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Abstract. The choice of an appropriate representation remains crucial for min-
ing time series, particularly to reach a good trade-off between the dimensionality
reduction and the stored information. Symbolic representations constitute a sim-
ple way of reducing the dimensionality by turning time series into sequences of
symbols. SAXO is a data-driven symbolic representation of time series which
encodes typical distributions of data points. This approach was first introduced
as a heuristic algorithm based on a regularized coclustering approach. The main
contribution of this article is to formalize SAXO as a hierarchical coclustering ap-
proach. The search for the best symbolic representation given the data is turned
into a model selection problem. Comparative experiments demonstrate the benefit
of the new formalization, which results in representations that drastically improve
the compression of data.
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1 Introduction

The choice of the representation of time series remains crucial since it impacts the qual-
ity of supervised and unsupervised analysis [1]. Time series are particularly difficult to
deal with due to their inherently high dimensionality when they are represented in the
time-domain [2] [3]. Virtually all data mining and machine learning algorithms scale
poorly with the dimensionality. During the last two decades, numerous high level repre-
sentations of time series have been proposed to overcome this difficulty. The most com-
monly used approaches are: the Discrete Fourier Transform [4], the Discrete Wavelet
Transform [5] [6], the Discrete Cosine Transform [7], the Piecewise Aggregate Approx-
imation (PAA) [8]. Each representation of time series encodes some information derived
from the raw data1. According to [1], mining time series heavily relies on the choice
of a representation and a similarity measure. Our objective is to find a compact and
informative representation which is driven by the data. The symbolic representations
constitute a simple way of reducing the dimensionality of the data by turning time series

1 “Raw data” designates a time series represented in the time-domain by a vector of real values.
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into sequences of symbols [9]. In such representations, each symbol corresponds to a
time interval and encodes information which summarize the related sub-series. Without
making hypothesis on the data, such a representation does not allow one to quantify
the loss of information. This article focuses on a less prevalent symbolic representation
which is called SAXO2. This approach optimally discretizes the time dimension and
encodes typical distributions3 of data points with the symbols [10]. SAXO offers inter-
esting properties. Since this representation is based on a regularized Bayesian coclus-
tering4 approach called MODL5 [11], a good trade-off is naturally reached between the
dimensionality reduction and the information loss. SAXO is a parameter-free and data-
driven representation of time series. In practice, this symbolic representation proves to
be highly informative for training classifiers. In [10], SAXO was evaluated on public
datasets and favorably compared with the SAX representation.

Originally, SAXO was defined as a heuristic algorithm. The two main contribu-
tions of this article are: i) the formalization of SAXO as a hierarchical coclustering
approach; ii) the evaluation of its compactness in terms of coding length. This article
is organized as follows. Section 2 briefly introduces the symbolic representations of
time series and presents the original SAXO heuristic algorithm. Section 3 formalizes
the SAXO approach resulting in a new evaluation criterion which is the main contribu-
tion of this article. Experiments are conducted in Section 4 on real datasets in order to
compare the SAXO evaluation criterion with that of the MODL coclustering approach.
Lastly, perspectives and future works are discussed in Section 5.

2 Related work

Numerous compact representations of time series deal with the curse of dimensionality
by discretizing the time and by summarizing the sub-series within each time interval.
For instance, the Piecewise Aggregate Approximation (PAA) encodes the mean values
of data points within each time interval. The Piecewise Linear Approximation (PLA)
[12] is an other example of compact representation which encodes the gradient and the
y-intercept of a linear approximation of sub-series. In both cases, the representation
consist of numerical values which describe each time interval. In contrast, the symbolic
representations characterize the time intervals by categorical variables [9]. For instance,
the Shape Definition Language (SDL) [13] encodes the shape of sub-series by symbols.
The most commonly used symbolic representation is the SAX6 approach [9]. In this
case, the time dimension is discretized into regular intervals, the symbols encode the
mean values per interval.

2 SAXO Symbolic Aggregate approXimation Optimized by data.
3 The SAXO approach produces clusters of time series within each time interval which corre-

spond to the symbols.
4 The coclustering problem consist in reordering rows and columns of a matrix in order to satisfy

a homogeneity criterion.
5 Minimum Optimized Description Length
6 Symbolic Aggregate approXimation.
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The symbolic representations appear to be really helpful for processing large datasets
of time series owing to dimensionality reduction. However, these approaches suffer sev-
eral limitations.

– Most of these representations are lossy compression approaches unable to quantify
the loss of information without strong hypothesis on the data.

– The discretization of the time dimension into regular intervals is not data driven.
– The symbols have the same meaning over time irrespectively of their rank (i.e. the

ranks of the symbols may be used to improve the compression).
– Most of these representations involve user parameters which affect the stored infor-

mation (ex: for the SAX representation, the number of time intervals and the size of
the alphabet must be specified).

The SAXO approach overcomes these limitations by optimizing the time discretiza-
tion, and by encoding typical distributions of data points within each time interval [10].
SAXO was first defined as a heuristic which exploits the MODL coclustering approach.

Fig. 1. Main steps of the SAXO learning algorithm.

Figure 1 provides an overview of this approach by illustrating the main steps of the
learning algorithm. The joint distribution of the identifiers of the time series C, the val-
ues X , and the timestamp T is estimated by a trivariate coclustering model. The time
discretization resulting from the first step is retained, and the joint distribution ofX and
C is estimated within each time interval by using a bivariate coclustering model. The
resulting clusters of time series are characterized by piecewise constant distributions of
values and correspond to the symbols. A specific representation allows one to re-encode
the time series as a sequence of symbols. Then, the typical distribution that best rep-
resents the data points of the time series is selected within each time interval. Figure
2(a) plots an example of recoded time series. The original time series (represented by
the blue curve) is recoded by the “abba” SAXO word. The time is discretized into four
intervals (the vertical red lines) corresponding to each symbol. Within time intervals,
the values are discretized (the horizontal green lines): the number of intervals of val-
ues and their locations are not necessary the same. The symbols correspond to typical
distributions of values: conditional probabilities of X are associated with each cell of
the grid (represented by the gray levels); Figure 2(b) gives an example of the alpha-
bet associated with the second time interval. The four available symbols correspond to
typical distributions which are both represented by gray levels and by histograms. By
considering Figures 2(a) and 2(b), b appears to be the closest typical distribution of the
second sub-series.
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(a) (b)

Fig. 2. Example of a SAXO representation (a) and the alphabet of the second time interval (b).

As in any heuristic approach, the original algorithm finds a suboptimal solution for
selecting the most suitable SAXO representation given the data. Solving this problem
in an exact way appears to be intractable, since it is comparable to the coclustering
problem which is NP-hard. The main contribution of this paper is to formalize the
SAXO approach within the MODL framework. We claim this formalization is a first
step to improving the quality of the SAXO representations learned from data. In this
article, we define a new evaluation criterion denoted by Csaxo (see Section 3). The
most probable SAXO representation given the data is defined by minimizing Csaxo.
We expect to reach better representations by optimizing Csaxo, instead of exploiting
the original heuristic algorithm.

3 Formalization of the SAXO approach

This section presents the main contribution of this article: the SAXO approach is for-
malized as a hierarchical coclustering approach. As illustrated in Figure 3, the original-
ity of the SAXO approach is that the groups of identifiers (variable C) and the intervals
of values (variable X) are allowed to change over time. By contrast, the MODL co-
clustering approach forces the discretization of C and X to be the same within time
intervals. Our objective is to reach better models by removing this constraint.

X

C

T

MODL coclustering
X

C

T

SAXO

Fig. 3. Examples of a MODL coclustering model (left part) and a SAXO model (right part).
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A SAXO model is hierarchically instantiated by following two successive steps.
First, the discretization of time is determined. The bivariate discretization C × X is
then defined within each time interval. Additional notations are required to describe the
sequence of bivariate data grids.

Notations for time series: In this article, the input dataset D is considered to be a
collection ofN time series denoted Si (with i ∈ [1, N ]). Each time series consists of
mi data points, which are couples of values X and timestamps T . The total number
of data points is denoted by m =

∑N
i=1mi.

Notations for the t-th time interval of a SAXO model:

– kT : number of time intervals;
– ktC: number of clusters of time series;
– ktX : number of intervals of value;
– kC(i, t): index of the cluster that contains the sub-series of Si;
– {ntiC}: number of time series in each cluster itC;
– mt: number of data point;
– mt

i: number of data points of each time series Si;
– mt

iC
: number of data points in each cluster itC;

– {mt
jX
}: number of data points in the intervals jX ;

– {mt
iCjX
}: number of data points belonging to each cell (iC , jX).

Eventually, a SAXO model M ′ is first defined by a number of time intervals and
the location of their bounds. The bivariate data grids C ×X within each time interval
are defined by: i) the partition of the time series into clusters; ii) the number of intervals
of values; iii) the distribution of the data points on the cells of the data grid; iv) for
each cluster, the distribution of the data points on the time series belonging to the same
cluster. Section 3.1 presents the prior distribution of the SAXO models. The likelihood
of a SAXO model given the data is described in Section 3.2. A new evaluation criterion
which defines the most probable model given the data is proposed in Section 3.3.

3.1 Prior distribution of the SAXO models

The proposed prior distribution P (M ′) exploits the hierarchy of the parameters of the
SAXO models and is uniform at each level. The prior distribution of the number of
time intervals kT is given by Equation 1. The parameter kT belongs to [1,m], with m
representing the total number of data points. All possible values of kT are considered as
equiprobable. By using combinatorics, the number of possible locations of the bounds
can be enumerated given a fixed value of kT . Once again, all possible locations are con-
sidered as equiprobable. Equation 2 represents the prior distribution of the parameter
{mt} given kT . Within each time interval t, the number of intervals of values ktX is
uniformly distributed (see Equation 3). The value of ktX belongs to [1,mt], with mt

representing the number of data points within the t-th time interval. All possible values
of ktX are equiprobable. The same approach is applied to define the prior distribution
of the number of clusters within each time interval (see Equation 4). The value of ktC
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belongs to [1, N ], with N denoting the total number of time series. Once again, all pos-
sible values of ktC are equiprobable. The possible ways of partitioning theN time series
into ktC clusters can be enumerated, given a fixed number of clusters in the t-th time in-
terval. The term B(N, ktC) in Equation 5 represents the number of possible partitions
of N elements into ktC possibly empty clusters7. Within each time interval, all distribu-
tions of the mt data points on the cells of the bivariate data grid C ×X are considered
as equiprobable. Equation 6 enumerates the possible ways of distributing {mt} data
points on ktX .k

t
C cells. Given a time interval t and a cluster itC , all distributions of the

data points on the time series belonging to the same cluster are equiprobable. Equation
7 enumerates the possible ways of distributing mt

i data points on ntiC time series.

P (kT ) =
1

m
(1) P ({mt}|kT ) =

1(
m+kT−1

kT−1

) (2)
P ({ktX}|kT , {mt}) =

kT∏
t=1

1

mt
(3)

P ({ktC}|kT ) =
kT∏
t=1

1

N
(4) P

(
kC(i, t)|kT , {ktC}

)
=

kT∏
t=1

1

B(N, ktC)
(5)

P
(
{mt

jC ,jX}|kT , {m
t}, {ktX}, {ktC}

)
=

kT∏
t=1

1(mt+kt
C
.kt

X
−1

kt
C
.kt

X
−1

) (6)

P
(
{mt

i}|kT , {ktC}, kC(i, t), {mt
jC ,jX}

)
=

kT∏
t=1

kt
C∏

i=1

1(mt
iC

+nt
iC
−1

nt
iC
−1

) (7)

In the end, the prior distribution of the SAXO models M ′ is given by Equation 8.

P (M ′) =
1

m
× 1(

m+kT−1
kT−1

) × kT∏
t=1

[
1

mt
× 1

N
× 1

B(N, ktC)

× 1(mt+kt
C
.kt

X
−1

kt
C
.kt

X
−1

) × kt
C∏

i=1

1(mt
iC

+nt
iC
−1

nt
iC
−1

)


(8)

3.2 Likelihood of data given a SAXO model

A SAXO model matches with several possible datasets. Intuitively, the likelihoodP (D|M ′)
enumerates all the datasets which are compatible with the parameters of the model M ′.
The first term of the likelihood represents the distribution of the ranks of the values of
T . In other words, Equation 9 codes all the possible permutations of the data points
within each time interval. The second term enumerates all the possible distributions of
the m data points on the kT time intervals, which are compatible with the parameter
{mt} (see Equation 10). In the same way, Equation 11 enumerates the distributions of

7 The second kind of Stirling numbers S
{
v
k

}
enumerates the possible partitions of v elements

into k clusters and B(N, ktC) =
∑kt

C
i=1 S

{
N
i

}
.
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themt data points on the ktX .k
t
C cells of the bivariate data gridsC×X within each time

interval. The considered distributions are compatible with the parameter {mt
iC ,jX

}. For
each time interval and for each cluster, Equation 12 enumerates all the possible distri-
butions of the data points on the time series belonging to the same cluster. Equation
13 enumerates all the possible permutations of the data points in the intervals of X ,
within each time interval. This information must also be coded over all the time inter-
vals, which is equivalent to enumerating all the possible fusions of kT stored lists in
order to constitute a global stored list (see Equation 14). In the end, the likelihood of
the data given a SAXO models M ′ is characterized by Equation 15.

1∏kT
t=1m

t!
(9)

1
m!∏kT

t=1 mt!

(10)
kT∏
t=1

1
mt!∏kt

C
iC=1

∏kt
X

jX=1 mt
iC,jX

!

(11)

kT∏
t=1

1∏kt
C

iC=1 mt
iC

!∏N
i=1 mt

i !

(12)
kT∏
t=1

1∏kt
X

jX=1m
t
jX

!
(13)

1
m!∏kT

t=1 mt!

(14)

P (D|M ′)= 1

m!2
×

kT∏
t=1

∏kt
C

iC=1

∏kt
X

jX=1m
t
iC ,jX

!×
∏N

i=1m
t
i!∏kt

X
jX=1m

t
jX

!×
∏kt

C
iC=1m

t
iC
!

 (15)

3.3 Evaluation criterion

The SAXO evaluation criterion is the negative logarithm of P (M ′) × P (D|M ′) (see
Equation 16). The first three lines correspond to the prior term −log(P (M ′)) and the
last two lines represent the likelihood term−log(P (M ′|D)). The most probable model
given the data is found by minimizing Csaxo(M

′) over the set of all possible SAXO
models denoted by M′.

Csaxo(M
′) = log(m) + log

(
m+ kT − 1

kT − 1

)
+

kT∑
t=1

log(mt)

+kT .log(N)+

kT∑
t=1

log
(
B(N, ktC)

)
+

kT∑
t=1

log

(
mt+ktC .k

t
X−1

ktC .k
t
X − 1

)

+

kT∑
t=1

kt
C∑

iC=1

log

(
mt

iC
+ nt

iC
− 1

nt
iC
− 1

)

+ 2.log(m!)−
kT∑
t=1

kt
C∑

iC=1

kt
X∑

jX=1

log(mt
iC ,jX !)

+

kT∑
t=1

 kt
C∑

iC=1

log(mt
iC !)−

N∑
i=1

log(mt
i!) +

kt
X∑

jX=1

log(mt
jX !)



(16)
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Key ideas to retain: Rather than having a heuristic decomposition of the SAXO
approach in a two-step algorithm, we propose a single evaluation criterion based on
the MODL framework. Once optimized, this criterion should yield better represen-
tations of time series. We compare the ability of both criterion to compress data. We
aim at evaluating the interest of optimizing Csaxo rather than the original trivariate
coclustering criterion [14] (denoted by Cmodl).

4 Comparative experiments on real datasets

According to the information theory and since both criteria are a negative logarithm
of a probability, Csaxo and Cmodl represent the coding length of the models. In this
section, both approaches are compared in terms of coding length. The 20 processed
datasets come from the UCR Time Series Classification and Clustering repository [15].
Some datasets are relatively small, we have selected the ones which include at least
800 learning examples. Originally, these datasets are divided into training and test sets
which have been merged in our experiments. The objective of this section is to compare
Csaxo and Cmodl for each dataset. On the one hand, the criterion Cmodl is optimized
by using the greedy heuristic and a neighborhood exploration mentioned described in
[11]. The coding length of the most probable MODL model (denoted by MAPmodl) is
then calculated by using Cmodl. On the other hand, the criterion Csaxo is optimized by
exploiting the original heuristic algorithm illustrated in Figure 1 [10]. The coding length
of best SAXO model (denoted byMAPsaxo) is given by the criterionCsaxo. Notice that
both algorithms have aO(m

√
m logm) time complexity. The order of magnitude of the

coding length depends on the size of the data set and can not be easily compared over all
datasets. We choose to exploit the compression gain [16] which consists in comparing
the coding length of a model M with the coding length of the simplest model Msim.
This key performance indicator varies in the interval [0, 1]. The compression gain is
similarly defined for the MODL and the SAXO approaches such that:

Gainmodl(M) = 1− Cmodl(M)/Cmodl(Msim)

Gainsaxo(M
′) = 1− Csaxo(M

′)/Csaxo(Msim)

Our experiments evaluate the variation of the compression gain between the SAXO
and the MODL approaches. This indicator is denoted by ∆G and represents the relative
improvement of the compression gain provided by SAXO. The value of ∆G can be
negative, which means that SAXO provides a worse compression gain than the MODL
approach.

∆G =
Gainsaxo(MAPsaxo)− Gainmodl(MAPmodl)

Gainmodl(MAPmodl)

Table 1 presents the results of our experiments and includes a particular case with a
missing value for the dataset “TwoPatterns”. In this case, the first step of the heuristic
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Dataset ∆G Dataset ∆G

Starlight curves 63.86% CBF −1.43%
uWaveGestureX 191.41% AllFace 383.24%
uWaveGestureY 157.79% Symbols 23.16%
uWaveGestureZ 185.13% 50 Words 400.68%
ECG Five Days −1.80% Wafer 37.03%

MoteStrain 627.84% Yoga 63.40%
CincEGCtorso 32.93% FacesUCR −18.39%
MedicalImages 191.32% Cricket Z 290.22%
WordSynonym 264.93% Cricket X 285.87%

TwoPatterns missing Cricket Y 296.40%
Table 1. Coding length evaluation.

algorithm which optimizes Csaxo (see Figure 1) leads to the simplest trivariate coclus-
tering model that includes a single cell. This is a side effect due to the fact that the
MODL approach is regularized. A possible explanation is that the temporal represen-
tation of time series is not informative for this dataset. Other representations such as
the Fourier or the wavelet transforms could be tried. In most cases, ∆G has a positive
value which means SAXO provides a better compression than the MODL approach.
This trend emerges clearly, the average compression improvement reaches 183%. We
exploit the Wilcoxon signed-ranks test to reliably comparing both approaches over all
datasets [17]. If the output value (denoted by z) is smaller than −1.96, the gap in per-
formance is considered as significant. Our experiments give z = −3.37 which is highly
significant. In the end, the compression of data provided by SAXO appears to be intrin-
sically better than the MODL approach. The prior term of Csaxo induces an additional
cost in terms of coding length. This additional cost is far outweighed by a better encod-
ing of the likelihood.

5 Conclusion and perspectives

SAXO is a data-driven symbolic representation of time series which extends SAX in
three ways: i) the discretization of time is optimized by a Bayesian approach rather than
considering regular intervals; ii) the symbols within each time interval represents typ-
ical distributions of data points rather than average values; iii) the number of symbols
may differ per time interval. The parameter settings is automatically optimized given
the data. SAXO was first introduced as an heuristic algorithm. This article formalizes
this approach within the MODL framework as a hierarchical coclustering approach (see
Section 3). A Bayesian approach is applied leading to an analytical evaluation criterion.
This criterion must be minimized in order to define the most probable representation
given the data. This new criterion is evaluated on real datasets in Section 4. Our ex-
periments compare the SAXO representation with the original MODL coclustering ap-
proach. The SAXO representation appears to be significantly better in terms of data
compression. In future work, we plan to use the SAXO criterion in order to define a
similarity measure. Numerous learning algorithms, such asK-means andK-NN, could
use such an improved similarity measure defined over time series. We plan to explore
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potential gains in areas such as: i) the detection of atypical time series; ii) the query of
a database by similarity; iii) the clustering of time series.
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