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Abstract
This paper presents a method which extracts informative features while selecting simultane-

ously adequate representations for Time Series Classification. This method simultaneously (i) se-
lects alternative representations, such as derivatives, cumulative integrals, power spectrum ... (ii)
and extracts informative features (via automatic variable construction) from the selected set of rep-
resentations. The suggested approach is decomposed in three steps: (i) the original time series are
transformed into several representations which are stored as relational data; (ii) then, a regularized
propositionalisation method is applied in order to generate informative aggregate features; (iii) fi-
nally, a selective Naive Bayes classifier is learned from the outcoming feature-value data table. The
previous steps are repeated by a forward backward selection algorithm in order to select the most
informative subset of representations. The suggested approach proves to be highly competitive
when compared with state-of-the-art methods while extracting interpretable features. Furthermore,
the suggested approach is almost parameter free and only requires few hardware resources.
Keywords: Time Series Classification, Multiple Representations, Propositionalisation, Represen-
tation Selection

1. Introduction

Time series analysis is widely used in many application areas, notably due to the increasing use of
sensors in industry, health, meteorology, and IoT domain. Time series research deals with a large
range of learning tasks such as forecasting, compression, clustering, etc. This paper addresses the
problem of time series classification (TSC). For an incoming univariate time series denoted by τi =
〈(t1, x1), (t2, x2), . . . , (tm, xm)〉, where xk is the value of the series at time tk, the goal is to predict
the value of a categorical target variable given a set of labeled time series. The amount of TSC
literature is substantial: many TSC methods have been suggested in recent years, and progress has
mainly focused on improving the accuracy of classifiers (Bagnall et al. (2017)). Besides distance-
based (Wang et al. (2013)), interval-based (Baydogan et al. (2013)), shapelet-based (Mueen et al.
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(2011)), dictionary-based (Schäfer (2015); Schäfer and Leser (2017)), deep learning based (Fawaz
et al. (2019)) and ensemble methods (Lines and Bagnall (2015)), a consensus has emerged from the
TSC community that transforming time series from the time domain to an alternative data space is
one of the best catalyst for accuracy improvement. Combining several classifiers that learn from
several representations in an ensemble method is the way COTE (Bagnall et al. (2015)) and HIVE-
COTE (Lines et al. (2018)) work and perform the best accuracy results to date on the UCR/UEA

TSC benchmark data sets (Bagnall et al. (2018)). However, as observed by the authors, it is at
the expense of very high computational cost. Moreover, the ensemble methods embed various
k-NNs, Naïve Bayes, SVMs, decision tree ensembles are inherently deprived of interpretability
perspectives1. According to the authors, HIVE-COTE (Lines et al. (2018)) provides almost optimal
results in terms of accuracy, and now, the researchers’ objective should be to develop approaches
with comparable accuracy, and better on other criteria such as scalability, intelligibility, automation
etc. This motivated us to suggest FEARS: a new time-efficient and accurate TSC method. This
method extracts informative features while selecting simultaneously adequate representations for
Time Series Classification, such as derivatives, cumulative integrals, and power spectrum.

(a) (b) (c)

Figure 1: GunPoint dataset in (a) original time, (b) derivative representation with a focus on time interval [0; 38],
(c) the GunDraw/Point class distribution w.r.t. the value of standard deviation of the series in derivative
representation in [0; 38]

As a motivating example, Figure 1 shows an example of a very discriminative feature extracted
by our approach from the famous GunPoint data set. This example relates the potential discrim-
inative power of our approach for extracting features from alternative representations. Figure 1:a
represents the time series in the original time domaine. At first sight, the two classes seem dif-
ficult to discriminate against, as the red and green time series are confusedly intertwined. Figure
1:b shows the derivative representation of these time series on the time interval [0; 38]. Visually,
the derivative appears to be a more suitable representation for discriminating between classes. On
this data set, the suggested approach has extracted a very informative aggregate feature which is
the standard deviation values of derivative series, selected in the time interval [0; 38]. Three class-
discriminative intervals are identified by the used classifier. All the time series belonging to the
“GunDraw” class have a standard deviation between v1 = 5.2× 10−3 and v2 = 7.2× 10−2, while
the other values correspond to the “Point” class. Here, our approach extracts an aggregate feature
which holds valuable information about the target variable when discretized into three intervals. A
straightforward interpretation might highlight the starting time at which an individual begins to raise
his arm. It seems that individuals from “Point” class show two patterns: (a), lifting their arm after
time-stamp 38, thus having very low speed deviation in the considered time interval (with v ≤ v1)

1. The recent General Data Protection Regulation (GDPR) suggests that one should be able to give explanations of the
decisions proposed by automated processing.
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and (b), reaching the top of lifting movement before time-stamp 38, thus having higher speed devi-
ation (with v ≥ v1) than the rest of individuals. Finally, individuals belonging to the “GunDraw”
class, which point a gun, show an in between pattern.

The suggested approach generalizes the underlying concepts of the illustrative example as fol-
lows: (i), firstly, we transform the original time series into multiple representations which are stored
in secondary tables as in relational data scheme; (ii), then, informative and robust descriptors are ex-
tracted from relational data, using a regularized Bayesian propositionalisation method; (iii), thirdly,
a selective Naïve Bayes classifier is trained on the obtained flattened data; (iv), in a looping scheme,
these steps are repeated by a forward backward selection algorithm in order to find the most infor-
mative subset of representations.

The rest of the paper is organized as follows. Section 2 presents the related work organized
within two research fields, time series classification and propositionalisation. Section 3 provides
the main concepts of the FEARS approach. We present extensive comparative experiments on 85
public datasets from various application areas in Section 4 before concluding and opening future
perspectives in Section 5.

2. Related work

TSC over multiple representations - As pointed in (Bagnall et al. (2017)), the diversity of TSC
literature might be grouped w.r.t. the underlying discriminatory features that the various methods
are looking for. Readers may refer to (Bagnall et al. (2017)) for a well-structured survey on recent
TSC methods. A transversal and effective way to tackle with TSC is to pre-process the original time
series by transforming them into alternative representations. In (Bagnall et al. (2012)), three trans-
formations are performed (using power spectrum, autocorrelation and principal components), then a
classifier is built on each transformed data and the classifiers are combined using various weighted
voting schemes. In (Bagnall et al. (2015)), the authors extend the previous idea by integrating
two supplementary autocorrelation-based transforms, a shapelet transform and then combining 35
classifiers. As embedded classifiers hold various biases, the whole ensemble is able to find various
discriminatory features in the considered representations thus improving accuracy results. Recently,
(Lines et al. (2018)) suggested a probabilistic hierarchical combination of five constituent ensem-
bles and obtained the best accuracy results to date on UEA/UCR data repository. If the synergy
between multiple representations and ensemble learning leads to top accuracy results, the latter also
annihilates hopes of interpretability. Our approach FEARS opens a new way to exploit multiple
representations: transformed data are stored in several linked tables following a relational schema
(say relational data). The goal is to extract relevant and interpretable features from these linked
tables and flatten it into a unique feature-value data table. This relational data mining process may
be performed through propositionalisation.

Automatic propositionalisation - Relational data contains one root table where each row rep-
resents a statistical individual and other secondary tables containing detail records with possibly
one-to-many relationships. Supervised learning from relational data (Dzeroski and Lavrac (2001))
is primarily performed through two approaches: (i) building full-fledged relational machine learn-
ing algorithm (Assche et al. (2006)) that directly processes relational data; (ii) propositionalisa-
tion (Lachiche (2017)) that flattens relational data by generating aggregate features. The single
feature-value table arising from propositionalisation has the advantage to benefit from a strong arse-
nal of classifiers provided by decades of research literature. Since pioneering work LINUS (Lavrac
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et al. (1991)), many approaches for propositionalisation have been suggested: e.g., (Zelezný and
Lavrac (2006); Landwehr et al. (2007)) based on frequent patterns or queries, (Kuzelka and Zelezný
(2011)) uses the existential quantifier only to generate features. Other logic-based methods, such as
RSD (Lavrac et al. (2002)) or SINUS (Lavrac and Dzeroski (1994)) tackle the propositionalisation
task by constructing first-order logic features. One the other hand, the database-inspired methods
such as POLKA (Knobbe et al. (2001)) and RELAGGS (Krogel and Wrobel (2001)) apply aggrega-
tion functions, such as Min, Max, and Mean to generate interpretable features. However, existing
approaches proceed to propositionalisation independently to the model training and may lead to
overfitting problems when complex features are generated. Our approach FEARS builds upon re-
cent advances (Boullé et al. (2019)) on automatic propositionalisation that is able to extract complex
aggregates in a regularized way.

3. Feature and representation selection with FEARS

This section describes in details the key steps of the suggested approach. Firstly, Section 3.1 presents
the various transformations applied to original time series. Two possible options to recode these
multiple representations into relational data are also presented. Then a propositionalisation ap-
proach is used to extract informative features from the outcoming relational data, and summarized
in Section 3.2. Finally, Section 3.3 presents the algorithm for representation selection.

3.1. Multiple representations of time series in relational schema

As in (Gay et al. (2013)), we use the original time representation and we pick six additional repre-
sentations among the numerous ones existing in the literature.

• Derivatives: We use derivatives (D) and double derivatives (DD) of the original time series.
These transformations allow us to represent the local evolution of the series (i.e., increasing /
decreasing, acceleration / deceleration).

• Cumulative sums: We also use simple (CUMSUM) and double (DCUMSUM) cumulative
integrals of the series, computed using the trapeze method. These transformations allow us to
represent the global cumulated evolution of the series.

• Auto-correlation: The (ACF) transformation describes the correlation between values of
the signal at different times and thus allows us to represent auto-correlation structures like
repeating patterns in the time series. The transformation by auto-correlation is: τiρ =<

(t1, ρ1), ..., (tm, ρm) > where, ρk =
∑j=m−k

j=1 (xj−x̄).(xj+k−x̄)

m.s2 and where x̄ and s2 are the mean
and variance of the original series.

• Power Spectrum: A time series can be decomposed in a linear combination of sines and
cosines with various amplitudes and frequencies. This decomposition is known as the Fourier
transform. The Power Spectrum (PS) is: PS(τi) =< (f1, a1), ..., (fn, an) >, where fk
represents the frequency domain, ak the power of the signal and n the number of considered
frequency values2. This transformation is commonly used in signal processing and encodes
the original series into the frequency domain.

2. In our experiments, we used n = m as default value.
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The choice of representations is made according to two criteria: they have been used in the TSC
literature and their computational complexity is sub-quadratic. The fast Fourier transform allows to
produce ACF and PS representation in O(m logm), where m stands for the series’ length.

Relational schema - We, then, gather the previously computed representations within a relational
data set. The “schema” of a relational data set defines the structure of the included tables, their types
(i.e. root or secondary tables) and their links. A large variety of possible schemes exist, and the
choice of a particular schema may have a significant impact on quality of the learned classifier. As
shown in Figure 2, we consider two kinds of schemas in order to encode the multiple representations
of time series. The all-in-one schema (Figure 2(a)) is composed by : i) a root table used to index the
time series objects by using their identifiers; ii) a secondary table by domain (time and frequency).
This first schema gathers the representations that share a similar index in the secondary tables. The
one-each schema (Figure 2(b)) is composed by : i) the same root table that indexes the time series
identifiers; ii) one secondary table per representation. The secondary tables contain a secondary
index (timestamp or frequency) and store the values of each data points. The second schema stores
each representation in dedicated secondary tables. These two kinds of schemas correspond to dif-
ferent ways of generating aggregate features: (i) the “all-in-one” schema promotes the generation
of cross-representation features (i.e. jointly based on several representations); (ii) the “one-each”
schema prioritizes the mining of complex aggregates independently on each representation. During
the learning phase, the best schema is dynamically chosen for each data set. This point is detailed
in Section 3.3, where the representation selection algorithm is presented.
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Figure 2: Relational schemas for encoding time series as relational data: (a) all-in-one schema and (b) one-each
schema.

3.2. Propositionalisation, supervised feature selection and classification

Propositionalisation is the process of adding columns (features) containing information extracted
from the secondary tables to the root table (Lachiche (2017)), say flattening. In the case of TSC,
propositionalisation may generate different aggregate features from various representations. The
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standard deviation of the derived time series taken over a given period is an example of such aggre-
gate feature. It is unrealistic to consider the automatic generation of all of them, therefore propo-
sitionalisation techniques exploit a restricted language for feature generation, i.e., using a finite set
of construction rules. In our approach, a construction rule is similar to a function in a programming
language. It is defined by its name, the list of its operands and its return value. The operands and
the return value are typed. The operands can be a column of a table, the output of another rule (i.e.
another generated feature), or a constant coming from the training set.

Since the variables that defined time series are numerical, we use a combination of (i) histori-
cal aggregate functions from relational data base domain dedicated to numerical variables, namely,
min, max, sum, count (distinct), median, mean, stdev and (ii) a Selection function to allow restric-
tion to intervals of timestamp/frequency and values dimensions in secondary tables. Thus, our
previous illustrative example (see Figure 1) can be represented by the following aggregate feature:
StdDev(Selection(derivative, 2012-04-06 01:40 < timestamp < 2015-04-06 23:20),Value)

In this case, the StdDev function is applied on the output of another construction rule, namely
the Selection function exploited to identify a particular time period. The search space for the fea-
tures that can be generated consists of all possible function compositions, only limited by the type
of operands of each function. Thus, the number of function compositions is not limited and the
search space is infinite. In this framework, there are two important challenges to overcome: i) the
combinatorial explosion for the exploration of the search space; ii) the risk of over-fitting due to the
generation of arbitrarily complex features.

The FEARS approach instantiates the MODL framework (Boullé (2006, 2007); Boullé (2014);
Boullé et al. (2019)) for TSC to solve these problems by introducing an evaluation criterion based
on a Bayesian formalism to penalize complex sampled features. This criterion allows one to filter
uninformative features by taking into account the balance between the complexity of the aggregate
and its informativeness. The rest of this sub-section describes the following steps: i) the sampling of
the aggregate features; ii) the filtering of the uninformative features; iii) learning a classifier. While
interested readers may find full details on the Bayesian methods at use in (Boullé et al. (2019)), we
report here the main underlying principles in order to produce a self-contained paper.

3.2.1. SAMPLING GENERATED FEATURES -

The optimal way for an end-user is to work with the least parameter setting. We suggest to use a
single parameter K, the number of aggregate features to be sampled from the input relational data.
The infinite search space can be represented by a tree structure (see Figure 3). Each branch of this
tree corresponds to an aggregate feature that can be drawn. The sampling of the K features is done
by building this tree through sequential steps (denoted by 1, 2, 3, 4 in Figure 3).

This very simple example corresponds to the all-in-one schema and represents only 3 out of 6
representations. The first step consists in choosing either a native feature belonging to the root table,
or the generation of an additional feature. Here, we assume that the root table contains two native
features that describe the length and the duration of the time series. An additional choice to generate
an additional feature is represented by the node named “Choice of rule”. The second step consists
in choosing the construction rule, here, the Min or Max functions. The other steps correspond to the
operand choice of these two functions. Step 3 consists in choosing the secondary table and step 4
corresponds to the choice of the column on which to apply the current function. Once again, there
is an additional choice that allows the algorithm to generate the input of the current function (Min
or Max) by applying another construction rule.
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Figure 3: Feature construction tree example

The width of this tree is finite because the set of the construction rules, the secondary tables are
finite. By contrast, the depth of this tree is infinite due to the potentially infinite function composi-
tions. In order to sample K features from such a tree, the drawing of features follows a particular
prior distribution which is a Hierarchy of Multinomial Distributions with potentially Infinite Depth
(HMDID) (Boullé et al. (2019)). This HMDID distribution is represented in Figure 3 by the prob-
abilities assigned to the edges between the nodes of the tree. The algorithmic solution consists
in iteratively moving a collection of tokens down the tree, according to the HMDID distribution.
The number of tokens that move forward is finite, which means that the tree is only partially and
progressively explored. Consequently, this algorithm can efficiently draw aggregate features with
restrictions to the available computer memory.

3.2.2. FILTERING UNINFORMATIVE FEATURES -

Once the aggregate features have been generated in the main table through propositionalisation,
there is no guarantee that they are informative w.r.t. the class label. Since all features that could be
generated are numerical, the supervised pre-processing step consists in partitioning the numerical
features into intervals, i.e., univariate discretization.

In the MODL framework, supervised discretization of a variable X is turned into a model se-
lection problem and solved in a Bayesian way through optimization algorithms (Boullé (2006)).
According to the Maximum A Posteriori (MAP) approach, the best discretization model MX is the
one that maximizes the probability of a discretization model given the input data DX and the target
output data DY , i.e., P (MX | DX , DY ) ∝ P (MX) × P (DY | MX , DX). The prior P (MX)
and the conditional probability P (DY |MX , DX) called the likelihood are both computed with the
parameters of a specific discretization which is uniquely identified by the number of intervals, the
bound of the intervals and the class frequencies in each interval. Therefore, the prior exploits the
hierarchy of parameters and is uniform at each stage of the hierarchy.

The evaluation criterion used for optimization is denoted by c(MX) is made of the negative
logarithm of the posterior probability (Equation 1). The prior part of the optimization criterion
favors simple models with few intervals, and the likelihood part favors models that fit the data
regardless of their complexity. In terms of information theory, this criterion is interpreted as coding
lengths. In Equation 2, the term L(MX) represents the number of bits used to describe the model
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and L(DY |MX , DX) represents the number of bits used to encode the target variable with the
model, given the input data DX .

c(MX) = − log(P (MX))− log(P (DY |MX , DX)) (1)

c(MX) = L(MX) + L(DY |MX , DX) (2)

Based on a greedy bottom-up heuristic, a specifically designed optimization algorithm is em-
ployed in order to find the most probable model given the input data in O(N logN) time com-
plexity, where N is the number of time series. The previously described propositionalisation algo-
rithm draws aggregate features which are evaluated by using a specifically designed MODL crite-
rion. Compared to the supervised preprocessing criterion c(MX), the propositionalisation criterion
c∗(MX) adds a construction cost within the prior part (see Equation 3). Intuitively, the construction
cost L(X) is even more important when the considered aggregate feature X is complex. The added
construction cost modifies the balance between the prior and likelihood terms by taking into count
the complexity of the evaluated feature. The construction cost L(X) is recursively defined due to
the multiple function compositions. In Equation 4, the term log(K+1) describes the cost of choos-
ing to generate a new feature in addition to the K native features of the root table. The term log(R)
describes the cost of choosing a particular construction rule among R possible rules. The recursive
side appears with the term

∑
o∈R L(Xo) that describes the cost of constructing a new feature for

each operand of the current construction ruleR. A natural trade-off appears: the more complex the
feature is, the more it is penalized by the prior, and the higher the likelihood have to be compen-
sated L(X). Compression gain (CG) evaluates the MAP model M∗X by comparing its coding length
with the one of M∅X that includes a single interval (Equation 5). Features with a negative CG are
considered as uninformative.

c∗(MX) = L(X) + L(MX) + L(DY |MX , DX) (3)

where L(X) = log(K+1)+log(R)+
∑
o∈R

L(Xo) (4)

CG = 1−
c∗(M∗X)

c∗(M∅X)
(5)

CG∗ = 1−

N∑
i=0

log(p̂(yi|τi))∑N
i=0 log(p(yi))

(6)

3.2.3. LEARNING A CLASSIFIER -

The MODL criterion c∗ is used to pre-process the informative aggregate features by training dis-
cretisation models. Then, all these univariate preprocessing models are gathered together and used
to learn a Selective Naïve Bayes (Boullé (2007)) (SNB). The SNB classifier aims to select the most
informative subset of features by using a specifically designed MODL criterion. Compression gain
is also defined for evaluating a classifier (CG∗) and it can be interpreted as a normalized log like-
lihood. Equation 6 defines CG∗, where p̂(yi|τi) is the probability estimated by the classifier that
the time series τi belongs to its true class yi, and p(yi) is the probability of the class value yi that
is empirically estimated using the entire dataset. As previously, the maximum value of CG∗ is 1
which corresponds to a perfect classifier, and the values ofCG∗ may decrease below 0 for classifiers
that are less performant than predicting the empirical probabilities of the class values.
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3.3. Representation selection

The previous sections presented the first
Figure 4: Representation selection algorithm

Require: X a set of time series, y the associated labels, Rep the
set of all possible representations of time series, S a set of
possible starting point for the representation selection (∀s ∈
S, s ⊂ Rep), ϕ one of the two possible relational schema
(see Section 3.1), K the number of generated features from
relational data, ε the minimal compression gain improvement
to add or remove a representation.

1: s∗ ← ∅ /*Selected representations*/
2: CG∗ ← 0 /*Best compression gain*/
3: /* (step A) Choice of the best representation subset.*/
4: for all s ∈ S do
5: classifier ← Learn(X, y, s, ϕ,K)
6: if CompressionGain(classifier) > CG∗ then
7: s∗ ← s
8: CG∗ ← CompressionGain(classifier)
9: end if

10: end for
11: /* (step B) Forward backward selection algorithm */
12: while CG∗ is ε− improved do
13: /* (step B.1) Forward step*/
14: ForwardRepSelection(Rep,CG∗, s∗)
15: /* (step B.2) Backward step*/
16: BackwardRepSelection(Rep,CG∗, s∗)
17: end while
18: return s∗

steps of our approach that aim to: i) trans-
form the original time series into multiple rep-
resentations; ii) recode these multiple repre-
sentations into relational data; iii) extract in-
formative features from the outcoming rela-
tional data and learn a classifier. All these
steps are repeated several times in order to
select the most informative representations and
the best relational schema. Namely, the al-
gorithm of Figure 4 is used to select simul-
taneously the best subset of representations.
This forward backward selection algorithm
is repeated two times in order to select the
best relational schema (see Section 3.1). The
schema for which the resulting classifier has
the best compression gain is retained. Step
(A) of Figure 4 consists in choosing the best
starting point for the representation selection
based on compression gain of the learned clas-
sifier. Step (B) of Figure 4 selects the most informative representations by adding or removing it
according to a shuffled order until the compression gain is no more improved by at least ε.

4. Empirical validation

In this section, we present the empirical evaluation of our FEARS approach for time series classi-
fication. The experiments are performed to discuss the following questions:

Q1 Concerning FEARS, is there a best scheme out of all-each and all-in-one schemes? How
many representations selected? Which ones? Is there a benefit in predictive performance
using the representation selection procedure? And what about the time-efficiency of the whole
process?

Q2 Are the performance of FEARS comparable with state-of-the-art TSC methods? In which
conditions?

4.1. Experimental protocol

Data sets. The data sets used only contain univariate time series. Even if the FEARS approach
can easily be adapted to the multi-variate case, our objective is to provide results comparable with
previous work in the literature. For our experiments, we use 85 TSC data sets of the UEA/UCR

repository (Bagnall et al. (2018)) that are commonly used in the literature. The repository exhibits a
large panel of TSC application domains: image outline, motion sensors, simulated, etc. These data
sets are provided with a pre-defined split between training and test sets, and we use it as provided.
This choice is questionable for many reasons, as discussed in (Gay and Lemaire (2018)), however it
is sufficient for the current proof of concept. Additional experiments as well as source code which
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allow full reproducibility are available from the companion web page: https://github.com/
alexisbondu/FEARS.

FEARS setting - Algorithm of Figure 4 involves several parameters. In our experiments we use
S = {[TS,ACF ], [TS,CUMSUM ], [TS,D], [TS,CUMSUM,DCUMSUM ], [TS,D,DD],

[TS,D,DD,CUMSUM,DCUMSUM ], [TS,D,DD,CUMSUM,DCUMSUM,ACF ]}. The min-
imal compression gain improvement to add or remove a representation is fixed to ε = 0.01. And the
MODL propositionalisation approach generates at most K = 30000 features.

Contenders - The proposed approach is compared to the most popular state-of-the-art approaches:
1-NN-DTW approach consists in applying a simple one-nearest neighbor classifier using the Dy-
namic Time Warping (Sakoe and Chiba (1978)). The 1-NN-DTW-CV approach is a variant that tunes
the warping window size by using a cross validation. COTE, the Collective of Transformation-Based
Ensembles (Bagnall et al. (2015)) and its successor HIVE-COTE, (Lines et al. (2018)); BOSS, Bag-
of-SFA-Symbols (Schäfer (2015)) approach; WEASEL, Word ExtrAction for time SEries cLassifica-
tion (Schäfer and Leser (2017)), The Shapelet Transformation ST approach (Hills et al. (2014)); EE,
the Elastic Ensemble (Lines and Bagnall (2015)) approach is an ensemble classifier that combines
eleven k-NN classifiers using different similarity measures (DTW, Euclidean distance etc.), using
different representation of time series (time domain, and the first order derivatives etc.). TSBF, the
Time Series Bag of Features (Baydogan et al. (2013)). LS, the Learn Shapelet (Grabocka et al.
(2014)). And also neural networks approaches, RESNET & FCN : H. I. Fawaz et al. (Fawaz
et al. (2019)) performed an extensive benchmark of the main Deep Learning architectures using
the same 85 datasets. We retain the two best performing Deep Learning architectures as compet-
ing approaches in our benchmark: the RESNET (Wang et al. (2017)) and FCN (Wang et al. (2017))
architectures.

4.2. Results

Schema effect - Our approach uses two different relational schemes to transform the multiple
representations of times series into relational data (“all-in-one” or “one-each” schemes). The first
question our experiments answer is the effect of choosing a particular schema. The Wilcoxon
signed-rank test was applied on the 85 data sets, and indicates that the “all-in-one” schema per-
forms significantly better than the “one-each” schema (z = −3.47). This underlines the relevance
of generation "cross-representation" aggregate features (see Section 3.1). As described above, the
proposed approach is able to choose the best relational schema, based on the compression gain of
the learned classifier. No significant difference can be observed by the Wilcoxon signed-rank test
when comparing the systematic use of the all-in-one schema and the selection of the best schema
based on compression gain. However the dynamic choice of the best schema is retained in our ap-
proach, because it results in a better ranking than the single all-in-one schema when compared to
competing methods. The all-in-one schema remains the most widely used in our experiments, with
72 selections out of 85 data sets.

Representation selection - The function Learn(.) of Figure 4 triggers the extraction of aggre-
gate features from relational data and the learning of the SNB classifier. This function is called for
each move (i.e. adding or a deleting a representation) in the while loop of the selection algorithm.
The computing time of our approach increases linearly with the number of loops in the selection
algorithm. In our benchmark, the most informative subset of representations is found by using only

388

https://github.com/alexisbondu/FEARS
https://github.com/alexisbondu/FEARS


A FEATURE AND REPRESENTATION SELECTION APPROACH FOR TIME SERIES CLASSIFICATION

two loops for 71 data sets, and three loops for the remaining data sets. The number of selected
representations varies depending on the data sets. Figure 5:a shows the distribution of the number
of selected representations on all data sets. Surprisingly, this distribution is not uniform but has
a bimodal shape. Either, the learning task requires few representations (2 or 3) or many (6 or 7).
Intermediate cases are very infrequent. Similarly, the representations themselves are selected in a
non-uniform way. Figure 5:b shows the distribution of the number of selection occurrences3 for
each representation. In our benchmark, the most frequently used representations are the time do-
main (TS) and the derivatives (D and DD). Cumulative integrals (CUMSUM, DCUMSUM) and the
auto-correlation function (ACF) are less frequently used. At last, the power spectrum (PS) is the
less frequently used representation. The selection algorithm aims at improving the accuracy of the
learned classifier by finding the most informative subset of representations. In order to evaluate this,
we measure the improvement of the classifier when it is fed (or not) by all the selected represen-
tations. Namely, we build a competing approach by selecting the best single representation based
on the compression gain of the learned classifier. Figure 5:c compares, for each data set, the CG
obtained selecting the best single representation against the one obtained with the entire subset of
selected representations. The CG is widely improved in most cases, which underlines the efficiency
of the used selection algorithm. This result is also reflected in the test accuracy of the classifiers, for
which the Wilcoxon test finds a very significant advantage in the use of all selected representations
(z = −4.23). In our experiments, FEARS generates at most K = 30000 informative features. In
practice, this number may be lower if there are not enough distinct informative features to be gener-
ated. Figure 5:d shows the distribution of the number of generated features on all data sets. In most
cases less than 2500 features are generated, and this distribution appears almost uniform for higher
values. In the end, FEARS extracts interpretable features, while limiting the number of generated
features in practice (K is a maximum value).

Accuracy results comparison - The presented experiments evaluate and compare the perfor-
mances of FEARS and the twelve competing approaches over the 85 datasets. The Nemenyi test
is used to rank and group the different time series classification approaches. This statistical test
includes two successive steps. First, the Friedman test is applied to the accuracy of competing clas-
sifiers to determine whether their overall performance is similar. If this is not the case, the post-hoc
test is applied to determine groups of models whose overall performance is not statistically signif-
icantly different from each other, but is significantly different from those of other groups. Figure
6:a shows the Nemenyi test applied to the 85 datasets. FEARS belongs to the fourth group and
is ranked 9th. The accuracy of the FEARS approach is significantly better than the 1-NN DTW
baseline. This mitigated result is not surprising: very low CG∗ values obtained by FEARS on sev-
eral specific data sets during the training phase are the forerunners. A tight look at which data sets
we fail highlight the amount of available training series. As spotted in (Gay and Lemaire (2018)),
the UEA/UCR archive contains a significant number of data sets with some singularities: very few
training instances or very few training class representatives or both. In these contexts, supervised
discretisation of aggregate features based on empirically observed per-class frequencies are ineffec-
tive. The lack of training instances is particularly harmful since FEARS is a regularized approach: it
favors simple models when the size of the training data set is insufficient. In contrast, complex mod-
els are selected when the size of the training data set increases, allowing the regularized approach
to accurately describe the data. At the end, FEARS is a conservative approach with small datasets,

3. the number of times a representation is selected divided by the total number of selected representation for all datasets
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(a) (b)

(c) (d)
Figure 5: (a) Distribution of the number of selected representations; (b) Repartition of the representation; (c) CG

obtained with the best single representation vs. CG of FEARS; (d) distribution of generated features.

even if it means sacrificing accuracy. This phenomenon can be observed in our benchmark. The
more the data sets size increases, the more the performance of FEARS increases compared to com-
peting approaches. Figure 6:b shows the Nemenyi test applied to the datasets that contain more than
500 training examples. In this case, the Nemenyi test is applied to the 23 biggest datasets. FEARS

reaches the second rank and provides better performance than WEASEL and ResNet approaches.
And HIVE-COTE remains the best approach in term of accuracy.

(a) (b)
Figure 6: Nemenyi test: (a) applied to the 85 datasets; (b) applied to the data sets with N > 500.

Figure 7:a illustrates this by plotting the rank achieved by FEARS in the Nemenyi test against
the minimum size of the training set. We can see the FEARS’s rank improves monotonously when
the minimum data size increases from 0 to 600 training examples. For larger sizes, there are not
enough remaining datasets to make the FEARS’s ranks significant. However, FEARS achieve the 4th
position between 1000 and 1800 training examples, and reaches the first position when evaluated
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on the 3 biggest datasets (N > 1800). Figures 7:a-b show the pairwise comparisons between
approaches based on the Wilcoxon signed-rank test. This type of visualization allows us to compare
competing approaches more precisely than the Nemenyi test. The small black squares identify
pairs of approaches that do not differ significantly in performance. For instance, HIVE-COTE is
significantly better than all the other competing approaches, except RestNet that reaches the 3th
position in the Nemenyi test (see Figure 7:b). When evaluated on the datasets that contain at least
500 training examples, FEARS is significantly better than BOSS, EE, LS, TSBF, 1-NN DTW (CV)
approaches (see Figure 7:c).

(a) (b) (c)

Figure 7: (a) Average ranks of FEARS in the Nemenyi test vs. minimal N values. And (b, c) pairwise comparison
using the Wilcoxon signed-rank test: (b) all datasets; (c) N > 500 (competing approaches are ordered on
the axes as in Figures 6:a and 6:b).

These experimental results are very encouraging and demonstrate the value of the proposed
approach in term of model’s accuracy. In addition, the relatively good performance of the FEARS

approach must be consider regarding its computing cost.

Efficiency: running time results - In practice, the proposed approach is proving to be efficient.
The overall time complexity of FEARS is inO(|Rep|.K.Nlog(K.N)), with N,K, |Rep| the num-
ber of training examples, generated features and representations resp. In addition, the used code
source is based on a well optimized ML library that implements the MODL approaches 4. Our
experiments required limited hardware resources and were carried out in approximately 90 hours.
To do this, we used a simple workstation equipped with a 2Ghz Xeon E5-2650 processor and 32GB
of RAM. Figure 8:a shows the distribution of the computing times when datasets are processed on
a single core. Most of the datasets are processed in less than 5 hours. And the three biggest datasets
have a the most important computing times (ElectricDevices - 49h, NonInvasiveFatalECGThorax1
- 45h, NonInvasiveFatalECGThorax2 - 43h). Figure 8:b plots the computing time of datasets ac-
cording to their size N . This figure shows a linear trend (in log scale) of the computing time vs. N ,
that is consistent with the time complexity of the FEARS approach. At the end, FEARS provides
a good compromise between the accuracy of the models and its computation time. For comparison
purposes, the benchmark on deep learning approaches (Fawaz et al. (2019)) used 60 GPUs for about
one month, while our experiments were performed in 90 hours by using a single 8-core CPU.

4. available at http://www.khiops.com
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(a) (b)
Figure 8: (a) Distribution of the running time (hours scale); (b) running time for each data set (in second) according to

N the size of the training set plotted in log scale.

5. Conclusion

At the crossroads of time series classification and relational data mining communities, our contri-
bution, FEARS is a new method that exploits multiple representations of time series for effective
and efficient classification. The originality is to bring a different view on TSC – a relational view.
Storing multiple representations of time series in relational data schema, interpretable feature con-
struction/selection, and representation selection are the key concepts of FEARS. The whole pro-
cess achieves very competitive accuracy results compared with recent state-of-the-art contenders on
UCR/UEA benchmark data sets, provided there are enough training series. In addition, the suggested
approach allows interpretable features to be extracted from the selected representations, resulting
in a very advantageous compromise between (i) computation time, (ii) accuracy results and (iii)
features interpretability. Thus, the suggested approach can be easily used in an industrial context,
due to its high level of automation, performance, and ease of use.

The relational view of TSC comes up with a natural perspective for future work: multivariate
TSC. Storing the various dimensions of multivariate series (or several alternative representations
of these dimensions) in secondary tables and multivariate TSC is absorbable by FEARS. Another
possible improvement of FEARS would be to enrich the relational schema with additional represen-
tations. FEARS may be combined with other machine learning approaches able to extract relevant
features from the raw time series. For instance, an auto-encoder may be used to provide an addi-
tional secondary table used in our approach (but this may potentially lead to overfitting problems).

The experiments on representation selection have confirmed the prevalence of representation
choice in various application domains of TSC. Since, a priori, no representation stands out from
the crowd, it is up to the application domain experts to preset a starting set of potentially relevant
representations. Also, the set of construction rule functions (min,max, etc.) might be fed by
additional dedicated functions. Fortunately, FEARS is abstract enough to allow domain-driven
customization.
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