state. At last, 2000 tuples are emitted from the “initial”
distribution. In our experiments tuples are defined in R2. The

3. During transitions, the probability that a tuple is drawn from the
“initial” or the “modified” distribution linearly varies over time.



“initial” and “modified” distributions are defined on Table I
for both artificial data streams. These normal distributions are
denoted by N (m, v), where m is a two-dimensional vector
corresponding to the mean and v is the covariance matrix.

Distribution of the data stream

0 4000 8000

Time (sec)

12000

Initial distribution

Reference set up

Modified distribution

Fig. 2. Temporal structure of both artificial data streams.

initial distribution modified distribution
Data stream 1 : N

„
0 0 ,

1 0
0 1

«
N

„
4 8 ,

1 0
0 1

«

Data stream 2 : N
„

0 0 ,
1 0
0 1

«
N

„
0 0 ,

4 0
0 9

«

TABLE I
DEFINITION OF “INITIAL” AND “MODIFIED” DISTRIBUTIONS FOR BOTH

ARTIFICIAL DATA STREAMS.

A. Experimental protocol

Defining the temporal windows constitutes the only one
adjustment required by our change detection approach. As
part of our experiments, the reference window is fixed and
includes the first 2000 tuples of the data stream. These tuples
are assumed to be representative of the normal operation of
the observed system. The reference window is sliding 4 and
includes, at every moment, the last 300 emitted tuples.

B. Alternative approach

Our detection strategy is compared with an alternative
approach [5] that involves four successive steps :

1) data stream summary using the micro-clustering me-
thod “DenStream” based on a time-weighting of tuples
[15] ;

2) current distribution estimate owing to a modified ver-
sion of Parzen window, that handles micro-clusters
instead of tuples ;

3) comparison of the current distribution with the re-
ference distribution using the Kullback-Leibler diver-
gence ;

4) assessment of variables contributions by a criterion
that exploits the Kullback-Leibler divergence into a
subspace.

In contrast with our approach, the alternative method
requires the adjustment of several user parameters. The
parameters related to the summary of the stream are the follo-
wing : i) the fading parameter of a time-weighting function ;
ii) the minimum weight of micro-clusters ; iii) the maximum
variance allowed into micro-clusters. The estimate of the

4. In order to reduce the computational time of our experiments, we
chose to carry out a measurement point at every ten tuples.

distribution exploits a modified Parzen window estimator that
requires the tuning of a smoothing parameter δ (see Equation
3).

P̂ ∗(x) =
1

C.W

C∑
j=1

ωj√
2π
(
δ2 + r2j

)k exp
−

d(x,cj)
2

2(δ2+r2
j) (3)

Notation : W is the total weight of the data stream, C is
the number of micro-clusters summarizing the stream, ωj is
the weight of the jth micro-cluster, cj is the barycenter of the
tuples belonging to the jth micro-cluster, rj is the standard
deviation of tuples belonging to the jth micro-cluster, δ is a
smoothing parameter of the distribution estimate.

C. Comparative results

In this section we compare our change detection approach
with the alternative method [5] presented in Section III-B.
In the case of the alternative method, the presented results
come from the original article [5]. Both approaches provide
the same outputs : an overall change indicator and the
contributions of each variable. Used indicators are describe
in Sections III-B and II.

Fig. 3. Comparative results on the first data stream, where a change of
mean occurs. The vertical axis corresponds to the detected changes, and the
horizontal axis represents the order of emitted tuples.

Both detection approaches are evaluated regarding three
criteria : i) the earliness of the detection ; ii) the sharpness
of the detection ; iii) the ability to assess the contributions.
Figure 3 presents the results on the first data stream, where
a change of mean occurs. The top chart corresponds to the
alternative method and the bottom chart to our approach.
In both cases, the horizontal axis represents the number



of emitted tuples from the beginning of the experiment.
The vertical axis characterizes the level of the detected
change, either by the Kullback-Leibler (on the top) or by the
Change criterion (on the bottom). On each chart, the sum
of contributions represents the overall level of detection. As
the Figure 3 shows, our approach begins to detect changes
very early (from 4100 tuples, against 4500 tuples for the
alternative method). Secondly, our approach dominates the
alternative method in terms of sharpness detection : the
curves are less noisy. Between 6000 and 8000 tuples, both
contributions have substantially the same value and are
nearly constant. During this period of time, both classes are
perfectly discriminated for each variable. The two variables
provide equivalent quantities of information relatively to the
discrimination of classes.

Fig. 4. Comparative results on the second data stream, where a change of
variance occurs. The vertical axis corresponds to the detected changes, and
the horizontal axis represents the order of emitted tuples.

As previously, Figure 4 presents the results of both change
detection methods on the second data stream, where a change
of variance occurs. Once again, our approach detects changes
very early (from 4050 tuples against 4800 for the alternative
method), and the sharpness of detection curves provided by
our approach is much better. In contrast with the previous
data stream, the threshold effect on the contributions does
not appear here : classes are more difficult to discriminate on
this data stream. To conclude, the comparative experiments
presented in this section show that our approach dominates
the alternative method. Moreover, our approach is easier to
implement because it does not involves user parameters.

IV. EXPERIMENTS ON REAL DATA STREAMS

This section presents experiments realized on real data
streams. We show only the results obtained by our approach,
because we were not able to operate the alternative method.
Tuples are not normalized and there are four explicative
variables, which makes the step of micro-clustering difficult
to carry out. In practice, the required user parameters are very
difficult to tune, especially in an unpredictable environment.
This makes the alternative method unsuitable for real data
streams.

The considered real data streams are generated by four
sensors on an industrial equipment. Tuples are emitted at
regular intervals and include the average values of sensor
measurements on this time period. These experiments involve
three real data streams with malfunctions actually observed
on the equipment. The three charts on the top of Figures 5,
6 and 7 represent the sensor measurements (vertical axis),
according to the order of tuples (horizontal axis). For each
data stream, the reference window is defined by an expert
and represents the normal operation. The ends of reference
windows are symbolized by a vertical line on the charts.
Reference windows include the first 400, 1000 and 1000
emitted tuples, respectively for the data streams No. 1, No. 2
and No. 3. For all data streams, the current window includes
the last 150 emitted tuples. This choice is motivated by
an applicative constraint : the width of the current window
determines the latency before the first measurement.

Results on the first data stream (Figure 5 ) :
The malfunction that occurs in the first data stream is a
simultaneous drift of all sensors in favor of higher values.
This is a progressive drift and the variance of sensor measu-
rements tends to increase over time. As the bottom chart
shows, our approach early detects the drift. Between the
550th and the 1000th tuple, the contributions of each variable
progressively increase and have nearly the same values (the
contribution of the fourth variable is slightly higher than
the others). After the 1000th emitted tuple, the contributions
are almost constant, that means that the classes are perfectly
discriminated for each variable. This first application gives
consistent results and contributes to validate our approach.
However, this type of malfunction is easily detectable by
observing original data and does not underline the practical
benefits of our method.
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Fig. 5. Results on the first real data stream. The top chart plots the values of
explicative variables over time. The bottom chart plots the detected change
and the contributions of each variable.

Results on the second data stream (Figure 6 ) :
The malfunction in the second data stream is more difficult
to describe than the previous one. The fluctuations of the
first variable seem to be low. The second variable drifts
chaotically to higher values. Variables 3 et 4 present two
ruptures in favor of lower values (the intervals [1750-2350]
and [2500-3000] on the horizontal axis). The bottom chart
presents the results of our change detection method. The level
of detection fluctuates over time with a peak between 1850
and 2550 tuples. This chart shows that the variable 3 most
often contributes to the detected changes, which is difficult
to appreciate by observing the original data. The readability
of this kind of chart constitutes the main added value of our
approach.
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Fig. 6. Results on the second real data stream. The top chart plots the
values of explicative variables over time. The bottom chart plots the detected
change and the contributions of each variable.

Results on the third data stream (Figure 7 ) :
The malfunction in the third data stream mainly occurs on
variables 3 and 4. From the beginning of the monitoring
process, the variable 3 presents a rupture in favor of higher
values. A malfunction appears on this variable when the
2300th tuple is emitted : this is a drift of sensor mea-
surements to higher values. Our approach captures these
changes in a proper way. Once again, our approach provides
a synthetic result that is easy to interpret (bottom chart).

To conclude, the experiments presented in this section
illustrate the practical interest of our approach applied to the
monitoring of operating equipments. Our method provides a
synthetic view of detected changes in near real time. In some
application cases, this information can be exploited to carry
out a preventive maintenance.
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Fig. 7. Results on the third real data stream. The top chart plots the values of
explicative variables over time. The bottom chart plots the detected change
and the contributions of each variable.

V. CONCLUSION AND PERSPECTIVES

This article proposes to turn the change detection into a
supervised classification problem. Two temporal windows
are defined on the input data stream : i) the reference
window represents the normal operation of the observed
system ; ii) the current window characterizes the present
state of the system. The quality of the classifier trained on
this data quantifies the change in the distribution observed
between the two windows. We chose to exploit the MODL
supervised discretization method [9] given its interesting
statistical properties.

Our approach implies as many univariate classifiers as the
input space includes variables. This is a pragmatic modeling
choice that simply answers to the curse of dimensionality
[16]. According to our point of view, the important algorith-
mic cost of a multivariate analysis is not justified, given the
few cases of change that cannot be detected by examining
each variable individually.

In Section III, our approach is favorably compared with
an alternative method [5] on artificial data streams. Our
approach is distinguished by its ability to early detect the
changes, and by the sharpness of its detections. Our approach

is also applied on real data streams in Section IV, these
experiments highlight the practical interest of our approach
for monitoring industrial equipments.

Hardware constrains (ex : available RAM, CPU) and
applicative constrains (ex : tolerated detection delay) could
be explicitly taken into account by our approach. This future
improvement will consist in automatically tuning the size of
the reference window and the rate of the computation of the
change detection indicators. At last, an incremental version
of the algorithm used to optimize the criterion C(M) could
be proposed.
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