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Abstract Semi-supervised classification methods aim to exploit labeled and unlabeled
examples to train a predictive model. Most of these approaches make assumptions on the dis-
tribution of classes. This article first proposes a new semi-supervised discretization method,
which adopts very low informative prior on data. This method discretizes the numerical
domain of a continuous input variable, while keeping the information relative to the predic-
tion of classes. Then, an in-depth comparison of this semi-supervised method with the original
supervised MODL approach is presented. We demonstrate that the semi-supervised approach
is asymptotically equivalent to the supervised approach, improved with a post-optimization
of the intervals bounds location.

Keywords Bayesian · Semi-supervised · Discretization

1 Introduction

Data mining can be defined as the non-trivial process of identifying valid, novel, potentially
useful, ultimately understandable patterns in data [10,26]. Even though the modeling phase
is the core of the process, the quality of the results rely heavily on data preparation, which
usually takes around 80% of the total time [19]. An interesting method for data preparation
is to discretize the input variables [13].

Discretization methods aim to induce a list of intervals, which splits the numerical domain
of a continuous input variable, while keeping the information relative to the output variable
[5,7,12,14,16]. A naïve Bayes classifier [15] can exploit a discretization of its input space
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as the intervals set, which is used to estimate conditional probabilities of classes given the
data. Discretization methods are useful for data mining, to explore, prepare and model data.

The objective of semi-supervised learning is to exploit unlabeled data to improve a predic-
tive model [27]. This article focuses on semi-supervised classification, a well-known problem
in the literature. Most of the semi-supervised approaches deal with particular cases where
information about unlabeled data are available. Semi-supervised learning without strong
assumption on data distribution is a great challenge.

This article proposes a new semi-supervised discretization method, which adopts very low
informative priors on data. Our semi-supervised discretization method is based on the MODL
framework [4] (“Minimal Optimized Description Length”). This approach turns the discret-
ization problem into a model selection one. A Bayesian approach is applied and leads to an
analytical evaluation criterion. Then, the best discretization model is selected by optimizing
this criterion.

The organization of this paper is as follows: Section 2 presents the motivation for non-
parametric semi-supervised learning. Section 3 formalizes our semi-supervised approach; our
discretization method is compared with the supervised approach in Sect. 4; in Sect. 5, empir-
ical and theoretical results are exploited to demonstrate that the semi-supervised approach is
asymptotically equivalent to the supervised approach, improved with a post-optimization of
the location of the interval boundaries. Section 6 presents an experimental evaluation com-
paring the supervised method and the supervised method improved with a post-optimization
of the location of the interval boundaries. Finally, future work is discussed in Sect. 7.

2 Related works

This section introduces the semi-supervised learning owing to a short state of the art. Previous
works on supervised discretization are then summarized.

2.1 Semi-supervised algorithms

Semi-supervised classification methods [6] exploit labeled and unlabeled examples to train
a predictive model. The main existing approaches are the following:

• The Self-training approach is a heuristic, which iteratively uses the predictions of a model
to label new examples. The new labeled examples in turns are used to train the model. The
uncertainty of predictions is evaluated in order to label only the most confident examples
[21].

• The Co-training approach involves two predictive models, which are independently
trained on disjoint sub-feature sets. This heuristic uses the predictions of both models to
label two examples at every iteration. Each model labels one example and “teaches” the
other classifier with its prediction [2,17].

• The Covariate shift approach estimates the distributions of labeled and unlabeled exam-
ples [25]. The covariate shift formulation [24] weights labeled examples according to the
disagreement between these distributions. This approach incorporates this disagreement
into the training algorithm of a supervised model.

• Generative model-based approaches estimate the distribution of classes, under hypoth-
esis on data. These methods make the assumption that the distributions of classes belong
to a known parametric family. Then training data are exploited in order to fit parameters
values [11].
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Semi-supervised learning without making hypothesis on data distribution is a great
challenge. Therefore, most of the semi-supervised approaches make assumptions on the
distribution of classes.

For instance, generative model-based approaches aim to estimate P(x, y) = P(y)P(x |y)

the joint distribution of data and classes (with data denoted by x ∈ X and classes denoted by
y ∈ Y). The distribution P(x, y) is assumed to belongs to a parametric family {P(x, y)θ }.
The vector θ of finite size corresponds to the modeling parameters of P(x, y). The joint
distribution can be rewritten as P(x, y)θ = P(y)θ P(x |y)θ . The term P(y)θ is defined by
a prior knowledge on the distribution of classes. P(x |y)θ is identified in a given family of
distributions, thanks to the vector θ .

Let U be the set of unlabeled examples and L the set of labeled examples. The set L
contains couples (x, y), with x a scalar value and y ∈ [1, J ] a discrete class value. The set U
contains scalar values without labels. Semi-supervised generative model-based approaches
aim to find the parameters θ which maximize P(x, y)θ on the data set D = U ∪ L . The
quantity to be maximized is p(L , U |θ), the probability of data given the parameters θ . The
maximum likelihood estimation (MLE) is widely employed to maximize p(L , U |θ) (with
(xi , yi ) ∈ L and xi ′ ∈ U ):

max
θ∈�

⎡
⎣
|L|∑
i=1

log [p(yi )θ p(xi |yi )θ ]+
|U |∑

i ′=1

log

⎡
⎣
|Y|∑

j ′=1

p(y j ′)θ p(xi ′ |y j ′)θ

⎤
⎦
⎤
⎦ (1)

These approaches are usable only if information about the distribution of classes is avail-
able. The hypothesis that P(x, y) belongs to a known family of distributions is a strong
assumption which could be invalid in practice.

The objective of a non-parametric semi-supervised method is to estimate the distribution
of classes without making strong hypothesis on these distributions. Therefore, our approach
can be put in opposition with the generative approaches.

This article exploits the MODL framework [4] and proposes a new semi-supervised dis-
cretization method. This “objective” Bayesian approach makes very low assumptions on the
data distribution.

2.2 Summary of the supervised MODL discretization method

The discretization of a descriptive variable aims at estimating the conditional distribution of
class labels, owing to a piece-wise constant density estimator. In the MODL approach [4],
the discretization is turned into a model selection problem. First, a space of discretization
models is defined. The parameters of a specific discretization are the number of intervals, the
bounds of the intervals and the output frequencies in each interval.

A Bayesian approach is applied to select the best discretization model, which is found
by maximizing the probability P(M |D) of the model M given the data D. Using the Bayes
rule and since the probability P(D) is constant under varying the model, this is equivalent
to maximizing P(M)P(D|M).

Let Nl be the number of labeled examples, J the number of classes, I the number of
intervals for the input domain. Nl

i denotes the number of labeled examples in the interval i ,
and Nl

i j the number of labeled examples of output value j in the interval i . A discretization

model is then defined by the parameter set

{
I,
{

Nl
i

}
1≤i≤I ,

{
Nl

i j

}
1≤i≤I,1≤ j≤J

}
.

Owing to the definition of the model space and its prior distribution, the prior P(M) and
the conditional likelihood P(D|M) can be calculated analytically. Taking the negative log
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of P(M)P(D|M), we obtain the following criterion to minimize:

Csup = log Nl + log

(
Nl + I − 1

I − 1

)
+

I∑
i=1

log

(
Nl

i + J − 1

J − 1

)

︸ ︷︷ ︸
− log P(M)

+
I∑

i=1

log
Nl

i.!
Nl

i1!Nl
i2! . . . Nl

i J !︸ ︷︷ ︸
− log P(D|M)

(2)

The first term of the criterion Csup stands for the choice of the number of intervals and the
second term for the choice of the bounds of the intervals. The third term corresponds to the
choice of the output distribution in each interval and the last term represents the conditional
likelihood of the data given the model. Therefore “complex” models with large numbers of
intervals are penalized.

This discretization method for classification provides the most probable discretization
given the data sample. Extensive comparative experiments showed high performances [4].

The MODL approach was extensively compared with other supervised discretization
methods in [4], including entropy-based approaches. This previous comparative study showed
that the entropy-based approaches tend to overfit and require to be regularized owing to addi-
tional parameters, such as the maximum number of intervals, or the minimum number of
instances in each interval. The MDLPC [9] method exploits a variation of the entropy which
is regularized by a “Minimum Description Length” [20] approach. The MDLPC is relatively
close to MODL, however, significant differences remain between both approaches. On the
one hand, the MDLPC method recursively applies a dichotomic partitioning in intervals. On
the other hand, the MODL approach directly optimizes a K-partitioning criterion which leads
to a better discretization model.

3 A new semi-supervised discretization method

This section presents a new semi-supervised discretization method which is based on previous
work described above. The same modeling hypothesis as [4] is adopted. A prior distribution
P(M), which exploits the hierarchy of the model parameters is first proposed. This prior dis-
tribution is uniform at each stage of this hierarchy. Then, we define P(D|M) the conditional
likelihood of data given the model. This leads to an exact analytical criterion for the posterior
probability P(M |D).

Discretization models Let M be a family of semi-supervised discretization models denoted
M(I, {Ni }, {Ni j }). These models consider unlabeled and labeled examples together, and N
is the total number of examples in the data set. The models parameters are defined as follows:
I is the number of intervals, {Ni } the number of examples in each interval, and {Ni j } the
number of examples of each class in each interval.

3.1 Prior distribution

A prior distribution P(M) is defined on the parameters of the models. This prior exploits
the hierarchy of the parameters. The number of intervals is first chosen, then the bounds of the
intervals and finally the output frequencies are chosen. The joint distribution P(I, {Ni }, {Ni j })
can be written as follows:

P(M) = P(I, {Ni }, {Ni j }) (3)

P(M) = P(I )× P({Ni }|I )× P({Ni j }|{Ni }, I ) (4)
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The number of intervals is assumed to be uniformly distributed between 1 and N . Thus
we get:

P(I ) = 1

N
(5)

We now assume that all data partitions into I intervals are equiprobable for a given number
of intervals. Computing the probability of one set of intervals turns into the combinatorial
evaluation of the number of possible intervals sets, which is equal to

(N+I−1
I−1

)
. The second

term is defined as:

P({Ni }|I ) = 1(N+I−1
I−1

) (6)

The last term P({Ni j }|{Ni }, I ) can be rewritten as a product, assuming the independence of
the distribution of classes between the intervals. For a given interval i containing Ni exam-
ples, all the distributions of the class values are considered equiprobable. The probabilities
of distributions are computed as follows:

P({Ni j }|{Ni }, I ) =
I∏

i=1

1( J−1
Ni+J−1

) (7)

Finally, the prior distribution of the model is similar to the supervised approach [4]. The
only one difference is that the semi-supervised prior takes into account all examples, includ-
ing unlabeled ones:

P(M) = 1

N
× 1(N+I−1

I−1

) ×
I∏

i=1

1( J−1
Ni+J−1

) (8)

3.2 Likelihood

This section focuses on the conditional likelihood P(D|M) of the data given the model.
First, the family � of labeling models has to be defined. Semi-supervised discretization han-
dles labeled and unlabeled pieces of data, � represents all possible labelings. Each model
λ(Nl , {Nl

i }, {Nl
i j }) ∈ � is characterized by the following parameters: Nl is the total number

of labeled examples, {Nl
i } the number of labeled examples in the interval i , and {Nl

i j } the
number of labeled examples of the class j in the interval i .

Owing to the formula of the total probability, the likelihood can be written as follows:

P(D|M) =
∑
λ∈�

P(λ|M)× P(D|M, λ) (9)

P(D|M) can be drastically simplified considering that P(D|M, λ) is equal to 0 for all
labeling models, which are incompatible with the observed data D and the discretization
model M . The only one compatible labeling model that is considered is denoted as λ∗. The
previous expression can be rewritten as follows:

P(D|M) = P(λ∗|M)× P(D|M, λ∗) (10)

The first term P(λ∗|M) can be written as a product using the hypothesis of independence
of the likelihood between the intervals. In a given interval i , which contains Ni j examples
of each class, the computation of P(λ∗|M) consists in finding the probability of observing
{Nl

i j } examples of each class, drawing Nl
i examples. Once again, this problem is turned

123



A. Bondu et al.

into a combinatorial evaluation. The number of draws which induce {Nl
i j } can be calculated,

assuming the Nl
i labeled examples are uniformly drawn:

P(λ∗|M) =
I∏

i=1

∏J
j=1

(Ni j

Nl
i j

)
(Ni

Nl
i

) (11)

Let us consider a very simple and intuitive problem to explain Eq. 11. An interval i can
be compared with a “bag” containing Ni1 “black balls” and Ni2 “white balls”. Given the
parameters Ni1 = 6 and Ni2 = 20, what is the probability to simultaneously draw Nl

i1 = 2

black balls and Nl
i2 = 3 white balls? Let

(26
5

)
be the number of possible draws, and

(6
2

)× (20
3

)
the number of draws which are composed of 2 black balls and 3 white balls. Assuming that
all draws are equiprobable, the probability to simultaneously draw 2 black balls and 3 white

balls is given by: (6
2)×(20

3 )

(26
5 )

.

The second term P(D|M, λ∗) of Eq. (10) is estimated considering a uniform prior over
all possible permutations of {Nl

i j } examples of each class among Nl
i . The independence

assumption between the intervals gives:

P(D|M, L∗) =
I∏

i=1

1
Nl

i !
Nl

i1!Nl
i2!...Nl

i J !
=

I∏
i=1

∏J
j=1 Nl

i j !
Nl

i !
(12)

Finally, the likelihood of the model is:

P(D|M) =
I∏

i=1

∏J
j=1

(Ni j

Nl
i j

)× Nl
i j !

(Ni

Nl
i

)× Nl
i !

(13)

In every interval, the number of unlabeled examples is denoted by N u
i j = Ni j − Nl

i j and

N u
i = Ni − Nl

i . The previous expression can be rewritten:

P(D|M) =
I∏

i=1

∏J
j=1

Ni j !
N u

i j !
Ni !
N u

i !
(14)

P(D|M) =
I∏

i=1

[∏J
j=1 Ni j !
Ni ! × N u

i !∏J
j=1 N u

i j !

]
(15)

3.3 Evaluation criterion

The best semi-supervised discretization model is found by maximizing the probability
P(M |D). A Bayesian evaluation criterion is obtained exploiting Eqs. (8) and (15). The max-
imum a posteriori model, denoted as “Mmap” is defined by:

Mmap = max
M∈M

[
1

N
× 1(N+I−1

I−1

) ×
I∏

i=1

1(Ni+J−1
J−1

)

×
I∏

i=1

[∏J
j=1 Ni j !
Ni ! × N u

i !∏J
j=1 N u

i j !

]]
(16)
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Taking the negative log of the probabilities, the maximization problem turns into the
minimization of the criterion Csemi sup:

Mmap = min
M∈M Csemi sup(M)

= min
M∈M

[
log(N )+ log

(
N + I − 1

I − 1

)

+
I∑

i=1

log

(
Ni + J − 1

J − 1

)
+

I∑
i=1

log

(
Ni !∑J

j=1 Ni j !

)

−
I∑

i=1

log

(
N u

i !∑J
j=1 N u

i j !

)]
(17)

4 Comparison: semi-supervised versus supervised criteria

In this section, the semi-supervised criterion Csemi sup of Eq. (17) is compared with the super-
vised criterion Csup of Eq. (2):

• both criteria are analytically equivalent when U = ∅;
• the semi-supervised criterion corresponds to the prior distribution when L = ∅, in this

case, semi-supervised and supervised approaches give the same discretization;
• the semi-supervised approach is penalized by a high modeling cost when the data set

includes labeled and unlabeled examples, in this case, the optimization of the criterion
Csemi sup gives a model with less intervals than the supervised approach.

4.1 Labeled examples only

In this case, all training examples are supposed to be labeled: D = L and U = ∅. We have
N u

i = 0 for each interval and N u
i j = 0 for each class. Therefore, the last term of Eq. (17) is

equal to zero. The criterion Csemi sup can be rewritten as follows:

log(N )+ log

(
N + I − 1

I − 1

)
+

I∑
i=1

log

(
Ni + J − 1

J − 1

)
+

I∑
i=1

log

(
Ni !∑J

j=1 Ni j !

)
(18)

When all the training examples are labeled, N = Nl , Ni = Nl
i and Ni j = Nl

i j . The
semi-supervised criterion Csemi sup and the supervised criterion Csup are equivalent.

4.2 Unlabeled examples only

In the case, where no example is labeled we have D = U and L = ∅. For each interval
N u

i = Ni and for each class N u
i j = Ni j . Therefore, the term P(D|M) is equal to 1 for any

model. The conditional likelihood (Eq. 15) can be rearranged as follows:

P(D|M) =
I∏

i=1

[∏J
j=1 Ni j !
Ni ! × Ni !∏J

j=1 Ni j !

]
(19)

P(D|M) = 1 (20)
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Fig. 1 Mixture of labeled and unlabeled examples. The vertical axis represents the minimal number of
labeled examples necessary to obtain a model with two intervals, rather than a model with a single interval.
The horizontal axis represents the total number of examples using a logarithmic scale

The posterior distribution is only composed by the prior distribution
P(M |D) = P(M), in which case the model Mmap includes a single interval. Both criteria
give the same discretization, as long as supervised approach is not able to cut the numerical
domain of the input variable in this case. Csemi sup can be rewritten as:

log(N )+ log

(
N + I − 1

I − 1

)
+

I∑
i=1

log

(
Ni + J − 1

J − 1

)
(21)

4.3 Mixture of labeled and unlabeled examples

The main difference between the semi-supervised and the supervised approaches consists in
the prior distribution P(M). In semi-supervised approach, the space of discretization models
is bigger than in the supervised approach. Unlabeled examples represent additional possible
locations for the intervals bounds. Therefore, the modeling cost of the prior distribution is
more important for the semi-supervised criterion. When the number of unlabeled examples
increases, the criterion Csemi sup prefers models with less intervals.

This behavior is illustrated with a very simple experiment. Let us consider a binary clas-
sification problem. All examples belonging to the class “0” [respectively “1”] are located at
x = 0 [respectively x = 1]. During the experiment, N the number of examples increases.
The number of labeled examples is always the same in both classes. For every value of N ,
we evaluate Nl

min the minimal number of labeled examples which induces a Mmap with two
intervals (and not a single interval).

Figure 1 plots Nl
min against N = Nl + N u for both criteria. For the criterion Csup , the

minimal number of labeled examples necessary to split data does not depend on N . In this
case, Nl

min = 6 for every value of N . A different behavior is observed for Csemi sup . Figure
1 quantifies the influence of N on the selection of the model Mmap . When the number of
examples N grows, Nl

min increases approximately as log(N ). Therefore, the criterion Csup

gives a model Mmap with less intervals than the supervised approach, due to its high modeling
cost.
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5 Theoretical and empirical results

Figure 2 illustrates the structure of the results presented in this section, and their relations.
An additional discretization bias is first empirically established for our semi-supervised dis-
cretization method. Then, two theoretical results are demonstrated: an interpretation of the
likelihood in terms of entropy, and an analytical expression of the optimal Ni j . Taking into
account of these empirical and theoretical results, we demonstrate that the semi-supervised
approach is asymptotically equivalent to the supervised approach, associated with a post-
optimization of the bounds location.

5.1 Discretization bias

The semi-supervised and the supervised discretization approaches are based on the ranks
statistics. Therefore, the location of the bounds between intervals of the optimal model are
defined in a discrete space, thanks to the number of examples in every interval. The discret-
ization bias aims to define the bounds location in the numerical domain of the continuous
input variable.

5.1.1 How to position a boundary between two training examples?

The parameters {Ni } [respectively {Nl
i }] given by the optimization of Csemi sup [respectively

Csup] are not sufficient to define the continuous boundary location. Indeed, there is an infinity
of possible locations between two training examples with input values x1 and x2. In [4], the
location of the boundary b is chosen as b = (x1 + x2)/2.

Let us analyze what is the theoretical foundation for this choice. Let us consider two
adjacent intervals, with x1, the last train input value of the first interval and x2, the first
train input value of the second interval. Let us assume that the true conditional distribu-
tions are {p1, j }1≤ j≤J in the the first interval and {p2, j }1≤ j≤J in the second interval. Let
B, x1 ≤ B ≤ x2 be the true boundary location between the two intervals, and b, x1 ≤ b ≤ x2,
the choice our boundary location, which is the only unknown parameter given our hypotheses.
We then predict the conditional probabilities {p1, j } below b and {p2, j } above b. Let L be a
loss function between the predicted and the true conditional probabilities. For example, L is

See section 5.1

See Lemma A (section 5.2)

See Lemma B (section 5.2)

Interpretation of likelihood 

Semi−supervised approach

(theorical result)
in terms of entropy 

on intervals bounds location
Discretization bias

the parameters Nij
Optimization of

(theorical result)

(empirical result)

end of section 5.2
(theorical result)

Asymptotic equivalence

Supervised

approach +
Post

optimization

location
See section 5.2See ref. [2]

of bounds

Fig. 2 Structure of Sect. 5
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the quadratic loss function. According to our assumptions, L = 0 for x ∈ [x1, min(b, B)] ∪
[max(b, B), x2] and L = L Max = L({p1, j }, {p2, j }) for x ∈ [min(b, B), max(b, B)]. The
expectation EY (L) of the loss function w.r.t Y is then constant and non null only on the
sub-interval [min(b, B), max(b, B)]. The expected loss w.r.t X and Y is equal to

EXY (L) = EY (L)

max(b,B)∫

x=min(b,B)

p(X = x)dx .

If we assume that X is uniformly distributed on [x1, x2], we get

EXY (L) ∼ EY (L)|B − b|.
Assuming that the true boundary B is uniformly distributed on [x1, x2], the expected loss is

x2∫

x=x1

EXY (L)p(B = x)dx ∼ (b − x1)
2 + (x2 − b)2

2
EY (L).

Therefore, the expected loss is minimized for b = (x1 + x2)/2.
To summarize, the choice of the mean value between the two input values for the location

of the interval boundary is optimal if we assume that the input data and the location of the true
interval boundary are uniformly distributed in the range of the possible interval boundaries.

5.1.2 How to position a boundary in an unlabeled area?

The optimization of the semi-supervised criterion Csemi sup does not indicate the best bound-
ary location, when the parameters {Nl

i } are constant. This phenomenon is observed on a toy
example below. Considering an area of the input space X where no example is labeled, all
possible boundary locations have the same cost according to the criterion Csemi sup . There-
fore, the semi-supervised approach is not able to determine boundary location in such an
unlabeled area. We adopt the same approach as [4] to define the boundary location, and use
the unlabeled instances to better exploit the assumption of uniform distribution of the input
values on the possible interval boundaries. Indeed, if we replace the input values by their
empirical ranks, we are more likely to follow the uniform assumption (ranks are always uni-
formly distributed). We thus have to choose the median value (instead of the mean value) for
the best boundary location, and we estimate this median value using the empirical distribution
of the input ranks provided by the unlabeled instances.

Finally, the supervised and the semi-supervised approaches are not able to position a con-
tinuous boundary between the two labeled examples. In both cases, the same prior on the
best boundary location is adopted. The only one interest of the unlabeled examples is to bring
information about the input values, in order to refine the median of this distribution.

5.1.3 Empirical evidence

Let us consider an univariate binary classification problem. Training examples are uniformly
distributed in the interval [0, 1]. This data set contains three separate areas denoted “A”, “B”,
“C”. The part “A” [respectively “C”] includes 40 labeled examples of class “0” [respectively
“1”] and corresponds to the interval [0, 0.4] [respectively [0.6, 1]]. The part “B” corresponds
to the interval [0.4, 0.6] and contains 20 unlabeled examples.
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Fig. 3 Bound’s quantity of
information versus bound’s
location
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As part of this experiment, the family of discretization models M is restricted to the models
which contain two intervals. This toy problem consists in finding the best bound b ∈ [0, 1]
between the two intervals of the model. Every bound is related to the number of examples in
each intervals, {N1, N2}.

There are a lot of possible models for a given bound (due to the Ni j parameters). We
estimate the probability of a bound by a Bayesian averaging over all possible models, which
are compatible with the bound. This evaluation is not biased by the choice of a particular
model among all possible models. For a given bound b, the parameters {Ni j } are not defined,
we have:

P(b|D) =
∑
{Ni j }

P(b, {Ni j }︸ ︷︷ ︸
M∈M

|D) (22)

Using the Bayes rule, we get:

P(b|D)× P(D) =
∑
{Ni j }

P(D|b, {Ni j })× P(b, {Ni j }) (23)

Figure 3 plots − log P(b|D) against the bound’s location b. Minimal values of this curve
give the best bound’s locations. This figure indicates that it is neither wise to cut the data
set in part “A” nor in part “C”. All bound’s locations in part “B” are equivalent and optimal
according to the criterion Csemi sup .

This experiment empirically shows that the criterion Csemi sup cannot distinguish between
bounds’ location in an unlabeled area of the input space X. This result is unexpected and
difficult to demonstrate formally (due to the Bayesian averaging over models). Intuitively,
this phenomenon can be explained by the fact that the criterion Csemi sup has no expressed
preferences on bounds’ location. This is consistent with an “objective” Bayesian approach [1].

5.2 A post-optimization of the supervised approach

This section demonstrates that the semi-supervised approach is asymptotically equivalent
to the supervised approach improved with a post-optimization on the bounds location. This
post-optimization consists in exploiting unlabeled examples in order to position the intervals
bounds in the middle of unlabeled areas.
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5.2.1 Equivalent prior distribution

The discretization bias established in Sect. 5.1 modifies our a priori knowledge about the
distribution P(M). From now, the bounds are forced to be placed in the middle of unlabeled
areas. The number of possible locations for each bound is substantially reduced. The criterion
Csemi sup considers N − 1 possible locations for each bound. Exploiting the discretization
bias of Sect. 5.1, only Nl − 1 possible locations are considered. In these conditions, the
prior distribution P(M) (see Eq. 8) can be easily rewritten as in the supervised approach (see
Eq. 2).

5.2.2 Asymptotically equivalent likelihood

Lemma 1 The conditional likelihood of the data given the model can be expressed using the
entropy (denoted HM ) of the sets U, L and D, given the model M:

• Supervised case − log P(D|M)∗ = Nl HM (L)+O(log N )

• Semi-supervised case − log P(D|M) = N HM (D)− N u HM (U )+O(log N )

Proof • Let us denote HM (D) the Shannon’s entropy [23] of the data, given a discretization
model M . We assume that HM (D) is equals to its empirical evaluation:

HM (D) = N ×
I∑

i=1

⎡
⎣ Ni

N
−

J∑
j=1

log
Ni j

Ni

⎤
⎦

• In the semi-supervised case P(D|M) =∏I
i=1

∏J
j=1

Ni j !
Nu

i j !
Ni !
Nu

i !
. Consequently:

− log P(D|M) =
I∑

i=1

⎡
⎣log(Ni !)− log(N u

i !)−
J∑

j=1

log(Ni j !)+
J∑

j=1

log(N u
i j !)

⎤
⎦ (24)

The Stirling’s approximation gives log(n!) = n log(n)− n +O(log n):

− log P(D|M) =
I∑

i=1

[
Ni log(Ni )− Ni − N u

i log(N u
i )+ N u

i

−
J∑

j=1

[
Ni j log(Ni j )− Ni j

]+
J∑

j=1

[
N u

i j log(N u
i j )− N u

i j

]

+O(log Ni )−O(log N u
i )−

J∑
j=1

O(log Ni j )+
J∑

j=1

O(log N u
i j )

]
(25)
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Exploiting the fact that
∑J

j=1 Ni j = Ni and
∑J

j=1 N u
i j = N u

i we obtain:

− log P(D|M)=
I∑

i=1

⎡
⎣

J∑
j=1

N u
i j

(
log N u

i j−log N u
i

)
−Ni j

(
log Ni j−log Ni

)+O(log Ni )

⎤
⎦

=
I∑

i=1

⎡
⎣−Ni

J∑
j=1

Ni j

Ni
log

(
Ni j

Ni

)
+N u

i

J∑
j=1

N u
i j

N u
i

log

(
N u

i j

N u
i

)
+O(log Ni )

⎤
⎦

(26)

The entropy is additive on disjoint sets. We get:

− log P(D|M) = N HM (D)− N u HM (U )+O(log N ) (27)

�	
Lemma 2 The values of parameters {Ni j } which minimize the criterion Csemi sup (denoted
{N
i j }) correspond to the proportion of labels observed in each interval∗:

N
i j =
⌈

(Ni + 1)× Nl
i j

Nl
i

− 1

⌉
(28)

* If
∑J

j=1 N
i j = Ni − 1, simply choose one of the N
i j and add 1. All possibilities are equivalent and optimal for Csemi sup

Proof This proof handles the case of a single interval model. Since data distribution is
assumed to be independent between the intervals, this proof can be independently repeated
on I intervals. We consider a binary classification problem. Let the function f (Ni1, Ni2)

denote the criterion Csemi sup , with all parameters fixed except Ni1 and Ni2. We aim to find
an analytical expression of the minimum of the function f (Ni1, Ni2):

f (Ni1, Ni2) = log

(
(Ni1 − Nl

i1)!
Ni1!

)
+ log

(
(Ni2 − Nl

i2)!
Ni2!

)
(29)

The terms Nl
i1 and Nl

i2 are constant, and Ni2 = Ni − Ni1. f can be rewritten as a single
parameter function:

f (Ni1) = log

(
(Ni1 − Nl

i1)!
Ni1!

)
+ log

(
(Ni − Ni1 − Nl

i2)!
(Ni − Ni1)!

)

=
Ni1−Nl

i1∑
k=1

log k −
Ni1∑
k=1

log k +
Ni−Ni1−Nl

i2∑
k=1

log k −
Ni−Ni1∑

k=1

log k (30)

= −
Ni1∑

k=Ni1−Nl
i1+1

log k −
Ni−Ni1∑

k=Ni−Ni1−Nl
i2+1

log k

And

f (Ni1 + 1) = −
Ni1+1∑

k=Ni1−Nl
i1+2

log k −
Ni−Ni1−1∑

k=Ni−Ni1−Nl
i2

log k (31)
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Consequently,

f (Ni1)− f (Ni1 + 1) = log(Ni1 + 1)− log(Ni1 + 1− Nl
i1)− log(Ni − Ni1)

+ log(Ni − Nl
i2 − Ni1)

= log

(
(Ni1 + 1)(Ni − Nl

i2 − Ni1)

(Ni1 + 1− Nl
i1)(Ni − Ni1)

)
(32)

f (Ni1) decreases if:

f (Ni1)− f (Ni1 + 1) > 0

⇔ (Ni1 + 1)(Ni − Nl
i2 − Ni1)

(Ni1 + 1− Nl
i1)(Ni − Ni1)

> 1

⇔ −Nl
i2 × Ni1 − Nl

i2 > −Nl
i1 × Ni + Nl

i1 × Ni1

⇔ Ni1 <
−Nl

i2 + Nl
i1 × Ni

Nl
i1 + Nl

i2

In the same way, f (Ni1) increases if:

f (Ni1)− f (Ni1 + 1) < 0⇔ Ni1 >
−Nl

i2 + Nl
i1 × Ni

Nl
i1 + Nl

i2

As f (Ni1) is a discrete function, its maximum is reached for Ni1 = �−Nl
i2+Nl

i1×Ni

Nl
i1+Nl

i2

. This

expression can be generalized to the case of J classes1:

N
i j =
⌈

(Ni + 1)× Nl
i j

Nl
i

− 1

⌉
(33)

�	
Theorem 1 Given the best model Mmap, Lemma B states that the proportion of the labels are the same
in the sets L and D. Thus, L and D have the same entropy. The set U also has the same entropy because
U = D \ L.

Exploiting lemma A, we have for the semi-supervised case:

− log P(D|Mmap) = N HMmap (D)− N u HMmap (U ) (34)

+O(log N ) (35)
− log P(D|Mmap) = (N − N u)HMmap (L)+O(log N ) (36)

− log P(D|Mmap) = Nl HMmap (L)+O(log N ) (37)

We have:

− log P(D|Mmap)+ log P(D|Mmap)∗ = O(log N ) (38)

lim
N→+∞

− log P(D|Mmap)+ log P(D|Mmap)∗
− log P(D|Mmap)

= 0 (39)

With P(D|Mmap) [respectively P(D|Mmap)∗] corresponding to the semi-supervised [respectively super-

vised] approach.

1 The generalized expression of N
i j has been empirically verified on multi-class data sets.
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Fig. 4 � and �Relative versus N and Nl

The conditional likelihood P(D|Mmap) is asymptotically the same in the supervised and
the semi-supervised cases. Both approaches aim to solve the same optimization problem.
Owing to this result, the semi-supervised approach can be reformulated a posteriori. Our
approach is equivalent to [4] improved with a post-optimization on the bounds location.

Illustration: Supervised and semi-supervised evaluation criteria are respectively, defined
in Eqs. (2) and (17). The objective of this section is to characterize the gap between the like-
lihood terms of both criteria, under varying the size of the data set. Let � be the difference
of the “− log” of likelihood terms :

� = − log P(D|M)semi super + log P(D|M)super (40)

Let �Relative be the relative difference:

�Relative = − log P(D|M)semi super + log P(D|M)super

− log P(D|M)semi super
(41)

Considering a fixed discretization model M , � and �Relative depend only on the data
set. This experiment considers the same data set D as the Sect. 4.3: a binary classification
problem in which all examples belonging to the class “0” [respectively “1”] are located at
x = 0 [respectively x = 1].

A range of values of the couple (N , Nl) is considered during the experiment, with N ∈
[0, 5,000] and Nl ∈ [0, N ]. N denotes the total number of examples and Nl denotes the num-
ber of labeled examples. The fixed discretization model M includes two intervals (I = 2),
and the single bound, which is defined by {N1, N2} is placed at x = 0.5. � and �Relative

are evaluated for each value of the couple (N , Nl), given the above described D and M .
The left chart of Fig. 4 plots � under varying (N , Nl) using a color code. This chart shows

the O(log N ) variation of � when N and Nl increase. For instance, � is approximately equals
to 5 for N = 5,000 and Nl = 2,500. This observation is consistent with the entropy-based
interpretation of Lemma A which gives � = O(log N ).

When N tends to infinity, � is insubstantial compared to the likelihood � � − log
P(D|M). The right chart of Fig. 4 plots the relative difference between the “− log” of likeli-
hood terms, under varying N and Nl . This chart shows that �Relative tends to “0” when N
and Nl has a constant ratio and jointly tend to infinity.

To conclude, the supervised approach improved with a post-optimization on the bounds
location and our semi-supervised approach tend to resolve the same optimization problem,
given the dicretization bias defined in Sect. 5.1.
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5.3 Algorithm for criterion optimization

The supervised and semi-supervised discretization approaches involve the optimization of
the associated evaluation criterion. First, this section presents a baseline algorithm able to
find a sub-optimal solution in low time complexity. Second, an improvement of this algorithm
based on the notion of neighborhood is presented.

Greedy heuristic: The bottom-up greedy heuristic is presented in Algorithm 1. This
generic algorithm is used to optimize a univariate partition [28]. In our case, the purpose
is to find the discretization model M ∈ M which minimizes Cost (M), i.e the value of the
criterion Csemi super .

The initial model Minitial handles as many intervals as training examples. This heuristic
consists in the evaluation of all the possible merges m between two adjacent intervals. The
best merge is performed if the cost of the current model is reduced. This iterative algorithm
is repeated as long as the model is improved.

Algorithm 1 Bottom-up greedy heuristic

Notations:

* The cost function Cost :M→ R, corresponding to the value of the criterion
* Minitial , the initial disretization model, such as I = N and Ni = 1, ∀i ∈ [1, I ]
* M ′, the optimal discretization model

/* Variables Initialization*/
M ′ ← Minitial
improvement = true

Repeat
/* Look for the best improvement */
Mactual ← M ′
For for all the merges m of two adjacent intervals do

/* Evaluation of the merge m */
Mmerge ← M ′ + m
If Cost (Mmerge) < Cost (Mactual ) then

Mactual ← Mmerge
end If

end For
/* Test of the improvement */
If Cost (Mactual ) < Cost (M ′) then

M ′ ← Mactual improvement = true
else

improvement = f alse
end If

until improvement = true

The discretization model returned by this algorithm is a sub-optimal solution since the
space of the models M is only partially scanned.

A naive implementation of this algorithm has a O(N 3) time complexity, where N is the
size of the data set. But the additivity of the criterion (see Eq. 17) can be exploited to memo-
rize intermediate results and reduce the impact of each merge to the two considered intervals.
At the end, the greedy heuristic is implemented in O(N log N ).

Improvement of the bottom-up greedy heuristic: The greedy heuristic is followed by
two post-optimization steps improving the quality of the model returned M ′.

The first post-optimization step has an effect on the number of discretization intervals
(I ′). The Algorithm 1 is repeated until the model M ′ contains a single one interval : at each
iteration the best merge is done even if this merge does not improve immediately the current
model. The best seen discretization model is ultimately retained.
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The second post-optimization step focuses on the intervals bounds {N ′′i } and considers
adding or deleting an interval or moving interval boundaries. This second step exploits a
local neighborhood of M ′, which is based on elementary operations between two adjacent
intervals:

• deletion of an interval merging three adjacent intervals and splitting the merged interval;
• moving the boundary between two intervals : merge of two adjacent intervals followed

by a split of the merged interval;
• addition of a new interval splitting an existing interval.

The additivity of the criterion Csemi super allows an exhaustive scan of the neighborhood
of the model M ′ in O(N ) time complexity. The systematic exploration of this neighborhood
turns down many local optimum and improves the quality of the discretization model [4].

6 Evaluation on UCI data sets

This section presents an experimental evaluation comparing the supervised method, which
exploits the labeled instances only (see Sect. 2) and the supervised method improved with a
post-optimization of bounds location (see Sect. 5.2), which is a solution of the semi supervised
problem and exploits the labeled and unlabeled instances. Let Msuper [respectively M∗super ]
be the best discretization model resulting from the supervised method [respectively from
the supervised method improved with a post-optimization]. For both methods, the Mmap

is exploited to discretize the input variable. Then this variable is placed as input of a naive
Bayes classifier (NBC) [15]. The predictive model is evaluated using the area under the ROC
curve, denoted AUC [8] of the obtained Bayes classifier. The classification results using
[Msuper +NB] and [M∗super +NB] are called below respectively MS+N B and M∗S+N B .

6.1 Experimental setup

Our benchmark involves 15 data sets2, which come from the repository of University of
California at Irvine [18]. Some properties of these data sets are given in Table 1.

Each data set is split into two subsets, respectively dedicated to the training of the naive
Bayes classifier and its evaluation. A stratified two-fold cross validation is repeated 50 times
to generate these two subsets. At each iteration, the twofolds permute and play both roles:
train set and evaluation set. Overall, the experiments are repeated 100 times.

At the beginning of the experiments, all the training examples are considered as unlabeled.
Then, labels are progressively unmasked. The new labeled examples are randomly chosen.
The classifier is evaluated for several values of Nl : 4, 6, 8, 12, 16, 4, 32, 48, 64, 96, 128,
192, 256. For a given value of Nl , the discretization models Msuper and M∗super result from
the same labeled examples: the difference is that the M∗super model exploits the unlabeled
training instances to post-optimize the location of the boundaries.

6.2 Results

This section evaluates the effects of our post-optimization of bounds location on the perfor-
mance of supervised discretization method. First, theoretical expected results are established.
Then, observed results are discussed.

2 In our benchmark, categorical variables are handled owing to the grouping method MODL [3].
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Table 1 UCI data sets

Name Instances Numerical Categorical Classes Majority
variables variables accuracy

Adult 48,842 7 8 2 76.1

Australian 690 6 8 2 55.5

Breast 699 10 0 2 65.5

Crx 690 6 9 2 55.5

German 1,000 24 0 2 70.0

Heart 270 10 3 2 55.6

Hepatitis 155 6 13 2 79.4

Hypothyroid 3,163 7 18 2 95.2

Ionosphere 351 34 0 2 64.1

Iris 150 4 0 3 33.3

Pima 768 8 0 2 65.1

SickEuthyroid 3,163 7 18 2 90.7

Vehicle 846 18 0 4 25.8

Waveform 5,000 21 0 3 33.9

Wine 178 13 0 3 39.9

Expected results: As shown in Sect. 5.2, the post-optimization of bounds location shifts
each bound between two labeled examples. On the one hand, the expected improvement of
the best discretization model is about Imap

Nl , where Imap denotes the number of intervals of

the Mmap and Nl denotes the number of labeled examples of the data set. On the other hand,
the best model varies depending on the labeled examples in the same way as a binomial
function. The statistical variance of Mmap is about 1/

√
(Nl), that is superior to its expected

improvement. Therefore, the improvement of the best discretization model will be difficult
to highlight in practice.

Observed results: Figures 5 and 6 plot the average AUC of the naive Bayes classifier,
which intervals are given either by Msuper or by M∗super . Each chart correspond to a data set,
curves represent the performance of the classifier (on test and train set) under varying the
number of labeled examples.

These figures show that the post-optimization of the bounds location has no significant
effect on the performance of considered classifiers. Examining the detailed results, the differ-
ences between both discretization methods are in the range [0.01–0.1%], and the variances
of results represent several percents. This behavior is consistent with the above described
expected results.

Although the post-optimization of bounds location is not significant in practice, Figs. 5
and 6 3 exhibit other interesting points:

– For each data set, performance on the train and test sets is relatively close to each other. The
performance monotonically increases in both cases with the number of labeled examples.
This point underlines the robustness of our discretization method.

– The results using Msuper are very competitive and therefore they are very difficult to beat
using M∗super .

3 In this case, the limit of the vertical axis is not the same for all the database, this limit is set to see the optimal
test AUC.
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Fig. 5 Evaluation of the naive Bayes classifier where the discretizations are given either by Msuper or by
M∗super . On each chart, the vertical axis corresponds to the average AUC and the horizontal axis corresponds
to the number of labeled examples. AUC on train and test sets are plotted for both discretization methods. The
optimal AUC, which is observed when all examples are labeled is also represented. On each curves, natches
represent the variance of the AUC(±σ )
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Fig. 6 Evaluation of the naive Bayes classifier where the discretizations are given either by Msuper or by
M∗super . On each chart, the vertical axis corresponds to the average AUC and the horizontal axis corresponds
to the number of labeled examples. AUC on train and test sets are plotted for both discretization methods. The
optimal AUC, which is observed when all examples are labeled, is also represented. On each curves, natches
represent the variance of the AUC(±σ )
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– The quality of the classifiers quickly increase, namely the best performance is reached
labeling only few examples. The high convergence speed is an interesting behavior, which
will be studied in an active learning context [22] in future work.

7 Conclusion

This article presents a new semi-supervised discretization method based on very few assump-
tions on the data distribution. It provides an in-depth analysis of the problem which consists
in dealing with a set of labeled and unlabeled examples.

This paper significantly extends the previous research of Boullé in [4] on supervised
discretization method MODL, i.e., it presents a semi-supervised generalization of it where
additional unlabeled learning examples are taken into account. The results have been proved
in an intuitive manner, and mathematical proofs have also been given.

Our approach gives an important result: the interval bounds must be placed in the middle
of unlabeled areas to minimize the mean square error. The main contribution of this article
is to demonstrate that the unlabeled examples provide useful information, even with a mini-
mum of assumptions on the data distribution. We also proposed a post-optimization, which
allows the supervised MODL approach to be equivalent to our semi-supervised discretization
method. This post-optimization makes an intuitive bridge between both approaches, and can
be exploited to efficiently implement the semi-supervised discretization method.

In practice, the use of [4] to carry out a semi-supervised discretization offers advantages.
First, the supervised approach is faster than the semi-supervised one, due to the less important
number of possible bounds’ locations which are considered. Second, the supervised approach
gives best Mmap with most intervals, due to the less important modeling cost of the prior
distribution.

According to our experimental results, the semi supervised discretization is not better
than the supervised discretization. Our interpretation is that relying on few assumptions on
the data distribution do not allow to take benefit from the unlabeled instances. This raises
the question of whether the semi supervised framework is valuable in the non-parametric
modeling, where less prior knowledge is available.
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